Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Implications of silicic vent patterns for the presence of large crustal magma chambers

Identifieur interne : 000103 ( Istex/Corpus ); précédent : 000102; suivant : 000104

Implications of silicic vent patterns for the presence of large crustal magma chambers

Auteurs : Charles R. Bacon

Source :

RBID : ISTEX:F917AFB4AD97D0566B765A0F82C03B80F253BFA9

English descriptors

Abstract

On the basis of the distribution of silicic vents, many volcanic fields can be grouped with (1) igneous systems that may be small and whose vent locations are controlled by regional tectonics, (2) those that include sizable crustal magma bodies which erupt at sites determined by their anomalous local stress fields, or (3) relatively small volume systems that are transitional between categories 1 and 2. Linear vent patterns that are aligned normal to the regional least principal stress (σ3) commonly are associated with absence of evidence for large, shallow magma bodies. The Coso volcanic field and the Inyo‐Mono domes in California and probably the South Sister area in Oregon are examples of such systems. The 1960 dacitic fissure eruption at Cordón Caulle in southern Chile evidently is linked to tectonic stress relaxation associated with the great earthquake that occurred 48 hours before the eruption began. Large, shallow magma chambers are thought to perturb the local stress field so that areal patterns of silicic vents are diffuse, radial, or arcuate. Such systems may erupt great volumes of pyroclastic material catastrophically and produce large calderas. Well‐preserved examples of late precaldera leaks of silicic magma occur at Long Valley, California, and Mount Mazama (Crater Lake), Oregon. Other possible examples are noted. Some of these, those which formed calderas smaller than Crater Lake, apparently were preceded by silicic eruptions from aligned vents. Bearing in mind that there exists a transitional group between tectonically controlled small systems and very large magma chambers, vent distributions can be useful in evaluating potential volcanic hazards for silicic volcanic fields.

