Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy

Identifieur interne : 000150 ( Istex/Corpus ); précédent : 000149; suivant : 000151

Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy

Auteurs : Giovanni Chiodini ; Luigi Marini ; Massimo Russo

Source :

RBID : ISTEX:53F312D1C0555FAEA417009CFEA259530DF28CBA

English descriptors

Abstract

Abstract: A high-temperature hydrothermal system is present underneath the crater area of Vesuvio volcano. It is suggested that NaCl brines reside in the high-temperature reservoir and influence the chemical composition of the gases discharged by the fumaroles of the crater bottom (vents FC1, FC2, and FC5). These have typical hydrothermal compositions, with H2O and CO2 as major components, followed by H2, H2S, N2, CH4, and CO (in order of decreasing contents) and undetectable SO2, HCl, and HF. Fumarolic H2O is either meteoric water enriched in 18O through high-temperature water-rock oxygen isotope exchange or a mixture of meteoric and arc-type magmatic water. Fumarolic CO2 is mainly generated by decarbonation reactions of marine carbonates, but the addition of small amounts of magmatic CO2 is also possible. All investigated gas species (H2O, CO2, CO, CH4, H2, H2S, N2, and NH3) equilibrate, probably in a saturated vapor phase, at temperatures of 360 to 370°C for vent FC1 and 430 to 445°C for vents FC2 and FC5. These temperatures are confirmed by the H2-Ar geoindicator. The minimum salt content of the liquid phase coexisting with the vapor phase is ∼14.9 wt.% NaCl, whereas its maximum salinity corresponds to halite saturation (49.2–52.5 wt.% NaCl). These poorly constrained salinities of NaCl brines reflect in large uncertainties in total fluid pressures, which are estimated to be 260 to 480 bar for vents FC2 and FC5 and 130 to 220 bar for vent FC1. Pressurization in some parts of the hydrothermal system, and its subsequent discharge through hydrofracturing, could explain the relatively frequent seismic crises recorded in the Vesuvio area after the last eruption. An important heat source responsible for hydrothermal circulation is represented by the hot rocks of the eruptive conduits, which have been active from 1631 to 1944. Geochemical evidence suggests that no input of fresh magma at shallow depths took place after the end of the last eruptive period.

Url:
DOI: 10.1016/S0016-7037(01)00583-X

Links to Exploration step

ISTEX:53F312D1C0555FAEA417009CFEA259530DF28CBA

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy</title>
<author>
<name sortKey="Chiodini, Giovanni" sort="Chiodini, Giovanni" uniqKey="Chiodini G" first="Giovanni" last="Chiodini">Giovanni Chiodini</name>
<affiliation>
<mods:affiliation>E-mail: chiod@ischia.osve.unina.it</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, via Manzoni 249, 80122 Napoli, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marini, Luigi" sort="Marini, Luigi" uniqKey="Marini L" first="Luigi" last="Marini">Luigi Marini</name>
<affiliation>
<mods:affiliation>DIPTERIS, Università di Genova, Corso Europa 26, 16132 Genova, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Russo, Massimo" sort="Russo, Massimo" uniqKey="Russo M" first="Massimo" last="Russo">Massimo Russo</name>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, via Manzoni 249, 80122 Napoli, Italy</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:53F312D1C0555FAEA417009CFEA259530DF28CBA</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0016-7037(01)00583-X</idno>
<idno type="url">https://api.istex.fr/document/53F312D1C0555FAEA417009CFEA259530DF28CBA/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000150</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000150</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy</title>
<author>
<name sortKey="Chiodini, Giovanni" sort="Chiodini, Giovanni" uniqKey="Chiodini G" first="Giovanni" last="Chiodini">Giovanni Chiodini</name>
<affiliation>
<mods:affiliation>E-mail: chiod@ischia.osve.unina.it</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, via Manzoni 249, 80122 Napoli, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marini, Luigi" sort="Marini, Luigi" uniqKey="Marini L" first="Luigi" last="Marini">Luigi Marini</name>
<affiliation>
<mods:affiliation>DIPTERIS, Università di Genova, Corso Europa 26, 16132 Genova, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Russo, Massimo" sort="Russo, Massimo" uniqKey="Russo M" first="Massimo" last="Russo">Massimo Russo</name>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, via Manzoni 249, 80122 Napoli, Italy</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geochimica et Cosmochimica Acta</title>
<title level="j" type="abbrev">GCA</title>
<idno type="ISSN">0016-7037</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">65</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="2129">2129</biblScope>
<biblScope unit="page" to="2147">2147</biblScope>
</imprint>
<idno type="ISSN">0016-7037</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0016-7037</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acta</term>
<term>Analytical data</term>
<term>Analytical ratios</term>
<term>Brine</term>
<term>Brombach</term>
<term>Campi flegrei</term>
<term>Carbon dioxide</term>
<term>Carbonate</term>
<term>Carbonate rocks</term>
<term>Chemical composition</term>
<term>Chemical equilibrium</term>
<term>Chiodini</term>
<term>Cioni</term>
<term>Conceptual geochemical model</term>
<term>Condensate</term>
<term>Cosmochim</term>
<term>Crater</term>
<term>Crater area</term>
<term>Crater bottom</term>
<term>Crater lake</term>
<term>Crater lakes</term>
<term>Critical point</term>
<term>Decarbonation</term>
<term>Decarbonation reactions</term>
<term>Degassing</term>
<term>Earth planet</term>
<term>Elli</term>
<term>Equilibration</term>
<term>Equilibration zone</term>
<term>Equilibrium</term>
<term>Equilibrium temperatures</term>
<term>Eruption</term>
<term>Explosive eruptions</term>
<term>Fco2</term>
<term>Fco2 values</term>
<term>Fh2o</term>
<term>Fluid geochemistry</term>
<term>Fractionation</term>
<term>Fractionation factors</term>
<term>Fresh magma</term>
<term>Fugacity</term>
<term>Fumaroles</term>
<term>Fumarolic</term>
<term>Fumarolic gases</term>
