Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ambient vibration monitoring of slender structures by microwave interferometer remote sensing

Identifieur interne : 000274 ( Istex/Corpus ); précédent : 000273; suivant : 000275

Ambient vibration monitoring of slender structures by microwave interferometer remote sensing

Auteurs : Vassilis Gikas

Source :

RBID : ISTEX:2805C6569F55BD44B5D626806F00439383BA264B

English descriptors

Abstract

This paper examines the potential of microwave radar interferometry for monitoring the dynamic behaviour of large civil engineering works. It provides an overview of the method, its principles of operation with particular emphasis given on the IBIS-S system. Two areas of application are considered and the results of the analyses are presented and discussed. The first experimental study involves the monitoring of the dynamic response of a tall power plant chimney due to wind load. The second example examines the dynamic behaviour of a long cable-stayed bridge. In this case, the focus is placed on the effects that individual traffic events impose on the vibration response of the main span of the bridge deck and the bridge pylons. Analysis of the results provides detailed displacement time-histories and the dominant frequencies observed at the top of the chimney and along the bridge deck and the top of the towers. Also, cross-comparisons and discussions with the results obtained at the same structures using different sensor configurations are provided.

Url:
DOI: 10.1515/jag-2012-0029

Links to Exploration step

ISTEX:2805C6569F55BD44B5D626806F00439383BA264B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ambient vibration monitoring of slender structures by microwave interferometer remote sensing</title>
<author wicri:is="90%">
<name sortKey="Gikas, Vassilis" sort="Gikas, Vassilis" uniqKey="Gikas V" first="Vassilis" last="Gikas">Vassilis Gikas</name>
<affiliation>
<mods:affiliation>National Technical University of Athens, Greece</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: vgikas@central.ntua.gr</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2805C6569F55BD44B5D626806F00439383BA264B</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1515/jag-2012-0029</idno>
<idno type="url">https://api.istex.fr/document/2805C6569F55BD44B5D626806F00439383BA264B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000274</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000274</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Ambient vibration monitoring of slender structures by microwave interferometer remote sensing</title>
<author wicri:is="90%">
<name sortKey="Gikas, Vassilis" sort="Gikas, Vassilis" uniqKey="Gikas V" first="Vassilis" last="Gikas">Vassilis Gikas</name>
<affiliation>
<mods:affiliation>National Technical University of Athens, Greece</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: vgikas@central.ntua.gr</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Applied Geodesy</title>
<idno type="ISSN">1862-9016</idno>
<idno type="eISSN">1862-9024</idno>
<imprint>
<publisher>Walter de Gruyter GmbH</publisher>
<date type="published" when="2012-11-01">2012-11-01</date>
<biblScope unit="volume">6</biblScope>
<biblScope unit="issue">3-4</biblScope>
<biblScope unit="page" from="167">167</biblScope>
<biblScope unit="page" to="176">176</biblScope>
</imprint>
<idno type="ISSN">1862-9016</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1862-9016</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ambient vibration monitoring</term>
<term>Available observations</term>
<term>Bridge deck</term>
<term>Bridge towers</term>
<term>Case study</term>
<term>Central greece</term>
<term>Central span</term>
<term>Civil engineering</term>
<term>Continuous observations</term>
<term>Damage detection</term>
<term>Data acquisition</term>
<term>Deformation monitoring</term>
<term>Different sensor</term>
<term>Displacement</term>
<term>Displacement pattern</term>
<term>Dominant frequencies</term>
<term>Dominant oscillation frequency</term>
<term>Dynamic behaviour</term>
<term>Dynamic displacements</term>
<term>Dynamic mode</term>
<term>Dynamic monitoring</term>
<term>Dynamic response</term>
<term>Engineering structures</term>
<term>Evia</term>
<term>Evia island</term>
<term>Evia island side</term>
<term>Evia side</term>
<term>Evripos bridge</term>
<term>Frequency response</term>
<term>Further analysis</term>
<term>Gikas</term>
<term>Health monitoring</term>
<term>Heavy truck</term>
<term>Heavy vehicle</term>
<term>Heavy vehicles</term>
<term>Horizontal displacement</term>
<term>Horizontal displacements</term>
<term>Individual events</term>
<term>Installation setup</term>
<term>Interferometry</term>
<term>Large structures</term>
<term>Long bridge</term>
<term>Main span</term>
<term>Microwave</term>
<term>Microwave interferometry</term>
<term>Microwave radar interferometry</term>
<term>Monitoring</term>
<term>Natural phenomena</term>
<term>Observation distance</term>
<term>Observation scenario</term>
<term>Oscillation</term>
<term>Oscillation frequencies</term>
<term>Peak displacements</term>
