Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems

Identifieur interne : 000064 ( Istex/Corpus ); précédent : 000063; suivant : 000065

Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems

Auteurs : G. Chiodini ; D. Granieri ; R. Avino ; S. Caliro ; A. Costa ; C. Werner

Source :

RBID : ISTEX:E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E

English descriptors

Abstract

We present a reliable methodology to estimate the energy associated with the subaerial diffuse degassing of volcanic‐hydrothermal fluids. The fumaroles of 15 diffuse degassing structures (DDSs) located in eight volcanic systems in the world were sampled and analyzed. Furthermore, each area was measured for soil temperature gradients and for soil CO2 fluxes. The results show that each hydrothermal or volcanic system is characterized by a typical source fluid which feeds both the fumaroles and diffuse degassing through the soil. Experimental data and the results of physical numerical modeling of the process demonstrate that the heat released by condensation of steam at depth is almost totally transferred by conduction in the uppermost part of the soil. A linear relationship is observed between the log of the steam/gas ratio measured in the fumaroles and the log of the ratio between soil thermal gradient and soil‐gas flux. The main parameter controlling this relation is the thermal conductivity of the soil (Kc). For each area, we computed the values of Kc which range from 0.4 to 2.3 W m−1 °C−1. Using the CO2 soil fluxes as a tracer of the deep fluids, we estimated that the total heat released by steam condensation in the systems considered varies from 1 to 100 MW.

Url:
DOI: 10.1029/2004JB003542

Links to Exploration step

ISTEX:E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems</title>
<author>
<name sortKey="Chiodini, G" sort="Chiodini, G" uniqKey="Chiodini G" first="G." last="Chiodini">G. Chiodini</name>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: chiod@ov.ingv.it</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Granieri, D" sort="Granieri, D" uniqKey="Granieri D" first="D." last="Granieri">D. Granieri</name>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Avino, R" sort="Avino, R" uniqKey="Avino R" first="R." last="Avino">R. Avino</name>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Caliro, S" sort="Caliro, S" uniqKey="Caliro S" first="S." last="Caliro">S. Caliro</name>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Costa, A" sort="Costa, A" uniqKey="Costa A" first="A." last="Costa">A. Costa</name>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Werner, C" sort="Werner, C" uniqKey="Werner C" first="C." last="Werner">C. Werner</name>
<affiliation>
<mods:affiliation>Institute of Geological and Nuclear Sciences, Taupo, New Zealand</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1029/2004JB003542</idno>
<idno type="url">https://api.istex.fr/document/E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000064</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000064</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems</title>
<author>
<name sortKey="Chiodini, G" sort="Chiodini, G" uniqKey="Chiodini G" first="G." last="Chiodini">G. Chiodini</name>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: chiod@ov.ingv.it</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Granieri, D" sort="Granieri, D" uniqKey="Granieri D" first="D." last="Granieri">D. Granieri</name>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Avino, R" sort="Avino, R" uniqKey="Avino R" first="R." last="Avino">R. Avino</name>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Caliro, S" sort="Caliro, S" uniqKey="Caliro S" first="S." last="Caliro">S. Caliro</name>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Costa, A" sort="Costa, A" uniqKey="Costa A" first="A." last="Costa">A. Costa</name>
<affiliation>
<mods:affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Werner, C" sort="Werner, C" uniqKey="Werner C" first="C." last="Werner">C. Werner</name>
<affiliation>
<mods:affiliation>Institute of Geological and Nuclear Sciences, Taupo, New Zealand</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">110</biblScope>
<biblScope unit="issue">B8</biblScope>
<biblScope unit="page-count">17</biblScope>
<date type="published" when="2005-08">2005-08</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acidic gases</term>
<term>Active volcanoes</term>
<term>Advection</term>
<term>Axial zone</term>
<term>Brombach</term>
<term>Caliro</term>
<term>Campi</term>
<term>Campi flegrei</term>
<term>Carbon dioxide</term>