<term>Fumarolic vents</term>
<term>Geochemical</term>
<term>Geochemistry</term>
<term>Geochim</term>
<term>Geological survey</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Geothermal systems</term>
<term>Giggenbach</term>
<term>Groundwater</term>
<term>Groundwaters</term>
<term>High solubility</term>
<term>High temperatures</term>
<term>Higher temperatures</term>
<term>Historical lavas</term>
<term>Hydrothermal</term>
<term>Hydrothermal brines</term>
<term>Hydrothermal environment</term>
<term>Hydrothermal environments</term>
<term>Hydrothermal reservoir</term>
<term>Hydrothermal system</term>
<term>Hydrothermal systems</term>
<term>Hypothetical parent hydrothermal</term>
<term>Ischia island</term>
<term>Isotope</term>
<term>Isotopic</term>
<term>Isotopic composition</term>
<term>Isotopic ratios</term>
<term>John wiley sons</term>
<term>Last eruptive period</term>
<term>Lava</term>
<term>Lett</term>
<term>Liquid phase</term>
<term>Liquid water</term>
<term>Magma</term>
<term>Magmatic</term>
<term>Magmatic buffer</term>
<term>Magmatic gases</term>
<term>Magmatic water</term>
<term>Marine carbonates</term>
<term>Marini</term>
<term>Maximum salinity</term>
<term>Maximum temperatures</term>
<term>Meteoric water</term>
<term>Minimum salinity</term>
<term>Nacl</term>
<term>Nacl brines</term>
<term>Nacl concentration</term>
<term>Nacl concentrations</term>
<term>Nacl content</term>
<term>Nacl solution</term>
<term>Nacl solutions</term>
<term>Naoh solution</term>
<term>Napoli</term>
<term>Neutralizing acids</term>
<term>Osservatorio vesuviano</term>
<term>Other gases</term>
<term>Outlet temperatures</term>
<term>Oxygen isotope exchange</term>
<term>Oxygen isotope fractionation</term>
<term>Panichi</term>
<term>Pitzer</term>
<term>Principe</term>
<term>Pure water</term>
<term>Redox</term>
<term>Redox conditions</term>
<term>Rosi</term>
<term>Russo</term>
<term>Salinity</term>
<term>Salt content</term>
<term>Salt solutions</term>
<term>Santacroce</term>
<term>Shallow depths</term>
<term>Solubility</term>
<term>Steam condensate</term>
<term>Steam condensates</term>
<term>Steam condensation</term>
<term>Sulfur</term>
<term>Tedesco</term>
<term>Temperature dependence</term>
<term>Theoretical values</term>
<term>Thermodynamic data</term>
<term>Total condensation</term>
<term>Uids</term>
<term>Vapor line</term>
<term>Vapor phase</term>
<term>Vapor phases</term>
<term>Vapors</term>
<term>Vesuvio</term>
<term>Vesuvio crater</term>
<term>Vesuvio crater bottom</term>
<term>Vesuvio fumaroles</term>
<term>Vesuvio fumarolic</term>
<term>Vesuvio hydrothermal system</term>
<term>Vesuvio volcano</term>
<term>Vesuvius</term>
<term>Volcanic</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Water fugacities</term>
<term>Water fugacity</term>
<term>Water line</term>
<term>West indies</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acta</term>
<term>Analytical data</term>
<term>Analytical ratios</term>
<term>Brine</term>
<term>Brombach</term>
<term>Campi flegrei</term>
<term>Carbon dioxide</term>
<term>Carbonate</term>
<term>Carbonate rocks</term>
<term>Chemical composition</term>
<term>Chemical equilibrium</term>
<term>Chiodini</term>
<term>Cioni</term>
<term>Conceptual geochemical model</term>
<term>Condensate</term>
<term>Cosmochim</term>
<term>Crater</term>
<term>Crater area</term>
<term>Crater bottom</term>
<term>Crater lake</term>
<term>Crater lakes</term>
<term>Critical point</term>
<term>Decarbonation</term>
<term>Decarbonation reactions</term>
<term>Degassing</term>
<term>Earth planet</term>
<term>Elli</term>
<term>Equilibration</term>
<term>Equilibration zone</term>
<term>Equilibrium</term>
<term>Equilibrium temperatures</term>
<term>Eruption</term>
<term>Explosive eruptions</term>
<term>Fco2</term>
<term>Fco2 values</term>
<term>Fh2o</term>
<term>Fluid geochemistry</term>
<term>Fractionation</term>
<term>Fractionation factors</term>
<term>Fresh magma</term>
<term>Fugacity</term>
<term>Fumaroles</term>
<term>Fumarolic</term>
<term>Fumarolic gases</term>
<term>Fumarolic vents</term>
<term>Geochemical</term>
<term>Geochemistry</term>
<term>Geochim</term>
<term>Geological survey</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Geothermal systems</term>
<term>Giggenbach</term>
<term>Groundwater</term>
<term>Groundwaters</term>
<term>High solubility</term>
<term>High temperatures</term>
<term>Higher temperatures</term>
<term>Historical lavas</term>
<term>Hydrothermal</term>
<term>Hydrothermal brines</term>
<term>Hydrothermal environment</term>
<term>Hydrothermal environments</term>
<term>Hydrothermal reservoir</term>
<term>Hydrothermal system</term>
<term>Hydrothermal systems</term>
<term>Hypothetical parent hydrothermal</term>
<term>Ischia island</term>
<term>Isotope</term>
<term>Isotopic</term>
<term>Isotopic composition</term>
<term>Isotopic ratios</term>
<term>John wiley sons</term>
<term>Last eruptive period</term>
<term>Lava</term>
<term>Lett</term>
<term>Liquid phase</term>
<term>Liquid water</term>
<term>Magma</term>
<term>Magmatic</term>
<term>Magmatic buffer</term>
<term>Magmatic gases</term>
<term>Magmatic water</term>
<term>Marine carbonates</term>
<term>Marini</term>
<term>Maximum salinity</term>
<term>Maximum temperatures</term>
<term>Meteoric water</term>
<term>Minimum salinity</term>
<term>Nacl</term>
<term>Nacl brines</term>
<term>Nacl concentration</term>
<term>Nacl concentrations</term>
<term>Nacl content</term>
<term>Nacl solution</term>
<term>Nacl solutions</term>
<term>Naoh solution</term>
<term>Napoli</term>
<term>Neutralizing acids</term>
<term>Osservatorio vesuviano</term>
<term>Other gases</term>
<term>Outlet temperatures</term>
<term>Oxygen isotope exchange</term>
<term>Oxygen isotope fractionation</term>
<term>Panichi</term>
<term>Pitzer</term>
<term>Principe</term>
<term>Pure water</term>
<term>Redox</term>
<term>Redox conditions</term>
<term>Rosi</term>
<term>Russo</term>
<term>Salinity</term>
<term>Salt content</term>
<term>Salt solutions</term>
<term>Santacroce</term>
<term>Shallow depths</term>
<term>Solubility</term>
<term>Steam condensate</term>
<term>Steam condensates</term>
<term>Steam condensation</term>
<term>Sulfur</term>
<term>Tedesco</term>
<term>Temperature dependence</term>