<term>Radar sensor</term>
<term>Resonance frequency</term>
<term>Same point</term>
<term>Same structure</term>
<term>Sampling frequency</term>
<term>Scenario</term>
<term>Sensor</term>
<term>Similar manner</term>
<term>Slender structures</term>
<term>Snapshot pictures</term>
<term>Structural health monitoring</term>
<term>Tall chimney</term>
<term>Time interval</term>
<term>Time intervals</term>
<term>Total length</term>
<term>Upper half</term>
<term>Vertical displacements</term>
<term>Video</term>
<term>Video camera recordings</term>
<term>Viotia evia</term>
<term>Wind load</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Ambient vibration monitoring</term>
<term>Available observations</term>
<term>Bridge deck</term>
<term>Bridge towers</term>
<term>Case study</term>
<term>Central greece</term>
<term>Central span</term>
<term>Civil engineering</term>
<term>Continuous observations</term>
<term>Damage detection</term>
<term>Data acquisition</term>
<term>Deformation monitoring</term>
<term>Different sensor</term>
<term>Displacement</term>
<term>Displacement pattern</term>
<term>Dominant frequencies</term>
<term>Dominant oscillation frequency</term>
<term>Dynamic behaviour</term>
<term>Dynamic displacements</term>
<term>Dynamic mode</term>
<term>Dynamic monitoring</term>
<term>Dynamic response</term>
<term>Engineering structures</term>
<term>Evia</term>
<term>Evia island</term>
<term>Evia island side</term>
<term>Evia side</term>
<term>Evripos bridge</term>
<term>Frequency response</term>
<term>Further analysis</term>
<term>Gikas</term>
<term>Health monitoring</term>
<term>Heavy truck</term>
<term>Heavy vehicle</term>
<term>Heavy vehicles</term>
<term>Horizontal displacement</term>
<term>Horizontal displacements</term>
<term>Individual events</term>
<term>Installation setup</term>
<term>Interferometry</term>
<term>Large structures</term>
<term>Long bridge</term>
<term>Main span</term>
<term>Microwave</term>
<term>Microwave interferometry</term>
<term>Microwave radar interferometry</term>
<term>Monitoring</term>
<term>Natural phenomena</term>
<term>Observation distance</term>
<term>Observation scenario</term>
<term>Oscillation</term>
<term>Oscillation frequencies</term>
<term>Peak displacements</term>
<term>Radar sensor</term>
<term>Resonance frequency</term>
<term>Same point</term>
<term>Same structure</term>
<term>Sampling frequency</term>
<term>Scenario</term>
<term>Sensor</term>
<term>Similar manner</term>
<term>Slender structures</term>
<term>Snapshot pictures</term>
<term>Structural health monitoring</term>
<term>Tall chimney</term>
<term>Time interval</term>
<term>Time intervals</term>
<term>Total length</term>
<term>Upper half</term>
<term>Vertical displacements</term>
<term>Video</term>
<term>Video camera recordings</term>
<term>Viotia evia</term>
<term>Wind load</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper examines the potential of microwave radar interferometry for monitoring the dynamic behaviour of large civil engineering works. It provides an overview of the method, its principles of operation with particular emphasis given on the IBIS-S system. Two areas of application are considered and the results of the analyses are presented and discussed. The first experimental study involves the monitoring of the dynamic response of a tall power plant chimney due to wind load. The second example examines the dynamic behaviour of a long cable-stayed bridge. In this case, the focus is placed on the effects that individual traffic events impose on the vibration response of the main span of the bridge deck and the bridge pylons. Analysis of the results provides detailed displacement time-histories and the dominant frequencies observed at the top of the chimney and along the bridge deck and the top of the towers. Also, cross-comparisons and discussions with the results obtained at the same structures using different sensor configurations are provided.</div>
</front>
</TEI>
<istex>
<corpusName>degruyter-journals</corpusName>
<keywords>
<teeft>
<json:string>interferometry</json:string>
<json:string>dynamic response</json:string>
<json:string>evia</json:string>
<json:string>gikas</json:string>
<json:string>bridge deck</json:string>
<json:string>main span</json:string>
<json:string>time interval</json:string>
<json:string>vertical displacements</json:string>
<json:string>dynamic behaviour</json:string>
<json:string>horizontal displacements</json:string>
<json:string>ambient vibration monitoring</json:string>
<json:string>microwave interferometry</json:string>
<json:string>radar sensor</json:string>
<json:string>dynamic monitoring</json:string>
<json:string>individual events</json:string>
<json:string>evripos bridge</json:string>
<json:string>wind load</json:string>
<json:string>microwave</json:string>
<json:string>scenario</json:string>
<json:string>large structures</json:string>
<json:string>microwave radar interferometry</json:string>
<json:string>sampling frequency</json:string>
<json:string>structural health monitoring</json:string>
<json:string>frequency response</json:string>
<json:string>evia island</json:string>