<term>Cardellini</term>
<term>Cerro</term>
<term>Cerro negro</term>
<term>Chiodini</term>
<term>Cioni</term>
<term>Comalito</term>
<term>Comalito cinder cone</term>
<term>Conduction</term>
<term>Conductive</term>
<term>Conductivity</term>
<term>Continuous monitoring</term>
<term>Crater</term>
<term>Crater lakes</term>
<term>Dds</term>
<term>Degassing</term>
<term>Different ddss</term>
<term>Diffuse</term>
<term>Diffuse degassing</term>
<term>Diffuse degassing process</term>
<term>Diffuse degassing structures</term>
<term>Dioxide</term>
<term>Donna rachele</term>
<term>Energy release</term>
<term>Favara</term>
<term>Favara grande</term>
<term>Flegrei</term>
<term>Flux measurements</term>
<term>Fumaroles</term>
<term>Fumarolic</term>
<term>Fumarolic fluids</term>
<term>Geochemical</term>
<term>Geophys</term>
<term>Geothermal</term>
<term>Granieri</term>
<term>Heat flux</term>
<term>Heat fluxes</term>
<term>Heat transfer</term>
<term>Hochstein</term>
<term>Hydrothermal</term>
<term>Hydrothermal system</term>
<term>Hydrothermal systems</term>
<term>Ischia</term>
<term>Jco2</term>
<term>Jgas</term>
<term>Kaminakia</term>
<term>Last eruption</term>
<term>Lett</term>
<term>Liquid phase</term>
<term>Marini</term>
<term>Masaya</term>
<term>Modeling</term>
<term>Molar</term>
<term>Molar ratio</term>
<term>Nicaragua</term>
<term>Nisyros</term>
<term>Noncondensable</term>
<term>Noncondensable gases</term>
<term>Osservatorio vesuviano</term>
<term>Pantelleria</term>
<term>Phlegrean fields</term>
<term>Polybotes micros</term>
<term>Previous studies</term>
<term>Quiescent volcanoes</term>
<term>Rachele</term>
<term>Reliable methodology</term>
<term>Simulation</term>
<term>Soil flux</term>
<term>Soil humidity</term>
<term>Soil surface</term>
<term>Soil temperature</term>
<term>Soil temperatures</term>
<term>Solfatara</term>
<term>Solfatara crater</term>
<term>Steam condensation</term>
<term>Stefanos</term>
<term>Stefanos crater</term>
<term>Thermal conductivities</term>
<term>Thermal conductivity</term>
<term>Thermal energy</term>
<term>Thermal gradient</term>
<term>Thermal gradients</term>
<term>Total energy</term>
<term>Total heat</term>
<term>Unpublished data</term>
<term>Upper part</term>
<term>Uppermost part</term>
<term>Vapor phase</term>
<term>Vesuvio</term>
<term>Volcanic</term>
<term>Volcanic activity</term>
<term>Volcanic system</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Vulcano</term>
<term>Vulcano crater</term>
<term>Vulcano island</term>
<term>Xgas</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acidic gases</term>
<term>Active volcanoes</term>
<term>Advection</term>
<term>Axial zone</term>
<term>Brombach</term>
<term>Caliro</term>
<term>Campi</term>
<term>Campi flegrei</term>
<term>Carbon dioxide</term>
<term>Cardellini</term>
<term>Cerro</term>
<term>Cerro negro</term>
<term>Chiodini</term>
<term>Cioni</term>
<term>Comalito</term>
<term>Comalito cinder cone</term>
<term>Conduction</term>
<term>Conductive</term>
<term>Conductivity</term>
<term>Continuous monitoring</term>
<term>Crater</term>
<term>Crater lakes</term>
<term>Dds</term>
<term>Degassing</term>
<term>Different ddss</term>
<term>Diffuse</term>
<term>Diffuse degassing</term>
<term>Diffuse degassing process</term>
<term>Diffuse degassing structures</term>
<term>Dioxide</term>
<term>Donna rachele</term>
<term>Energy release</term>
<term>Favara</term>
<term>Favara grande</term>
<term>Flegrei</term>
<term>Flux measurements</term>
<term>Fumaroles</term>
<term>Fumarolic</term>
<term>Fumarolic fluids</term>
<term>Geochemical</term>
<term>Geophys</term>
<term>Geothermal</term>
<term>Granieri</term>
<term>Heat flux</term>
<term>Heat fluxes</term>
<term>Heat transfer</term>
<term>Hochstein</term>
<term>Hydrothermal</term>
<term>Hydrothermal system</term>
<term>Hydrothermal systems</term>
<term>Ischia</term>
<term>Jco2</term>
<term>Jgas</term>
<term>Kaminakia</term>
<term>Last eruption</term>
<term>Lett</term>
<term>Liquid phase</term>
<term>Marini</term>
<term>Masaya</term>
<term>Modeling</term>
<term>Molar</term>
<term>Molar ratio</term>
<term>Nicaragua</term>
<term>Nisyros</term>
<term>Noncondensable</term>
<term>Noncondensable gases</term>
<term>Osservatorio vesuviano</term>
<term>Pantelleria</term>
<term>Phlegrean fields</term>
<term>Polybotes micros</term>
<term>Previous studies</term>
<term>Quiescent volcanoes</term>
<term>Rachele</term>
<term>Reliable methodology</term>
<term>Simulation</term>
<term>Soil flux</term>
<term>Soil humidity</term>
<term>Soil surface</term>
<term>Soil temperature</term>
<term>Soil temperatures</term>