Url:
DOI: 10.1029/JB090iB13p11243

Links to Exploration step

ISTEX:F917AFB4AD97D0566B765A0F82C03B80F253BFA9

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Implications of silicic vent patterns for the presence of large crustal magma chambers</title>
<author wicri:is="90%">
<name sortKey="Bacon, Charles R" sort="Bacon, Charles R" uniqKey="Bacon C" first="Charles R." last="Bacon">Charles R. Bacon</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F917AFB4AD97D0566B765A0F82C03B80F253BFA9</idno>
<date when="1985" year="1985">1985</date>
<idno type="doi">10.1029/JB090iB13p11243</idno>
<idno type="url">https://api.istex.fr/document/F917AFB4AD97D0566B765A0F82C03B80F253BFA9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000103</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000103</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Implications of silicic vent patterns for the presence of large crustal magma chambers</title>
<author wicri:is="90%">
<name sortKey="Bacon, Charles R" sort="Bacon, Charles R" uniqKey="Bacon C" first="Charles R." last="Bacon">Charles R. Bacon</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">90</biblScope>
<biblScope unit="issue">B13</biblScope>
<biblScope unit="page" from="11243">11243</biblScope>
<biblScope unit="page" to="11252">11252</biblScope>
<biblScope unit="page-count">10</biblScope>
<date type="published" when="1985-11-10">1985-11-10</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Andesite vents</term>
<term>Basalt</term>
<term>Basaltic magma</term>
<term>Basaltic vents</term>
<term>Caldera</term>
<term>Cape riva eruption</term>
<term>Cleetwood flow</term>
<term>Cord6n caulle</term>
<term>Coso</term>
<term>Coso volcanicfield</term>
<term>Crater</term>
<term>Crater lake</term>
<term>Crater lake caldera</term>
<term>Crustal</term>
<term>Dacite</term>
<term>Dike</term>
<term>Eastern california</term>
<term>Eruption</term>
<term>Geophys</term>
<term>Glass mountain</term>
<term>Holocene</term>
<term>Implications ofsilicic vent patterns crustal</term>
<term>Krakatau</term>
<term>Lava</term>
<term>Llao rock</term>
<term>Long valley</term>
<term>Magma</term>
<term>Magma chambers</term>
<term>Mazama</term>
<term>Metz</term>
<term>Moat</term>
<term>Moat rhyolites</term>
<term>Mono</term>
<term>Mono craters</term>
<term>Overall trend</term>
<term>Precaldera</term>
<term>Precalderasilicic vents</term>
<term>Pyroclastic</term>
<term>Rhyodacite</term>
<term>Rhyodacitic</term>
<term>Rhyolite</term>
<term>Rhyolitic</term>
<term>Ring structure</term>
<term>Roof rocks</term>
<term>Silicic</term>
<term>Silicic magma</term>
<term>Silicic patternscrustal vent</term>
<term>Silicic system</term>
<term>Silicic vents</term>
<term>Southern chile</term>
<term>Southern lavas</term>
<term>Tectonic</term>
<term>Tectonically</term>
<term>Tuff</term>
<term>Valley caldera</term>
<term>Vent</term>
<term>Vent alignments</term>
<term>Vent distributions</term>
<term>Vent patterns</term>
<term>Volcanic</term>
<term>Volcanism</term>
<term>Volcano</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Andesite vents</term>
<term>Basalt</term>
<term>Basaltic magma</term>
<term>Basaltic vents</term>
<term>Caldera</term>
<term>Cape riva eruption</term>
<term>Cleetwood flow</term>
<term>Cord6n caulle</term>
<term>Coso</term>
<term>Coso volcanicfield</term>
<term>Crater</term>
<term>Crater lake</term>
<term>Crater lake caldera</term>
<term>Crustal</term>
<term>Dacite</term>
<term>Dike</term>
<term>Eastern california</term>
<term>Eruption</term>
<term>Geophys</term>
<term>Glass mountain</term>
<term>Holocene</term>
<term>Implications ofsilicic vent patterns crustal</term>
<term>Krakatau</term>
<term>Lava</term>
<term>Llao rock</term>
<term>Long valley</term>
<term>Magma</term>
<term>Magma chambers</term>
<term>Mazama</term>
<term>Metz</term>
<term>Moat</term>
<term>Moat rhyolites</term>
<term>Mono</term>
<term>Mono craters</term>
<term>Overall trend</term>
<term>Precaldera</term>
<term>Precalderasilicic vents</term>
<term>Pyroclastic</term>
<term>Rhyodacite</term>
<term>Rhyodacitic</term>
<term>Rhyolite</term>
<term>Rhyolitic</term>
<term>Ring structure</term>
<term>Roof rocks</term>
<term>Silicic</term>
<term>Silicic magma</term>
<term>Silicic patternscrustal vent</term>
<term>Silicic system</term>
<term>Silicic vents</term>
<term>Southern chile</term>
<term>Southern lavas</term>
<term>Tectonic</term>
<term>Tectonically</term>
<term>Tuff</term>
<term>Valley caldera</term>
<term>Vent</term>
<term>Vent alignments</term>
<term>Vent distributions</term>
<term>Vent patterns</term>
<term>Volcanic</term>
<term>Volcanism</term>