<json:string>slender structures</json:string>
<json:string>tall chimney</json:string>
<json:string>dynamic displacements</json:string>
<json:string>peak displacements</json:string>
<json:string>heavy truck</json:string>
<json:string>heavy vehicle</json:string>
<json:string>sensor</json:string>
<json:string>video</json:string>
<json:string>case study</json:string>
<json:string>dominant frequencies</json:string>
<json:string>observation distance</json:string>
<json:string>dynamic mode</json:string>
<json:string>damage detection</json:string>
<json:string>upper half</json:string>
<json:string>long bridge</json:string>
<json:string>viotia evia</json:string>
<json:string>resonance frequency</json:string>
<json:string>same structure</json:string>
<json:string>dominant oscillation frequency</json:string>
<json:string>engineering structures</json:string>
<json:string>central greece</json:string>
<json:string>different sensor</json:string>
<json:string>total length</json:string>
<json:string>evia side</json:string>
<json:string>continuous observations</json:string>
<json:string>heavy vehicles</json:string>
<json:string>data acquisition</json:string>
<json:string>deformation monitoring</json:string>
<json:string>similar manner</json:string>
<json:string>central span</json:string>
<json:string>evia island side</json:string>
<json:string>civil engineering</json:string>
<json:string>video camera recordings</json:string>
<json:string>snapshot pictures</json:string>
<json:string>installation setup</json:string>
<json:string>further analysis</json:string>
<json:string>available observations</json:string>
<json:string>oscillation frequencies</json:string>
<json:string>horizontal displacement</json:string>
<json:string>natural phenomena</json:string>
<json:string>bridge towers</json:string>
<json:string>observation scenario</json:string>
<json:string>same point</json:string>
<json:string>time intervals</json:string>
<json:string>displacement pattern</json:string>
<json:string>health monitoring</json:string>
<json:string>displacement</json:string>
<json:string>monitoring</json:string>
<json:string>oscillation</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Vassilis Gikas</name>
<affiliations>
<json:string>National Technical University of Athens, Greece</json:string>
<json:string>E-mail: vgikas@central.ntua.gr</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Dynamic monitoring</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>structural health monitoring</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>microwave radar interferometry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>chimney</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cable-stayed bridge</value>
</json:item>
</subject>
<articleId>
<json:string>jag-2012-0029</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>This paper examines the potential of microwave radar interferometry for monitoring the dynamic behaviour of large civil engineering works. It provides an overview of the method, its principles of operation with particular emphasis given on the IBIS-S system. Two areas of application are considered and the results of the analyses are presented and discussed. The first experimental study involves the monitoring of the dynamic response of a tall power plant chimney due to wind load. The second example examines the dynamic behaviour of a long cable-stayed bridge. In this case, the focus is placed on the effects that individual traffic events impose on the vibration response of the main span of the bridge deck and the bridge pylons. Analysis of the results provides detailed displacement time-histories and the dominant frequencies observed at the top of the chimney and along the bridge deck and the top of the towers. Also, cross-comparisons and discussions with the results obtained at the same structures using different sensor configurations are provided.</abstract>
<qualityIndicators>
<score>8.412</score>
<pdfVersion>1.5</pdfVersion>
<pdfPageSize>595.276 x 793.701 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1065</abstractCharCount>
<pdfWordCount>4420</pdfWordCount>
<pdfCharCount>28594</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>166</abstractWordCount>
</qualityIndicators>
<title>Ambient vibration monitoring of slender structures by microwave interferometer remote sensing</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Applied Geodesy</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>1862-9016</json:string>
</issn>
<eissn>
<json:string>1862-9024</json:string>
</eissn>
<publisherId>
<json:string>jag</json:string>
</publisherId>
<volume>6</volume>
<issue>3-4</issue>
<pages>
<first>167</first>
<last>176</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>terre, ocean, espace</json:string>
<json:string>geophysique externe</json:string>
</inist>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1515/jag-2012-0029</json:string>
</doi>