<term>Theoretical values</term>
<term>Thermodynamic data</term>
<term>Total condensation</term>
<term>Uids</term>
<term>Vapor line</term>
<term>Vapor phase</term>
<term>Vapor phases</term>
<term>Vapors</term>
<term>Vesuvio</term>
<term>Vesuvio crater</term>
<term>Vesuvio crater bottom</term>
<term>Vesuvio fumaroles</term>
<term>Vesuvio fumarolic</term>
<term>Vesuvio hydrothermal system</term>
<term>Vesuvio volcano</term>
<term>Vesuvius</term>
<term>Volcanic</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Water fugacities</term>
<term>Water fugacity</term>
<term>Water line</term>
<term>West indies</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A high-temperature hydrothermal system is present underneath the crater area of Vesuvio volcano. It is suggested that NaCl brines reside in the high-temperature reservoir and influence the chemical composition of the gases discharged by the fumaroles of the crater bottom (vents FC1, FC2, and FC5). These have typical hydrothermal compositions, with H2O and CO2 as major components, followed by H2, H2S, N2, CH4, and CO (in order of decreasing contents) and undetectable SO2, HCl, and HF. Fumarolic H2O is either meteoric water enriched in 18O through high-temperature water-rock oxygen isotope exchange or a mixture of meteoric and arc-type magmatic water. Fumarolic CO2 is mainly generated by decarbonation reactions of marine carbonates, but the addition of small amounts of magmatic CO2 is also possible. All investigated gas species (H2O, CO2, CO, CH4, H2, H2S, N2, and NH3) equilibrate, probably in a saturated vapor phase, at temperatures of 360 to 370°C for vent FC1 and 430 to 445°C for vents FC2 and FC5. These temperatures are confirmed by the H2-Ar geoindicator. The minimum salt content of the liquid phase coexisting with the vapor phase is ∼14.9 wt.% NaCl, whereas its maximum salinity corresponds to halite saturation (49.2–52.5 wt.% NaCl). These poorly constrained salinities of NaCl brines reflect in large uncertainties in total fluid pressures, which are estimated to be 260 to 480 bar for vents FC2 and FC5 and 130 to 220 bar for vent FC1. Pressurization in some parts of the hydrothermal system, and its subsequent discharge through hydrofracturing, could explain the relatively frequent seismic crises recorded in the Vesuvio area after the last eruption. An important heat source responsible for hydrothermal circulation is represented by the hot rocks of the eruptive conduits, which have been active from 1631 to 1944. Geochemical evidence suggests that no input of fresh magma at shallow depths took place after the end of the last eruptive period.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>hydrothermal</json:string>
<json:string>nacl</json:string>
<json:string>giggenbach</json:string>
<json:string>fumarolic</json:string>
<json:string>uids</json:string>
<json:string>vesuvio</json:string>
<json:string>fumaroles</json:string>
<json:string>chiodini</json:string>
<json:string>isotope</json:string>
<json:string>magmatic</json:string>
<json:string>redox</json:string>
<json:string>solubility</json:string>
<json:string>marini</json:string>
<json:string>brine</json:string>
<json:string>volcanol</json:string>
<json:string>carbonate</json:string>
<json:string>vapor phase</json:string>
<json:string>geothermal</json:string>
<json:string>nacl solutions</json:string>
<json:string>pure water</json:string>
<json:string>magma</json:string>
<json:string>acta</json:string>
<json:string>salinity</json:string>
<json:string>hydrothermal system</json:string>
<json:string>redox conditions</json:string>
<json:string>russo</json:string>
<json:string>cosmochim</json:string>
<json:string>isotopic composition</json:string>
<json:string>fugacity</json:string>
<json:string>groundwaters</json:string>
<json:string>geochim</json:string>
<json:string>crater</json:string>
<json:string>fco2</json:string>
<json:string>equilibrium temperatures</json:string>
<json:string>cioni</json:string>
<json:string>vesuvio volcano</json:string>
<json:string>vesuvio crater bottom</json:string>
<json:string>santacroce</json:string>
<json:string>napoli</json:string>
<json:string>decarbonation</json:string>
<json:string>vesuvio crater</json:string>
<json:string>condensate</json:string>
<json:string>tedesco</json:string>
<json:string>geotherm</json:string>
<json:string>fh2o</json:string>
<json:string>steam condensation</json:string>
<json:string>groundwater</json:string>
<json:string>liquid phase</json:string>
<json:string>analytical data</json:string>
<json:string>temperature dependence</json:string>
<json:string>panichi</json:string>
<json:string>geochemical</json:string>
<json:string>principe</json:string>
<json:string>volcano</json:string>
<json:string>oxygen isotope exchange</json:string>
<json:string>vesuvius</json:string>
<json:string>lett</json:string>
<json:string>brombach</json:string>
<json:string>vapors</json:string>
<json:string>pitzer</json:string>
<json:string>hydrothermal brines</json:string>
<json:string>john wiley sons</json:string>
<json:string>earth planet</json:string>
<json:string>vesuvio fumarolic</json:string>
<json:string>water fugacity</json:string>
<json:string>decarbonation reactions</json:string>
<json:string>elli</json:string>
<json:string>equilibration</json:string>
<json:string>degassing</json:string>
<json:string>rosi</json:string>
<json:string>isotopic</json:string>
<json:string>volcanic</json:string>
<json:string>nacl solution</json:string>
<json:string>critical point</json:string>
<json:string>chemical composition</json:string>
<json:string>water fugacities</json:string>
<json:string>hydrothermal systems</json:string>
<json:string>theoretical values</json:string>
<json:string>nacl concentration</json:string>
<json:string>magmatic gases</json:string>
<json:string>chemical equilibrium</json:string>
<json:string>high temperatures</json:string>
<json:string>outlet temperatures</json:string>
<json:string>higher temperatures</json:string>
<json:string>eruption</json:string>
<json:string>minimum salinity</json:string>
<json:string>fco2 values</json:string>
<json:string>hydrothermal reservoir</json:string>
<json:string>steam condensates</json:string>
<json:string>crater lakes</json:string>