<term>Volcano</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">On the basis of the distribution of silicic vents, many volcanic fields can be grouped with (1) igneous systems that may be small and whose vent locations are controlled by regional tectonics, (2) those that include sizable crustal magma bodies which erupt at sites determined by their anomalous local stress fields, or (3) relatively small volume systems that are transitional between categories 1 and 2. Linear vent patterns that are aligned normal to the regional least principal stress (σ3) commonly are associated with absence of evidence for large, shallow magma bodies. The Coso volcanic field and the Inyo‐Mono domes in California and probably the South Sister area in Oregon are examples of such systems. The 1960 dacitic fissure eruption at Cordón Caulle in southern Chile evidently is linked to tectonic stress relaxation associated with the great earthquake that occurred 48 hours before the eruption began. Large, shallow magma chambers are thought to perturb the local stress field so that areal patterns of silicic vents are diffuse, radial, or arcuate. Such systems may erupt great volumes of pyroclastic material catastrophically and produce large calderas. Well‐preserved examples of late precaldera leaks of silicic magma occur at Long Valley, California, and Mount Mazama (Crater Lake), Oregon. Other possible examples are noted. Some of these, those which formed calderas smaller than Crater Lake, apparently were preceded by silicic eruptions from aligned vents. Bearing in mind that there exists a transitional group between tectonically controlled small systems and very large magma chambers, vent distributions can be useful in evaluating potential volcanic hazards for silicic volcanic fields.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>magma</json:string>
<json:string>silicic</json:string>
<json:string>caldera</json:string>
<json:string>geophys</json:string>
<json:string>basalt</json:string>
<json:string>lava</json:string>
<json:string>tectonic</json:string>
<json:string>eruption</json:string>
<json:string>rhyolite</json:string>
<json:string>mono</json:string>
<json:string>holocene</json:string>
<json:string>mazama</json:string>
<json:string>rhyodacite</json:string>
<json:string>dacite</json:string>
<json:string>volcanism</json:string>
<json:string>crustal</json:string>
<json:string>tectonically</json:string>
<json:string>precaldera</json:string>
<json:string>coso</json:string>
<json:string>magma chambers</json:string>
<json:string>krakatau</json:string>
<json:string>metz</json:string>
<json:string>rhyolitic</json:string>
<json:string>tuff</json:string>
<json:string>moat</json:string>
<json:string>rhyodacitic</json:string>
<json:string>dike</json:string>
<json:string>pyroclastic</json:string>
<json:string>crater lake</json:string>
<json:string>crater</json:string>
<json:string>long valley</json:string>
<json:string>silicic vents</json:string>
<json:string>mono craters</json:string>
<json:string>cape riva eruption</json:string>
<json:string>vent</json:string>
<json:string>glass mountain</json:string>
<json:string>implications ofsilicic vent patterns crustal</json:string>
<json:string>volcanic</json:string>
<json:string>cord6n caulle</json:string>
<json:string>andesite vents</json:string>
<json:string>basaltic magma</json:string>
<json:string>vent alignments</json:string>
<json:string>silicic system</json:string>
<json:string>overall trend</json:string>
<json:string>basaltic vents</json:string>
<json:string>vent distributions</json:string>
<json:string>eastern california</json:string>
<json:string>precalderasilicic vents</json:string>
<json:string>valley caldera</json:string>
<json:string>southern lavas</json:string>
<json:string>roof rocks</json:string>
<json:string>ring structure</json:string>
<json:string>coso volcanicfield</json:string>
<json:string>southern chile</json:string>
<json:string>vent patterns</json:string>
<json:string>llao rock</json:string>
<json:string>cleetwood flow</json:string>
<json:string>crater lake caldera</json:string>
<json:string>silicic patternscrustal vent</json:string>
<json:string>moat rhyolites</json:string>
<json:string>silicic magma</json:string>
<json:string>volcano</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Charles R. Bacon</name>
</json:item>
</author>
<articleId>