<id>2805C6569F55BD44B5D626806F00439383BA264B</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/2805C6569F55BD44B5D626806F00439383BA264B/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/2805C6569F55BD44B5D626806F00439383BA264B/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/2805C6569F55BD44B5D626806F00439383BA264B/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Ambient vibration monitoring of slender structures by microwave interferometer remote sensing</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">Walter de Gruyter GmbH</publisher>
<availability>
<licence>
<p>© 2012 by Walter de Gruyter Berlin Boston</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-B4QPMMZB-D">degruyter-journals</p>
</availability>
<date>2012-11-21</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Ambient vibration monitoring of slender structures by microwave interferometer remote sensing</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Vassilis</forename>
<surname>Gikas</surname>
</persName>
<email>vgikas@central.ntua.gr</email>
<affiliation>National Technical University of Athens, Greece</affiliation>
</author>
<idno type="istex">2805C6569F55BD44B5D626806F00439383BA264B</idno>
<idno type="ark">ark:/67375/QT4-Q2MR63QR-Q</idno>
<idno type="DOI">10.1515/jag-2012-0029</idno>
<idno type="article-id">jag-2012-0029</idno>
<idno type="pdf">jag-2012-0029.pdf</idno>
</analytic>
<monogr>
<title level="j">Journal of Applied Geodesy</title>
<idno type="pISSN">1862-9016</idno>
<idno type="eISSN">1862-9024</idno>
<idno type="publisher-id">jag</idno>
<imprint>
<publisher>Walter de Gruyter GmbH</publisher>
<date type="published" when="2012-11-01"></date>
<biblScope unit="volume">6</biblScope>
<biblScope unit="issue">3-4</biblScope>
<biblScope unit="page" from="167">167</biblScope>
<biblScope unit="page" to="176">176</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012-11-21</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>This paper examines the potential of microwave radar interferometry for monitoring the dynamic behaviour of large civil engineering works. It provides an overview of the method, its principles of operation with particular emphasis given on the IBIS-S system. Two areas of application are considered and the results of the analyses are presented and discussed. The first experimental study involves the monitoring of the dynamic response of a tall power plant chimney due to wind load. The second example examines the dynamic behaviour of a long cable-stayed bridge. In this case, the focus is placed on the effects that individual traffic events impose on the vibration response of the main span of the bridge deck and the bridge pylons. Analysis of the results provides detailed displacement time-histories and the dominant frequencies observed at the top of the chimney and along the bridge deck and the top of the towers. Also, cross-comparisons and discussions with the results obtained at the same structures using different sensor configurations are provided.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Dynamic monitoring</term>
</item>
<item>
<term>structural health monitoring</term>
</item>
<item>
<term>microwave radar interferometry</term>
</item>
<item>
<term>chimney</term>
</item>
<item>
<term>cable-stayed bridge</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-11-21">Created</change>
<change when="2012-11-01">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-10-5">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/2805C6569F55BD44B5D626806F00439383BA264B/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus degruyter-journals, element #text not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Atypon//DTD Atypon Systems Journal Archiving and Interchange NLM DTD v3.0.2 20101108//EN" URI="atypon_archive-interchange-dtd-3.0.2/atypon-archivearticle3.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article" xml:lang="en">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">jag</journal-id>
<journal-title-group>
<abbrev-journal-title abbrev-type="full">Journal of Applied Geodesy</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">1862-9016</issn>
<issn pub-type="epub">1862-9024</issn>
<publisher>
<publisher-name>Walter de Gruyter GmbH</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="publisher-id">jag-2012-0029</article-id>
<article-id pub-id-type="doi">10.1515/jag-2012-0029</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Monitoring of Oscillations and Laser Scanning</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Ambient vibration monitoring of slender structures by microwave interferometer remote sensing</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Gikas</surname>
<given-names>Vassilis</given-names>
</name>
<email>vgikas@central.ntua.gr</email>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<aff id="aff1">
<sup>1</sup>
National Technical University of Athens, Greece</aff>
</contrib-group>
<pub-date pub-type="ppub">
<day>01</day>
<month>11</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>21</day>
<month>11</month>
<year>2012</year>
</pub-date>
<volume>6</volume>
<issue>3-4</issue>
<fpage>167</fpage>
<lpage>176</lpage>
<history>
<date date-type="received">
<day>30</day>