<json:string>equilibration zone</json:string>
<json:string>hydrothermal environments</json:string>
<json:string>maximum salinity</json:string>
<json:string>analytical ratios</json:string>
<json:string>historical lavas</json:string>
<json:string>fluid geochemistry</json:string>
<json:string>marine carbonates</json:string>
<json:string>vesuvio fumaroles</json:string>
<json:string>crater area</json:string>
<json:string>crater bottom</json:string>
<json:string>salt solutions</json:string>
<json:string>conceptual geochemical model</json:string>
<json:string>sulfur</json:string>
<json:string>geochemistry</json:string>
<json:string>lava</json:string>
<json:string>fractionation</json:string>
<json:string>salt content</json:string>
<json:string>magmatic water</json:string>
<json:string>meteoric water</json:string>
<json:string>nacl content</json:string>
<json:string>geological survey</json:string>
<json:string>hydrothermal environment</json:string>
<json:string>liquid water</json:string>
<json:string>nacl brines</json:string>
<json:string>carbonate rocks</json:string>
<json:string>ischia island</json:string>
<json:string>campi flegrei</json:string>
<json:string>high solubility</json:string>
<json:string>explosive eruptions</json:string>
<json:string>osservatorio vesuviano</json:string>
<json:string>west indies</json:string>
<json:string>fumarolic gases</json:string>
<json:string>maximum temperatures</json:string>
<json:string>magmatic buffer</json:string>
<json:string>vapor phases</json:string>
<json:string>vesuvio hydrothermal system</json:string>
<json:string>fumarolic vents</json:string>
<json:string>naoh solution</json:string>
<json:string>oxygen isotope fractionation</json:string>
<json:string>water line</json:string>
<json:string>total condensation</json:string>
<json:string>steam condensate</json:string>
<json:string>fractionation factors</json:string>
<json:string>hypothetical parent hydrothermal</json:string>
<json:string>other gases</json:string>
<json:string>fresh magma</json:string>
<json:string>shallow depths</json:string>
<json:string>last eruptive period</json:string>
<json:string>nacl concentrations</json:string>
<json:string>carbon dioxide</json:string>
<json:string>neutralizing acids</json:string>
<json:string>isotopic ratios</json:string>
<json:string>geothermal systems</json:string>
<json:string>crater lake</json:string>
<json:string>vapor line</json:string>
<json:string>thermodynamic data</json:string>
<json:string>equilibrium</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Giovanni Chiodini</name>
<affiliations>
<json:string>E-mail: chiod@ischia.osve.unina.it</json:string>
<json:string>Osservatorio Vesuviano, via Manzoni 249, 80122 Napoli, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>Luigi Marini</name>
<affiliations>
<json:string>DIPTERIS, Università di Genova, Corso Europa 26, 16132 Genova, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>Massimo Russo</name>
<affiliations>
<json:string>Osservatorio Vesuviano, via Manzoni 249, 80122 Napoli, Italy</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>A high-temperature hydrothermal system is present underneath the crater area of Vesuvio volcano. It is suggested that NaCl brines reside in the high-temperature reservoir and influence the chemical composition of the gases discharged by the fumaroles of the crater bottom (vents FC1, FC2, and FC5). These have typical hydrothermal compositions, with H2O and CO2 as major components, followed by H2, H2S, N2, CH4, and CO (in order of decreasing contents) and undetectable SO2, HCl, and HF. Fumarolic H2O is either meteoric water enriched in 18O through high-temperature water-rock oxygen isotope exchange or a mixture of meteoric and arc-type magmatic water. Fumarolic CO2 is mainly generated by decarbonation reactions of marine carbonates, but the addition of small amounts of magmatic CO2 is also possible. All investigated gas species (H2O, CO2, CO, CH4, H2, H2S, N2, and NH3) equilibrate, probably in a saturated vapor phase, at temperatures of 360 to 370°C for vent FC1 and 430 to 445°C for vents FC2 and FC5. These temperatures are confirmed by the H2-Ar geoindicator. The minimum salt content of the liquid phase coexisting with the vapor phase is ∼14.9 wt.% NaCl, whereas its maximum salinity corresponds to halite saturation (49.2–52.5 wt.% NaCl). These poorly constrained salinities of NaCl brines reflect in large uncertainties in total fluid pressures, which are estimated to be 260 to 480 bar for vents FC2 and FC5 and 130 to 220 bar for vent FC1. Pressurization in some parts of the hydrothermal system, and its subsequent discharge through hydrofracturing, could explain the relatively frequent seismic crises recorded in the Vesuvio area after the last eruption. An important heat source responsible for hydrothermal circulation is represented by the hot rocks of the eruptive conduits, which have been active from 1631 to 1944. Geochemical evidence suggests that no input of fresh magma at shallow depths took place after the end of the last eruptive period.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>586 x 785 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1975</abstractCharCount>
<pdfWordCount>13524</pdfWordCount>
<pdfCharCount>83928</pdfCharCount>
<pdfPageCount>19</pdfPageCount>
<abstractWordCount>312</abstractWordCount>
</qualityIndicators>
<title>Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy</title>
<pii>
<json:string>S0016-7037(01)00583-X</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Geochimica et Cosmochimica Acta</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2001</publicationDate>
<issn>
<json:string>0016-7037</json:string>
</issn>
<pii>
<json:string>S0016-7037(00)X0134-2</json:string>
</pii>
<volume>65</volume>
<issue>13</issue>
<pages>
<first>2129</first>
<last>2147</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geochemistry & geophysics</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>geochemistry & geophysics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>terre, ocean, espace</json:string>
<json:string>sciences de la terre</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0016-7037(01)00583-X</json:string>
</doi>