<term>Solfatara</term>
<term>Solfatara crater</term>
<term>Steam condensation</term>
<term>Stefanos</term>
<term>Stefanos crater</term>
<term>Thermal conductivities</term>
<term>Thermal conductivity</term>
<term>Thermal energy</term>
<term>Thermal gradient</term>
<term>Thermal gradients</term>
<term>Total energy</term>
<term>Total heat</term>
<term>Unpublished data</term>
<term>Upper part</term>
<term>Uppermost part</term>
<term>Vapor phase</term>
<term>Vesuvio</term>
<term>Volcanic</term>
<term>Volcanic activity</term>
<term>Volcanic system</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Vulcano</term>
<term>Vulcano crater</term>
<term>Vulcano island</term>
<term>Xgas</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We present a reliable methodology to estimate the energy associated with the subaerial diffuse degassing of volcanic‐hydrothermal fluids. The fumaroles of 15 diffuse degassing structures (DDSs) located in eight volcanic systems in the world were sampled and analyzed. Furthermore, each area was measured for soil temperature gradients and for soil CO2 fluxes. The results show that each hydrothermal or volcanic system is characterized by a typical source fluid which feeds both the fumaroles and diffuse degassing through the soil. Experimental data and the results of physical numerical modeling of the process demonstrate that the heat released by condensation of steam at depth is almost totally transferred by conduction in the uppermost part of the soil. A linear relationship is observed between the log of the steam/gas ratio measured in the fumaroles and the log of the ratio between soil thermal gradient and soil‐gas flux. The main parameter controlling this relation is the thermal conductivity of the soil (Kc). For each area, we computed the values of Kc which range from 0.4 to 2.3 W m−1 °C−1. Using the CO2 soil fluxes as a tracer of the deep fluids, we estimated that the total heat released by steam condensation in the systems considered varies from 1 to 100 MW.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>chiodini</json:string>
<json:string>degassing</json:string>
<json:string>solfatara</json:string>
<json:string>fumaroles</json:string>
<json:string>hydrothermal</json:string>
<json:string>fumarolic</json:string>
<json:string>dds</json:string>
<json:string>vulcano</json:string>
<json:string>carbon dioxide</json:string>
<json:string>volcanol</json:string>
<json:string>comalito</json:string>
<json:string>stefanos</json:string>
<json:string>cerro</json:string>
<json:string>nisyros</json:string>
<json:string>cerro negro</json:string>
<json:string>thermal gradients</json:string>
<json:string>masaya</json:string>
<json:string>caliro</json:string>
<json:string>flegrei</json:string>
<json:string>pantelleria</json:string>
<json:string>granieri</json:string>
<json:string>marini</json:string>
<json:string>ischia</json:string>
<json:string>campi</json:string>
<json:string>crater</json:string>
<json:string>jgas</json:string>
<json:string>kaminakia</json:string>
<json:string>conductive</json:string>
<json:string>favara</json:string>
<json:string>hochstein</json:string>
<json:string>geophys</json:string>
<json:string>geothermal</json:string>
<json:string>thermal conductivity</json:string>
<json:string>soil temperature</json:string>
<json:string>brombach</json:string>
<json:string>cardellini</json:string>
<json:string>noncondensable</json:string>
<json:string>vesuvio</json:string>
<json:string>upper part</json:string>
<json:string>thermal gradient</json:string>
<json:string>advection</json:string>
<json:string>diffuse degassing</json:string>
<json:string>uppermost part</json:string>
<json:string>geochemical</json:string>
<json:string>jco2</json:string>
<json:string>rachele</json:string>
<json:string>lett</json:string>
<json:string>campi flegrei</json:string>
<json:string>xgas</json:string>
<json:string>cioni</json:string>
<json:string>volcano</json:string>
<json:string>fumarolic fluids</json:string>
<json:string>heat fluxes</json:string>
<json:string>liquid phase</json:string>
<json:string>vapor phase</json:string>
<json:string>heat transfer</json:string>
<json:string>heat flux</json:string>
<json:string>soil temperatures</json:string>
<json:string>thermal conductivities</json:string>
<json:string>volcanic</json:string>
<json:string>dioxide</json:string>
<json:string>hydrothermal system</json:string>
<json:string>total energy</json:string>
<json:string>diffuse degassing structures</json:string>
<json:string>noncondensable gases</json:string>
<json:string>vulcano island</json:string>