<json:string>4B5173</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>On the basis of the distribution of silicic vents, many volcanic fields can be grouped with (1) igneous systems that may be small and whose vent locations are controlled by regional tectonics, (2) those that include sizable crustal magma bodies which erupt at sites determined by their anomalous local stress fields, or (3) relatively small volume systems that are transitional between categories 1 and 2. Linear vent patterns that are aligned normal to the regional least principal stress (σ3) commonly are associated with absence of evidence for large, shallow magma bodies. The Coso volcanic field and the Inyo‐Mono domes in California and probably the South Sister area in Oregon are examples of such systems. The 1960 dacitic fissure eruption at Cordón Caulle in southern Chile evidently is linked to tectonic stress relaxation associated with the great earthquake that occurred 48 hours before the eruption began. Large, shallow magma chambers are thought to perturb the local stress field so that areal patterns of silicic vents are diffuse, radial, or arcuate. Such systems may erupt great volumes of pyroclastic material catastrophically and produce large calderas. Well‐preserved examples of late precaldera leaks of silicic magma occur at Long Valley, California, and Mount Mazama (Crater Lake), Oregon. Other possible examples are noted. Some of these, those which formed calderas smaller than Crater Lake, apparently were preceded by silicic eruptions from aligned vents. Bearing in mind that there exists a transitional group between tectonically controlled small systems and very large magma chambers, vent distributions can be useful in evaluating potential volcanic hazards for silicic volcanic fields.</abstract>
<qualityIndicators>
<score>7.443</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>619 x 818 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1719</abstractCharCount>
<pdfWordCount>4443</pdfWordCount>
<pdfCharCount>42293</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>261</abstractWordCount>
</qualityIndicators>
<title>Implications of silicic vent patterns for the presence of large crustal magma chambers</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Solid Earth</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<volume>90</volume>
<issue>B13</issue>
<pages>
<first>11243</first>
<last>11252</last>
<total>10</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Long Valley Caldera, California</value>
</json:item>
<json:item>
<value>TECTONOPHYSICS</value>
</json:item>
<json:item>
<value>General or miscellaneous</value>
</json:item>
<json:item>
<value>GEOGRAPHIC LOCATION</value>
</json:item>
<json:item>
<value>Information Related to Geographic Region: North America</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>1985</publicationDate>
<copyrightDate>1985</copyrightDate>
<doi>
<json:string>10.1029/JB090iB13p11243</json:string>
</doi>
<id>F917AFB4AD97D0566B765A0F82C03B80F253BFA9</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/F917AFB4AD97D0566B765A0F82C03B80F253BFA9/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/F917AFB4AD97D0566B765A0F82C03B80F253BFA9/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/F917AFB4AD97D0566B765A0F82C03B80F253BFA9/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Implications of silicic vent patterns for the presence of large crustal magma chambers</title>
</titleStmt>
<publicationStmt>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<licence>This paper is not subject to U.S. copyright. Published in 1985 by the American Geophysical Union.</licence>
</availability>
<date type="published" when="1985-11-10"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Implications of silicic vent patterns for the presence of large crustal magma chambers</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Charles R.</forename>
<surname>Bacon</surname>
</persName>
</author>
<idno type="istex">F917AFB4AD97D0566B765A0F82C03B80F253BFA9</idno>
<idno type="DOI">10.1029/JB090iB13p11243</idno>
<idno type="editorialOffice">4B5173</idno>
<idno type="unit">JGRB5392</idno>
<idno type="toTypesetVersion">file:JGRB.JGRB5392.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="book-DOI">10.1002/(ISSN)2156-2202b</idno>
<idno type="book-part-DOI">10.1002/jgrb.v90.B13</idno>
<idno type="product">JGRB</idno>
<idno type="coden">JGREA2</idno>
<imprint>
<biblScope unit="vol">90</biblScope>
<biblScope unit="issue">B13</biblScope>
<biblScope unit="page" from="11243">11243</biblScope>
<biblScope unit="page" to="11252">11252</biblScope>
<biblScope unit="page-count">10</biblScope>
<date type="published" when="1985-11-10"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="jgrb5392-para-0001">On the basis of the distribution of silicic vents, many volcanic fields can be grouped with (1) igneous systems that may be small and whose vent locations are controlled by regional tectonics, (2) those that include sizable crustal magma bodies which erupt at sites determined by their anomalous local stress fields, or (3) relatively small volume systems that are transitional between categories 1 and 2. Linear vent patterns that are aligned normal to the regional least principal stress (σ
<hi rend="subscript">3</hi>