<id>53F312D1C0555FAEA417009CFEA259530DF28CBA</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/53F312D1C0555FAEA417009CFEA259530DF28CBA/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/53F312D1C0555FAEA417009CFEA259530DF28CBA/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/53F312D1C0555FAEA417009CFEA259530DF28CBA/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2001 Elsevier Science Ltd</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Location of the sampled fumaroles of Vesuvio crater.</note>
<note type="content">Fig. 2: Chronogram of the maximum temperatures measured in the Vesuvio crater area from 1944 to 1999 (data from Imbò, 1947, 1950; Imbò et al., 1964; Parascandola, 1959, 1960; Russo, 1995, 1997a; Nazzaro, 1997; Allard, pers. comm.; Cioni, pers. comm.; Avino, pers. comm.).</note>
<note type="content">Fig. 3: Correlation plots between the logarithm of the vapor-liquid distribution coefficient Bi for (a) CO2 and (b) H2S, and the Lρ parameter, which is equal to log (ρV/ρL)-log (ρC).</note>
<note type="content">Fig. 4: Gas ratio diagram of log (XH2O/XH2) + log (XCO/XCO2) vs. 3 log (XCO/XCO2) + log (XCO/XCH4). The theoretical values of both variables in a single saturated vapor phase and in a single saturated liquid phase, for NaCl concentrations of 0, 1, 2, and 3 m, are shown, together with the analytical gas ratios for the fumaroles of Vesuvio crater bottom.</note>
<note type="content">Fig. 5: Plot of log fCO2 vs. 1000/T(K), showing the full equilibrium function of Giggenbach (1984, 1988), the fCO2-T conditions of metamorphic reactions involving carbonate minerals and the fCO2 values computed from the analytical data for the fumarolic fluids discharged from Vesuvio crater bottom. Other Campanian fumarolic fluids from Ischia Island (I) and Solfatara di Pozzuoli (S) are shown for comparison (data from Tedesco, 1996; Chiodini et al., 1992; Chiodini and Marini, 1998).</note>
<note type="content">Fig. 6: NaCl concentrations of vapor and liquid along the 425 and 450°C isothermal, vapor + liquid coexistence curves as a function of pressure (from Tanger and Pitzer, 1989). The expected NaCl concentrations for vents FC2 and FC5 of Vesuvio are obtained starting from the minimum and maximum NaCl content of the liquid phase, i.e., 14.9 and 49.2 to 52.5 wt.%, respectively.</note>
<note type="content">Fig. 7: Diagram of (a) log XCO/XCO2, (b) log XH2/XH2O, and (c) log XCH4/XCO2 vs. 1000/T(K). Theoretical ratios in a single saturated vapor phase, under redox conditions controlled by the hydrothermal fO2 buffers of Giggenbach (1987) and D’Amore and Panichi (1980) are shown for reference. Theoretical ratios expected for varying water fugacities and redox conditions fixed by the magmatic SO2-H2S buffer (Giggenbach, 1987) are also plotted. Analytical ratios for the fumaroles of Vesuvio crater bottom are plotted against the equilibrium temperatures calculated through H2-CO2-CO-CH4-H2O equilibria.</note>
<note type="content">Fig. 8: Plot of log XH2S/XH2O vs. 1000/T(K). The theoretical values of the XH2S/XH2O ratio in a single saturated vapor phase, under redox conditions controlled by both the (FeO)-(FeO1.5) buffer of Giggenbach (1987) and the fO2 buffer of D’Amore and Panichi (1980), are shown for reference. Analytical XH2S/XH2O ratios for the fumaroles of Vesuvio crater bottom are plotted against the equilibrium temperatures estimated through gas equilibria in the H2-CO2-CO-CH4-H2O system.</note>
<note type="content">Fig. 9: Diagram of LN = log (XNH3/XN2) + log (XNH3/XH2O) vs. 1000/T(K). The theoretical LN values in a single saturated vapor phase, under redox conditions controlled by the two hydrothermal redox buffers of Giggenbach (1987) and D’Amore and Panichi (1980), are shown for reference. Also shown are the theoretical values of LN in a single saturated vapor phase and at varying water fugacities for redox conditions controlled by the magmatic SO2-H2S buffer (Giggenbach 1987). Analytical LN values for the fumaroles of Vesuvio crater bottom are plotted against the equilibrium temperatures estimated through the gas-ratio diagram of Figure 4.</note>
<note type="content">Fig. 10: Triangular plot H2O-N2-Ar, showing the analytical data of fumaroles FC1, FC2, and FC5 and the compositions of atmospheric air and of air-saturated groundwater at 5 to 20°C.</note>
<note type="content">Fig. 11: Correlation plots of log (XH2/XAr) vs. log(XCO/XCO2) for the fumarolic fluids from vents FC1, FC2, and FC5. Theoretical values for a single saturated vapor phase in equilibrium with pure water and 1, 2, and 3 m NaCl solutions are shown both for redox conditions controlled by (a) the (FeO)-(FeO1.5) buffer of Giggenbach (1987) and (b) the fO2 buffer of D’Amore and Panichi (1980).</note>
<note type="content">Fig. 12: Plot of δD vs. δ18O values showing the analytical data of fumaroles FC1, FC2, and FC5 and their equilibrium compositions at depth, computed taking into account the oxygen isotope exchange between CO2(g) and steam (Chiodini et al., 2000). The worldwide meteoric water line, the field of magmatic arc-type (andesitic) waters (Giggenbach 1992a), and local groundwaters from shallow wells (Caliro et al. 1998, closed squares) are shown for reference. Also plotted are the theoretical δD and δ18O values of the vapors separated through single-step separation (from 450–100°C, each 25°C) from (1) a possible parent hydrothermal liquid (PHL), curve A, (2) the PHL mixed with average shallow groundwater, curve B, and (3) the PHL mixed with a liquid produced through total condensation of the steam separated at 100°C from the pure PHL, curve C. The effects of steam condensation brought about by conductive heat loss at 100°C are shown as lines D1 and D2 (numbers represent the fraction of condensed steam).</note>
<note type="content">Fig. 13: Conceptual geochemical model of the volcanic-hydrothermal system of Vesuvio crater.</note>
<note type="content">Table 1: Chemical and isotopic composition of the fumaroles located in the bottom of the Vesuvio crater. Gas concentrations are expressed in μmol/mol. legend legend</note>
<note type="content">Table 2: Chemical composition of the fumaroles located in the inner slopes and in the rim of the Vesuvio crater. Analytical data are expressed as μmol/mol in a water-free basis.legend</note>