<json:string>thermal energy</json:string>
<json:string>stefanos crater</json:string>
<json:string>vulcano crater</json:string>
<json:string>conduction</json:string>
<json:string>previous studies</json:string>
<json:string>acidic gases</json:string>
<json:string>solfatara crater</json:string>
<json:string>soil flux</json:string>
<json:string>last eruption</json:string>
<json:string>diffuse degassing process</json:string>
<json:string>total heat</json:string>
<json:string>energy release</json:string>
<json:string>flux measurements</json:string>
<json:string>molar</json:string>
<json:string>diffuse</json:string>
<json:string>modeling</json:string>
<json:string>volcanic system</json:string>
<json:string>phlegrean fields</json:string>
<json:string>comalito cinder cone</json:string>
<json:string>different ddss</json:string>
<json:string>quiescent volcanoes</json:string>
<json:string>continuous monitoring</json:string>
<json:string>reliable methodology</json:string>
<json:string>active volcanoes</json:string>
<json:string>crater lakes</json:string>
<json:string>molar ratio</json:string>
<json:string>hydrothermal systems</json:string>
<json:string>soil humidity</json:string>
<json:string>soil surface</json:string>
<json:string>steam condensation</json:string>
<json:string>volcanic activity</json:string>
<json:string>favara grande</json:string>
<json:string>donna rachele</json:string>
<json:string>axial zone</json:string>
<json:string>unpublished data</json:string>
<json:string>osservatorio vesuviano</json:string>
<json:string>polybotes micros</json:string>
<json:string>conductivity</json:string>
<json:string>nicaragua</json:string>
<json:string>simulation</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>G. Chiodini</name>
<affiliations>
<json:string>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</json:string>
<json:string>E-mail: chiod@ov.ingv.it</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. Granieri</name>
<affiliations>
<json:string>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Avino</name>
<affiliations>
<json:string>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. Caliro</name>
<affiliations>
<json:string>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. Costa</name>
<affiliations>
<json:string>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Werner</name>
<affiliations>
<json:string>Institute of Geological and Nuclear Sciences, Taupo, New Zealand</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>carbon dioxide</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>diffuse degassing</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>thermal heat</value>
</json:item>
</subject>
<articleId>
<json:string>2004JB003542</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We present a reliable methodology to estimate the energy associated with the subaerial diffuse degassing of volcanic‐hydrothermal fluids. The fumaroles of 15 diffuse degassing structures (DDSs) located in eight volcanic systems in the world were sampled and analyzed. Furthermore, each area was measured for soil temperature gradients and for soil CO2 fluxes. The results show that each hydrothermal or volcanic system is characterized by a typical source fluid which feeds both the fumaroles and diffuse degassing through the soil. Experimental data and the results of physical numerical modeling of the process demonstrate that the heat released by condensation of steam at depth is almost totally transferred by conduction in the uppermost part of the soil. A linear relationship is observed between the log of the steam/gas ratio measured in the fumaroles and the log of the ratio between soil thermal gradient and soil‐gas flux. The main parameter controlling this relation is the thermal conductivity of the soil (Kc). For each area, we computed the values of Kc which range from 0.4 to 2.3 W m−1 °C−1. Using the CO2 soil fluxes as a tracer of the deep fluids, we estimated that the total heat released by steam condensation in the systems considered varies from 1 to 100 MW.</abstract>
<qualityIndicators>
<score>7.496</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>592 x 807 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1281</abstractCharCount>
<pdfWordCount>9982</pdfWordCount>
<pdfCharCount>61229</pdfCharCount>
<pdfPageCount>17</pdfPageCount>
<abstractWordCount>208</abstractWordCount>
</qualityIndicators>
<title>Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Solid Earth</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<volume>110</volume>