) commonly are associated with absence of evidence for large, shallow magma bodies. The Coso volcanic field and the Inyo‐Mono domes in California and probably the South Sister area in Oregon are examples of such systems. The 1960 dacitic fissure eruption at Cordón Caulle in southern Chile evidently is linked to tectonic stress relaxation associated with the great earthquake that occurred 48 hours before the eruption began. Large, shallow magma chambers are thought to perturb the local stress field so that areal patterns of silicic vents are diffuse, radial, or arcuate. Such systems may erupt great volumes of pyroclastic material catastrophically and produce large calderas. Well‐preserved examples of late precaldera leaks of silicic magma occur at Long Valley, California, and Mount Mazama (Crater Lake), Oregon. Other possible examples are noted. Some of these, those which formed calderas smaller than Crater Lake, apparently were preceded by silicic eruptions from aligned vents. Bearing in mind that there exists a transitional group between tectonically controlled small systems and very large magma chambers, vent distributions can be useful in evaluating potential volcanic hazards for silicic volcanic fields.</p>
</abstract>
<textClass>
<classCode scheme="http://psi.agu.org/specialSection/LVCCAL1">Long Valley Caldera, California</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/9300">GEOGRAPHIC LOCATION</classCode>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/F917AFB4AD97D0566B765A0F82C03B80F253BFA9/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb5392">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="130">
<doi>10.1002/jgrb.v90.B13</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="90">90</numbering>
<numbering type="journalIssue">B13</numbering>
</numberingGroup>
<coverDate startDate="1985-11-10">10 November 1985</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="140" status="forIssue">
<doi>10.1029/JB090iB13p11243</doi>
<idGroup>
<id type="editorialOffice" value="4B5173"></id>
<id type="unit" value="JGRB5392"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="10"></count>
</countGroup>
<copyright ownership="thirdParty">This paper is not subject to U.S. copyright. Published in 1985 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1984-06-29"></event>
<event type="manuscriptAccepted" date="1984-11-19"></event>
<event type="publishedPrint" date="1985-11-10"></event>
<event type="firstOnline" date="2012-09-20"></event>
<event type="publishedOnlineFinalForm" date="2012-09-20"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2012-12-01"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">11243</numbering>
<numbering type="pageLast">11252</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/specialSection/LVCCAL1">Long Valley Caldera, California</subject>
<subject href="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8199">General or miscellaneous</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/9300">GEOGRAPHIC LOCATION</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/9350">Information Related to Geographic Region: North America</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb5392-cit-0000" type="self">
<author>
<familyName>Bacon</familyName>
,
<givenNames>C. R.</givenNames>
</author>
(
<pubYear year="1985">1985</pubYear>
),
<articleTitle>Implications of silicic vent patterns for the presence of large crustal magma chambers</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>90</vol>
(
<issue>B13</issue>
),
<pageFirst>11243</pageFirst>
<pageLast>11252</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/JB090iB13p11243">10.1029/JB090iB13p11243</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB5392.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Implications of silicic vent patterns for the presence of large crustal magma chambers</title>
<title type="shortAuthors">Bacon</title>
</titleGroup>
<creators>
<creator xml:id="jgrb5392-cr-0001">
<personName>
<givenNames>Charles R.</givenNames>
<familyName>Bacon</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb5392-para-0001">On the basis of the distribution of silicic vents, many volcanic fields can be grouped with (1) igneous systems that may be small and whose vent locations are controlled by regional tectonics, (2) those that include sizable crustal magma bodies which erupt at sites determined by their anomalous local stress fields, or (3) relatively small volume systems that are transitional between categories 1 and 2. Linear vent patterns that are aligned normal to the regional least principal stress (σ
<sub>3</sub>