<note type="content">Table 3: Temperature dependence of the vapor-liquid distribution coefficients of different gases and of water fugacity for 1, 2, and 3 m NaCl solutions. The a and b coefficients refer to the log Bi = a + bT (°C) and log fH2O = a + b/T(K) equations, respectively.</note>
<note type="content">Table 4: Equilibration temperatures and pressures for the H2O-H2-CO2-CH4-CO system.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Giovanni</forename>
<surname>Chiodini</surname>
</persName>
<email>chiod@ischia.osve.unina.it</email>
<affiliation>Author to whom correspondence should be addressed</affiliation>
<affiliation>Osservatorio Vesuviano, via Manzoni 249, 80122 Napoli, Italy</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Luigi</forename>
<surname>Marini</surname>
</persName>
<affiliation>DIPTERIS, Università di Genova, Corso Europa 26, 16132 Genova, Italy</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Massimo</forename>
<surname>Russo</surname>
</persName>
<affiliation>Osservatorio Vesuviano, via Manzoni 249, 80122 Napoli, Italy</affiliation>
</author>
<idno type="istex">53F312D1C0555FAEA417009CFEA259530DF28CBA</idno>
<idno type="DOI">10.1016/S0016-7037(01)00583-X</idno>
<idno type="PII">S0016-7037(01)00583-X</idno>
</analytic>
<monogr>
<title level="j">Geochimica et Cosmochimica Acta</title>
<title level="j" type="abbrev">GCA</title>
<idno type="pISSN">0016-7037</idno>
<idno type="PII">S0016-7037(00)X0134-2</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">65</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="2129">2129</biblScope>
<biblScope unit="page" to="2147">2147</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>A high-temperature hydrothermal system is present underneath the crater area of Vesuvio volcano. It is suggested that NaCl brines reside in the high-temperature reservoir and influence the chemical composition of the gases discharged by the fumaroles of the crater bottom (vents FC1, FC2, and FC5). These have typical hydrothermal compositions, with H2O and CO2 as major components, followed by H2, H2S, N2, CH4, and CO (in order of decreasing contents) and undetectable SO2, HCl, and HF. Fumarolic H2O is either meteoric water enriched in 18O through high-temperature water-rock oxygen isotope exchange or a mixture of meteoric and arc-type magmatic water. Fumarolic CO2 is mainly generated by decarbonation reactions of marine carbonates, but the addition of small amounts of magmatic CO2 is also possible. All investigated gas species (H2O, CO2, CO, CH4, H2, H2S, N2, and NH3) equilibrate, probably in a saturated vapor phase, at temperatures of 360 to 370°C for vent FC1 and 430 to 445°C for vents FC2 and FC5. These temperatures are confirmed by the H2-Ar geoindicator. The minimum salt content of the liquid phase coexisting with the vapor phase is ∼14.9 wt.% NaCl, whereas its maximum salinity corresponds to halite saturation (49.2–52.5 wt.% NaCl). These poorly constrained salinities of NaCl brines reflect in large uncertainties in total fluid pressures, which are estimated to be 260 to 480 bar for vents FC2 and FC5 and 130 to 220 bar for vent FC1. Pressurization in some parts of the hydrothermal system, and its subsequent discharge through hydrofracturing, could explain the relatively frequent seismic crises recorded in the Vesuvio area after the last eruption. An important heat source responsible for hydrothermal circulation is represented by the hot rocks of the eruptive conduits, which have been active from 1631 to 1944. Geochemical evidence suggests that no input of fresh magma at shallow depths took place after the end of the last eruptive period.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2001-01-29">Modified</change>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/53F312D1C0555FAEA417009CFEA259530DF28CBA/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="GR1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="GR2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="GR3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="GR4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="GR5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="GR6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="GR7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="GR8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="GR9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="GR10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="GR11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="GR12"></istex:entity>
<istex:entity SYSTEM="gr13" NDATA="IMAGE" name="GR13"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>GCA</jid>
<aid>2744</aid>
<ce:pii>S0016-7037(01)00583-X</ce:pii>
<ce:doi>10.1016/S0016-7037(01)00583-X</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Giovanni</ce:given-name>
<ce:surname>Chiodini</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>chiod@ischia.osve.unina.it</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>Luigi</ce:given-name>
<ce:surname>Marini</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>2</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Massimo</ce:given-name>
<ce:surname>Russo</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>1</ce:label>
<ce:textfn>Osservatorio Vesuviano, via Manzoni 249, 80122 Napoli, Italy</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>2</ce:label>
<ce:textfn>DIPTERIS, Università di Genova, Corso Europa 26, 16132 Genova, Italy</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Author to whom correspondence should be addressed</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="20" month="12" year="1999"></ce:date-received>
<ce:date-revised day="29" month="1" year="2001"></ce:date-revised>
<ce:date-accepted day="29" month="1" year="2001"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>A high-temperature hydrothermal system is present underneath the crater area of Vesuvio volcano. It is suggested that NaCl brines reside in the high-temperature reservoir and influence the chemical composition of the gases discharged by the fumaroles of the crater bottom (vents FC1, FC2, and FC5). These have typical hydrothermal compositions, with H