<month>04</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>08</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>© 2012 by Walter de Gruyter Berlin Boston</copyright-statement>
<copyright-year>2012</copyright-year>
</permissions>
<related-article related-article-type="pdf" xlink:href="jag-2012-0029.pdf"></related-article>
<abstract>
<title>Abstract.</title>
<p> This paper examines the potential of microwave radar interferometry for monitoring the dynamic behaviour of large civil engineering works. It provides an overview of the method, its principles of operation with particular emphasis given on the IBIS-S system. Two areas of application are considered and the results of the analyses are presented and discussed. The first experimental study involves the monitoring of the dynamic response of a tall power plant chimney due to wind load. The second example examines the dynamic behaviour of a long cable-stayed bridge. In this case, the focus is placed on the effects that individual traffic events impose on the vibration response of the main span of the bridge deck and the bridge pylons. Analysis of the results provides detailed displacement time-histories and the dominant frequencies observed at the top of the chimney and along the bridge deck and the top of the towers. Also, cross-comparisons and discussions with the results obtained at the same structures using different sensor configurations are provided. </p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>Dynamic monitoring</kwd>
<kwd>structural health monitoring</kwd>
<kwd>microwave radar interferometry</kwd>
<kwd>chimney</kwd>
<kwd>cable-stayed bridge</kwd>
</kwd-group>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Ambient vibration monitoring of slender structures by microwave interferometer remote sensing</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Ambient vibration monitoring of slender structures by microwave interferometer remote sensing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vassilis</namePart>
<namePart type="family">Gikas</namePart>
<affiliation>National Technical University of Athens, Greece</affiliation>
<affiliation>E-mail: vgikas@central.ntua.gr</affiliation>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Walter de Gruyter GmbH</publisher>
<dateIssued encoding="w3cdtf">2012-11-01</dateIssued>
<dateCreated encoding="w3cdtf">2012-11-21</dateCreated>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">This paper examines the potential of microwave radar interferometry for monitoring the dynamic behaviour of large civil engineering works. It provides an overview of the method, its principles of operation with particular emphasis given on the IBIS-S system. Two areas of application are considered and the results of the analyses are presented and discussed. The first experimental study involves the monitoring of the dynamic response of a tall power plant chimney due to wind load. The second example examines the dynamic behaviour of a long cable-stayed bridge. In this case, the focus is placed on the effects that individual traffic events impose on the vibration response of the main span of the bridge deck and the bridge pylons. Analysis of the results provides detailed displacement time-histories and the dominant frequencies observed at the top of the chimney and along the bridge deck and the top of the towers. Also, cross-comparisons and discussions with the results obtained at the same structures using different sensor configurations are provided.</abstract>
<subject>
<genre>Keywords</genre>
<topic>Dynamic monitoring</topic>
<topic>structural health monitoring</topic>
<topic>microwave radar interferometry</topic>
<topic>chimney</topic>
<topic>cable-stayed bridge</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Applied Geodesy</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo></originInfo>
<identifier type="ISSN">1862-9016</identifier>
<identifier type="eISSN">1862-9024</identifier>
<identifier type="PublisherID">jag</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3-4</number>
</detail>
<extent unit="pages">
<start>167</start>
<end>176</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">2805C6569F55BD44B5D626806F00439383BA264B</identifier>
<identifier type="ark">ark:/67375/QT4-Q2MR63QR-Q</identifier>
<identifier type="DOI">10.1515/jag-2012-0029</identifier>
<identifier type="ArticleID">jag-2012-0029</identifier>
<identifier type="pdf">jag-2012-0029.pdf</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2012 by Walter de Gruyter Berlin Boston</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-B4QPMMZB-D">degruyter-journals</recordContentSource>
<recordOrigin>© 2012 by Walter de Gruyter Berlin Boston</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/2805C6569F55BD44B5D626806F00439383BA264B/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000274 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000274 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:2805C6569F55BD44B5D626806F00439383BA264B
   |texte=   Ambient vibration monitoring of slender structures by microwave interferometer remote sensing
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021