<issue>B8</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>17</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Chemistry and Physics of Minerals and Rocks/Volcanology</value>
</json:item>
<json:item>
<value>BIOGEOSCIENCES</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>EXPLORATION GEOPHYSICS</value>
</json:item>
<json:item>
<value>Instruments and techniques</value>
</json:item>
<json:item>
<value>GEOCHEMISTRY</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>Instruments and techniques</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>MARINE GEOLOGY AND GEOPHYSICS</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>MINERALOGY AND PETROLOGY</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>TECTONOPHYSICS</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>VOLCANOLOGY</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>Volcanic gases</value>
</json:item>
<json:item>
<value>Hydrothermal systems</value>
</json:item>
<json:item>
<value>Chemistry and Physics of Minerals and Rocks/Volcanology</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1029/2004JB003542</json:string>
</doi>
<id>E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems</title>
</titleStmt>
<publicationStmt>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<licence>Copyright 2005 by the American Geophysical Union.</licence>
</availability>
<date type="published" when="2005-08"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems</title>
<title level="a" type="short">CARBON DIOXIDE DIFFUSE DEGASSING</title>
<author xml:id="author-0000">
<persName>
<forename type="first">G.</forename>
<surname>Chiodini</surname>
</persName>
<email>chiod@ov.ingv.it</email>
<affiliation>
<orgName>Osservatorio Vesuviano</orgName>
<orgName>Istituto Nazionale di Geofisica e Vulcanologia</orgName>
<address>
<settlement type="city">Naples</settlement>
<country key="IT">Italy</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">D.</forename>
<surname>Granieri</surname>
</persName>
<affiliation>
<orgName>Osservatorio Vesuviano</orgName>
<orgName>Istituto Nazionale di Geofisica e Vulcanologia</orgName>
<address>
<settlement type="city">Naples</settlement>
<country key="IT">Italy</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">R.</forename>
<surname>Avino</surname>
</persName>
<affiliation>
<orgName>Osservatorio Vesuviano</orgName>
<orgName>Istituto Nazionale di Geofisica e Vulcanologia</orgName>
<address>
<settlement type="city">Naples</settlement>
<country key="IT">Italy</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">S.</forename>
<surname>Caliro</surname>
</persName>
<affiliation>
<orgName>Osservatorio Vesuviano</orgName>
<orgName>Istituto Nazionale di Geofisica e Vulcanologia</orgName>
<address>
<settlement type="city">Naples</settlement>
<country key="IT">Italy</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">A.</forename>
<surname>Costa</surname>
</persName>
<affiliation>
<orgName>Osservatorio Vesuviano</orgName>
<orgName>Istituto Nazionale di Geofisica e Vulcanologia</orgName>
<address>
<settlement type="city">Naples</settlement>
<country key="IT">Italy</country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">C.</forename>
<surname>Werner</surname>
</persName>
<affiliation>
<orgName>Institute of Geological and Nuclear Sciences</orgName>
<address>
<settlement type="city">Taupo</settlement>
<country key="NZ">New Zealand</country>
</address>
</affiliation>
</author>
<idno type="istex">E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E</idno>
<idno type="DOI">10.1029/2004JB003542</idno>
<idno type="editorialOffice">2004JB003542</idno>
<idno type="society">B08204</idno>
<idno type="unit">JGRB14410</idno>
<idno type="toTypesetVersion">file:JGRB.JGRB14410.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="book-DOI">10.1002/(ISSN)2156-2202b</idno>
<idno type="book-part-DOI">10.1002/jgrb.v110.B8</idno>
<idno type="product">JGRB</idno>
<idno type="coden">JGREA2</idno>
<imprint>
<biblScope unit="vol">110</biblScope>
<biblScope unit="issue">B8</biblScope>
<biblScope unit="page-count">17</biblScope>
<date type="published" when="2005-08"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="jgrb14410-para-0001">We present a reliable methodology to estimate the energy associated with the subaerial diffuse degassing of volcanic‐hydrothermal fluids. The fumaroles of 15 diffuse degassing structures (DDSs) located in eight volcanic systems in the world were sampled and analyzed. Furthermore, each area was measured for soil temperature gradients and for soil CO
<hi rend="subscript">2</hi>