<ce:inf>2</ce:inf>
O and CO
<ce:inf>2</ce:inf>
as major components, followed by H
<ce:inf>2</ce:inf>
, H
<ce:inf>2</ce:inf>
S, N
<ce:inf>2</ce:inf>
, CH
<ce:inf>4</ce:inf>
, and CO (in order of decreasing contents) and undetectable SO
<ce:inf>2</ce:inf>
, HCl, and HF. Fumarolic H
<ce:inf>2</ce:inf>
O is either meteoric water enriched in
<ce:sup>18</ce:sup>
O through high-temperature water-rock oxygen isotope exchange or a mixture of meteoric and arc-type magmatic water. Fumarolic CO
<ce:inf>2</ce:inf>
is mainly generated by decarbonation reactions of marine carbonates, but the addition of small amounts of magmatic CO
<ce:inf>2</ce:inf>
is also possible. All investigated gas species (H
<ce:inf>2</ce:inf>
O, CO
<ce:inf>2</ce:inf>
, CO, CH
<ce:inf>4</ce:inf>
, H
<ce:inf>2</ce:inf>
, H
<ce:inf>2</ce:inf>
S, N
<ce:inf>2</ce:inf>
, and NH
<ce:inf>3</ce:inf>
) equilibrate, probably in a saturated vapor phase, at temperatures of 360 to 370°C for vent FC1 and 430 to 445°C for vents FC2 and FC5. These temperatures are confirmed by the H
<ce:inf>2</ce:inf>
-Ar geoindicator. The minimum salt content of the liquid phase coexisting with the vapor phase is ∼14.9 wt.% NaCl, whereas its maximum salinity corresponds to halite saturation (49.2–52.5 wt.% NaCl). These poorly constrained salinities of NaCl brines reflect in large uncertainties in total fluid pressures, which are estimated to be 260 to 480 bar for vents FC2 and FC5 and 130 to 220 bar for vent FC1. Pressurization in some parts of the hydrothermal system, and its subsequent discharge through hydrofracturing, could explain the relatively frequent seismic crises recorded in the Vesuvio area after the last eruption. An important heat source responsible for hydrothermal circulation is represented by the hot rocks of the eruptive conduits, which have been active from 1631 to 1944. Geochemical evidence suggests that no input of fresh magma at shallow depths took place after the end of the last eruptive period.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Chiodini</namePart>
<affiliation>E-mail: chiod@ischia.osve.unina.it</affiliation>
<affiliation>Osservatorio Vesuviano, via Manzoni 249, 80122 Napoli, Italy</affiliation>
<description>Author to whom correspondence should be addressed</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luigi</namePart>
<namePart type="family">Marini</namePart>
<affiliation>DIPTERIS, Università di Genova, Corso Europa 26, 16132 Genova, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Massimo</namePart>
<namePart type="family">Russo</namePart>
<affiliation>Osservatorio Vesuviano, via Manzoni 249, 80122 Napoli, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<dateModified encoding="w3cdtf">2001-01-29</dateModified>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: A high-temperature hydrothermal system is present underneath the crater area of Vesuvio volcano. It is suggested that NaCl brines reside in the high-temperature reservoir and influence the chemical composition of the gases discharged by the fumaroles of the crater bottom (vents FC1, FC2, and FC5). These have typical hydrothermal compositions, with H2O and CO2 as major components, followed by H2, H2S, N2, CH4, and CO (in order of decreasing contents) and undetectable SO2, HCl, and HF. Fumarolic H2O is either meteoric water enriched in 18O through high-temperature water-rock oxygen isotope exchange or a mixture of meteoric and arc-type magmatic water. Fumarolic CO2 is mainly generated by decarbonation reactions of marine carbonates, but the addition of small amounts of magmatic CO2 is also possible. All investigated gas species (H2O, CO2, CO, CH4, H2, H2S, N2, and NH3) equilibrate, probably in a saturated vapor phase, at temperatures of 360 to 370°C for vent FC1 and 430 to 445°C for vents FC2 and FC5. These temperatures are confirmed by the H2-Ar geoindicator. The minimum salt content of the liquid phase coexisting with the vapor phase is ∼14.9 wt.% NaCl, whereas its maximum salinity corresponds to halite saturation (49.2–52.5 wt.% NaCl). These poorly constrained salinities of NaCl brines reflect in large uncertainties in total fluid pressures, which are estimated to be 260 to 480 bar for vents FC2 and FC5 and 130 to 220 bar for vent FC1. Pressurization in some parts of the hydrothermal system, and its subsequent discharge through hydrofracturing, could explain the relatively frequent seismic crises recorded in the Vesuvio area after the last eruption. An important heat source responsible for hydrothermal circulation is represented by the hot rocks of the eruptive conduits, which have been active from 1631 to 1944. Geochemical evidence suggests that no input of fresh magma at shallow depths took place after the end of the last eruptive period.</abstract>
<note type="content">Fig. 1: Location of the sampled fumaroles of Vesuvio crater.</note>
<note type="content">Fig. 2: Chronogram of the maximum temperatures measured in the Vesuvio crater area from 1944 to 1999 (data from Imbò, 1947, 1950; Imbò et al., 1964; Parascandola, 1959, 1960; Russo, 1995, 1997a; Nazzaro, 1997; Allard, pers. comm.; Cioni, pers. comm.; Avino, pers. comm.).</note>
<note type="content">Fig. 3: Correlation plots between the logarithm of the vapor-liquid distribution coefficient Bi for (a) CO2 and (b) H2S, and the Lρ parameter, which is equal to log (ρV/ρL)-log (ρC).</note>
<note type="content">Fig. 4: Gas ratio diagram of log (XH2O/XH2) + log (XCO/XCO2) vs. 3 log (XCO/XCO2) + log (XCO/XCH4). The theoretical values of both variables in a single saturated vapor phase and in a single saturated liquid phase, for NaCl concentrations of 0, 1, 2, and 3 m, are shown, together with the analytical gas ratios for the fumaroles of Vesuvio crater bottom.</note>
<note type="content">Fig. 5: Plot of log fCO2 vs. 1000/T(K), showing the full equilibrium function of Giggenbach (1984, 1988), the fCO2-T conditions of metamorphic reactions involving carbonate minerals and the fCO2 values computed from the analytical data for the fumarolic fluids discharged from Vesuvio crater bottom. Other Campanian fumarolic fluids from Ischia Island (I) and Solfatara di Pozzuoli (S) are shown for comparison (data from Tedesco, 1996; Chiodini et al., 1992; Chiodini and Marini, 1998).</note>