) commonly are associated with absence of evidence for large, shallow magma bodies. The Coso volcanic field and the Inyo‐Mono domes in California and probably the South Sister area in Oregon are examples of such systems. The 1960 dacitic fissure eruption at Cordón Caulle in southern Chile evidently is linked to tectonic stress relaxation associated with the great earthquake that occurred 48 hours before the eruption began. Large, shallow magma chambers are thought to perturb the local stress field so that areal patterns of silicic vents are diffuse, radial, or arcuate. Such systems may erupt great volumes of pyroclastic material catastrophically and produce large calderas. Well‐preserved examples of late precaldera leaks of silicic magma occur at Long Valley, California, and Mount Mazama (Crater Lake), Oregon. Other possible examples are noted. Some of these, those which formed calderas smaller than Crater Lake, apparently were preceded by silicic eruptions from aligned vents. Bearing in mind that there exists a transitional group between tectonically controlled small systems and very large magma chambers, vent distributions can be useful in evaluating potential volcanic hazards for silicic volcanic fields.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Implications of silicic vent patterns for the presence of large crustal magma chambers</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Implications of silicic vent patterns for the presence of large crustal magma chambers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Charles R.</namePart>
<namePart type="family">Bacon</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">1985-11-10</dateIssued>
<dateCaptured encoding="w3cdtf">1984-06-29</dateCaptured>
<dateValid encoding="w3cdtf">1984-11-19</dateValid>
<edition>Bacon, C. R. (1985), Implications of silicic vent patterns for the presence of large crustal magma chambers, J. Geophys. Res., 90(B13), 11243–11252, doi:10.1029/JB090iB13p11243.</edition>
<copyrightDate encoding="w3cdtf">1985</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>On the basis of the distribution of silicic vents, many volcanic fields can be grouped with (1) igneous systems that may be small and whose vent locations are controlled by regional tectonics, (2) those that include sizable crustal magma bodies which erupt at sites determined by their anomalous local stress fields, or (3) relatively small volume systems that are transitional between categories 1 and 2. Linear vent patterns that are aligned normal to the regional least principal stress (σ3) commonly are associated with absence of evidence for large, shallow magma bodies. The Coso volcanic field and the Inyo‐Mono domes in California and probably the South Sister area in Oregon are examples of such systems. The 1960 dacitic fissure eruption at Cordón Caulle in southern Chile evidently is linked to tectonic stress relaxation associated with the great earthquake that occurred 48 hours before the eruption began. Large, shallow magma chambers are thought to perturb the local stress field so that areal patterns of silicic vents are diffuse, radial, or arcuate. Such systems may erupt great volumes of pyroclastic material catastrophically and produce large calderas. Well‐preserved examples of late precaldera leaks of silicic magma occur at Long Valley, California, and Mount Mazama (Crater Lake), Oregon. Other possible examples are noted. Some of these, those which formed calderas smaller than Crater Lake, apparently were preceded by silicic eruptions from aligned vents. Bearing in mind that there exists a transitional group between tectonically controlled small systems and very large magma chambers, vent distributions can be useful in evaluating potential volcanic hazards for silicic volcanic fields.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/specialSection/LVCCAL1">Long Valley Caldera, California</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8199">General or miscellaneous</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/9300">GEOGRAPHIC LOCATION</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/9350">Information Related to Geographic Region: North America</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>1985</date>
<detail type="volume">
<caption>vol.</caption>
<number>90</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B13</number>
</detail>
<extent unit="pages">
<start>11243</start>
<end>11252</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">F917AFB4AD97D0566B765A0F82C03B80F253BFA9</identifier>
<identifier type="DOI">10.1029/JB090iB13p11243</identifier>
<identifier type="ArticleID">4B5173</identifier>
<accessCondition type="use and reproduction" contentType="copyright">This paper is not subject to U.S. copyright. Published in 1985 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/F917AFB4AD97D0566B765A0F82C03B80F253BFA9/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000103 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000103 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:F917AFB4AD97D0566B765A0F82C03B80F253BFA9
   |texte=   Implications of silicic vent patterns for the presence of large crustal magma chambers
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021