fluxes. The results show that each hydrothermal or volcanic system is characterized by a typical source fluid which feeds both the fumaroles and diffuse degassing through the soil. Experimental data and the results of physical numerical modeling of the process demonstrate that the heat released by condensation of steam at depth is almost totally transferred by conduction in the uppermost part of the soil. A linear relationship is observed between the log of the steam/gas ratio measured in the fumaroles and the log of the ratio between soil thermal gradient and soil‐gas flux. The main parameter controlling this relation is the thermal conductivity of the soil (K
<hi rend="subscript">c</hi>
). For each area, we computed the values of K
<hi rend="subscript">c</hi>
which range from 0.4 to 2.3 W m
<hi rend="superscript">−1</hi>
°C
<hi rend="superscript">−1</hi>
. Using the CO
<hi rend="subscript">2</hi>
soil fluxes as a tracer of the deep fluids, we estimated that the total heat released by steam condensation in the systems considered varies from 1 to 100 MW.</p>
</abstract>
<textClass>
<keywords>
<term xml:id="jgrb14410-kwd-0001">carbon dioxide</term>
<term xml:id="jgrb14410-kwd-0002">diffuse degassing</term>
<term xml:id="jgrb14410-kwd-0003">thermal heat</term>
</keywords>
<classCode scheme="http://psi.agu.org/subset/ECV">Chemistry and Physics of Minerals and Rocks/Volcanology</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/0900">EXPLORATION GEOPHYSICS</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</classCode>
<classCode scheme="articleCategory">Chemistry and Physics of Minerals and Rocks/Volcanology</classCode>
<classCode scheme="tocHeading1">Chemistry and Physics of Minerals and Rocks/Volcanology</classCode>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb14410">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="80">
<doi>10.1002/jgrb.v110.B8</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="110">110</numbering>
<numbering type="journalIssue">B8</numbering>
</numberingGroup>
<coverDate startDate="2005-08">August 2005</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="60" type="article" status="forIssue">
<doi>10.1029/2004JB003542</doi>
<idGroup>
<id type="editorialOffice" value="2004JB003542"></id>
<id type="society" value="B08204"></id>
<id type="unit" value="JGRB14410"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="17"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Chemistry and Physics of Minerals and Rocks/Volcanology</title>
<title type="tocHeading1">Chemistry and Physics of Minerals and Rocks/Volcanology</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2005 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2004-11-16"></event>
<event type="manuscriptRevised" date="2005-04-19"></event>
<event type="manuscriptAccepted" date="2005-05-03"></event>
<event type="firstOnline" date="2005-08-16"></event>
<event type="publishedOnlineFinalForm" date="2005-08-16"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.43_TO_WileyML3Gv1.0.3 version:1.3; WileyML 3G Packaging Tool v1.0" date="2013-01-14"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ECV">Chemistry and Physics of Minerals and Rocks/Volcanology</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0450">Hydrothermal systems</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0450">Hydrothermal systems</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0900">EXPLORATION GEOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0994">Instruments and techniques</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1034">Hydrothermal systems</subject>
<subject href="http://psi.agu.org/taxonomy5/1094">Instruments and techniques</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1034">Hydrothermal systems</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3017">Hydrothermal systems</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3017">Hydrothermal systems</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3616">Hydrothermal systems</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3616">Hydrothermal systems</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4832">Hydrothermal systems</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4832">Hydrothermal systems</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8135">Hydrothermal systems</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8135">Hydrothermal systems</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8424">Hydrothermal systems</subject>
<subject href="http://psi.agu.org/taxonomy5/8430">Volcanic gases</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8424">Hydrothermal systems</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb14410-cit-0000" type="self">