<note type="content">Fig. 6: NaCl concentrations of vapor and liquid along the 425 and 450°C isothermal, vapor + liquid coexistence curves as a function of pressure (from Tanger and Pitzer, 1989). The expected NaCl concentrations for vents FC2 and FC5 of Vesuvio are obtained starting from the minimum and maximum NaCl content of the liquid phase, i.e., 14.9 and 49.2 to 52.5 wt.%, respectively.</note>
<note type="content">Fig. 7: Diagram of (a) log XCO/XCO2, (b) log XH2/XH2O, and (c) log XCH4/XCO2 vs. 1000/T(K). Theoretical ratios in a single saturated vapor phase, under redox conditions controlled by the hydrothermal fO2 buffers of Giggenbach (1987) and D’Amore and Panichi (1980) are shown for reference. Theoretical ratios expected for varying water fugacities and redox conditions fixed by the magmatic SO2-H2S buffer (Giggenbach, 1987) are also plotted. Analytical ratios for the fumaroles of Vesuvio crater bottom are plotted against the equilibrium temperatures calculated through H2-CO2-CO-CH4-H2O equilibria.</note>
<note type="content">Fig. 8: Plot of log XH2S/XH2O vs. 1000/T(K). The theoretical values of the XH2S/XH2O ratio in a single saturated vapor phase, under redox conditions controlled by both the (FeO)-(FeO1.5) buffer of Giggenbach (1987) and the fO2 buffer of D’Amore and Panichi (1980), are shown for reference. Analytical XH2S/XH2O ratios for the fumaroles of Vesuvio crater bottom are plotted against the equilibrium temperatures estimated through gas equilibria in the H2-CO2-CO-CH4-H2O system.</note>
<note type="content">Fig. 9: Diagram of LN = log (XNH3/XN2) + log (XNH3/XH2O) vs. 1000/T(K). The theoretical LN values in a single saturated vapor phase, under redox conditions controlled by the two hydrothermal redox buffers of Giggenbach (1987) and D’Amore and Panichi (1980), are shown for reference. Also shown are the theoretical values of LN in a single saturated vapor phase and at varying water fugacities for redox conditions controlled by the magmatic SO2-H2S buffer (Giggenbach 1987). Analytical LN values for the fumaroles of Vesuvio crater bottom are plotted against the equilibrium temperatures estimated through the gas-ratio diagram of Figure 4.</note>
<note type="content">Fig. 10: Triangular plot H2O-N2-Ar, showing the analytical data of fumaroles FC1, FC2, and FC5 and the compositions of atmospheric air and of air-saturated groundwater at 5 to 20°C.</note>
<note type="content">Fig. 11: Correlation plots of log (XH2/XAr) vs. log(XCO/XCO2) for the fumarolic fluids from vents FC1, FC2, and FC5. Theoretical values for a single saturated vapor phase in equilibrium with pure water and 1, 2, and 3 m NaCl solutions are shown both for redox conditions controlled by (a) the (FeO)-(FeO1.5) buffer of Giggenbach (1987) and (b) the fO2 buffer of D’Amore and Panichi (1980).</note>
<note type="content">Fig. 12: Plot of δD vs. δ18O values showing the analytical data of fumaroles FC1, FC2, and FC5 and their equilibrium compositions at depth, computed taking into account the oxygen isotope exchange between CO2(g) and steam (Chiodini et al., 2000). The worldwide meteoric water line, the field of magmatic arc-type (andesitic) waters (Giggenbach 1992a), and local groundwaters from shallow wells (Caliro et al. 1998, closed squares) are shown for reference. Also plotted are the theoretical δD and δ18O values of the vapors separated through single-step separation (from 450–100°C, each 25°C) from (1) a possible parent hydrothermal liquid (PHL), curve A, (2) the PHL mixed with average shallow groundwater, curve B, and (3) the PHL mixed with a liquid produced through total condensation of the steam separated at 100°C from the pure PHL, curve C. The effects of steam condensation brought about by conductive heat loss at 100°C are shown as lines D1 and D2 (numbers represent the fraction of condensed steam).</note>
<note type="content">Fig. 13: Conceptual geochemical model of the volcanic-hydrothermal system of Vesuvio crater.</note>
<note type="content">Table 1: Chemical and isotopic composition of the fumaroles located in the bottom of the Vesuvio crater. Gas concentrations are expressed in μmol/mol. legend legend</note>
<note type="content">Table 2: Chemical composition of the fumaroles located in the inner slopes and in the rim of the Vesuvio crater. Analytical data are expressed as μmol/mol in a water-free basis.legend</note>
<note type="content">Table 3: Temperature dependence of the vapor-liquid distribution coefficients of different gases and of water fugacity for 1, 2, and 3 m NaCl solutions. The a and b coefficients refer to the log Bi = a + bT (°C) and log fH2O = a + b/T(K) equations, respectively.</note>
<note type="content">Table 4: Equilibration temperatures and pressures for the H2O-H2-CO2-CH4-CO system.</note>
<relatedItem type="host">
<titleInfo>
<title>Geochimica et Cosmochimica Acta</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>GCA</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">20010701</dateIssued>
</originInfo>
<identifier type="ISSN">0016-7037</identifier>
<identifier type="PII">S0016-7037(00)X0134-2</identifier>
<part>
<date>20010701</date>
<detail type="volume">
<number>65</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>13</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>2029</start>
<end>2200</end>
</extent>
<extent unit="pages">
<start>2129</start>
<end>2147</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">53F312D1C0555FAEA417009CFEA259530DF28CBA</identifier>
<identifier type="ark">ark:/67375/6H6-XCLCPD44-X</identifier>
<identifier type="DOI">10.1016/S0016-7037(01)00583-X</identifier>
<identifier type="PII">S0016-7037(01)00583-X</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2001</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/53F312D1C0555FAEA417009CFEA259530DF28CBA/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000150 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000150 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:53F312D1C0555FAEA417009CFEA259530DF28CBA
   |texte=   Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021