<author>
<familyName>Chiodini</familyName>
,
<givenNames>G.</givenNames>
</author>
,
<author>
<givenNames>D.</givenNames>
<familyName>Granieri</familyName>
</author>
,
<author>
<givenNames>R.</givenNames>
<familyName>Avino</familyName>
</author>
,
<author>
<givenNames>S.</givenNames>
<familyName>Caliro</familyName>
</author>
,
<author>
<givenNames>A.</givenNames>
<familyName>Costa</familyName>
</author>
, and
<author>
<givenNames>C.</givenNames>
<familyName>Werner</familyName>
</author>
(
<pubYear year="2005">2005</pubYear>
),
<articleTitle>Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>110</vol>
, B08204, doi:
<accessionId ref="info:doi/10.1029/2004JB003542">10.1029/2004JB003542</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB14410.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="10"></count>
<count type="tableTotal" number="4"></count>
</countGroup>
<titleGroup>
<title type="main">Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems</title>
<title type="short">CARBON DIOXIDE DIFFUSE DEGASSING</title>
<title type="shortAuthors">Chiodini
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrb14410-cr-0001" affiliationRef="#jgrb14410-aff-0001">
<personName>
<givenNames>G.</givenNames>
<familyName>Chiodini</familyName>
</personName>
<contactDetails>
<email normalForm="chiod@ov.ingv.it">chiod@ov.ingv.it</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrb14410-cr-0002" affiliationRef="#jgrb14410-aff-0001">
<personName>
<givenNames>D.</givenNames>
<familyName>Granieri</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb14410-cr-0003" affiliationRef="#jgrb14410-aff-0001">
<personName>
<givenNames>R.</givenNames>
<familyName>Avino</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb14410-cr-0004" affiliationRef="#jgrb14410-aff-0001">
<personName>
<givenNames>S.</givenNames>
<familyName>Caliro</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb14410-cr-0005" affiliationRef="#jgrb14410-aff-0001">
<personName>
<givenNames>A.</givenNames>
<familyName>Costa</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb14410-cr-0006" affiliationRef="#jgrb14410-aff-0002">
<personName>
<givenNames>C.</givenNames>
<familyName>Werner</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="IT" type="organization" xml:id="jgrb14410-aff-0001">
<orgDiv>Osservatorio Vesuviano</orgDiv>
<orgName>Istituto Nazionale di Geofisica e Vulcanologia</orgName>
<address>
<city>Naples</city>
<country>Italy</country>
</address>
</affiliation>
<affiliation countryCode="NZ" type="organization" xml:id="jgrb14410-aff-0002">
<orgName>Institute of Geological and Nuclear Sciences</orgName>
<address>
<city>Taupo</city>
<country>New Zealand</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrb14410-kwd-0001">carbon dioxide</keyword>
<keyword xml:id="jgrb14410-kwd-0002">diffuse degassing</keyword>
<keyword xml:id="jgrb14410-kwd-0003">thermal heat</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb14410:jgrb14410-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb14410:jgrb14410-sup-0002-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb14410:jgrb14410-sup-0003-t03"></mediaResource>
<caption>Tab‐delimited Table 3.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb14410:jgrb14410-sup-0004-t04"></mediaResource>
<caption>Tab‐delimited Table 4.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb14410-para-0001" label="1">We present a reliable methodology to estimate the energy associated with the subaerial diffuse degassing of volcanic‐hydrothermal fluids. The fumaroles of 15 diffuse degassing structures (DDSs) located in eight volcanic systems in the world were sampled and analyzed. Furthermore, each area was measured for soil temperature gradients and for soil CO
<sub>2</sub>
fluxes. The results show that each hydrothermal or volcanic system is characterized by a typical source fluid which feeds both the fumaroles and diffuse degassing through the soil. Experimental data and the results of physical numerical modeling of the process demonstrate that the heat released by condensation of steam at depth is almost totally transferred by conduction in the uppermost part of the soil. A linear relationship is observed between the log of the steam/gas ratio measured in the fumaroles and the log of the ratio between soil thermal gradient and soil‐gas flux. The main parameter controlling this relation is the thermal conductivity of the soil (K
<sub>c</sub>
). For each area, we computed the values of K
<sub>c</sub>
which range from 0.4 to 2.3 W m
<sup>−1</sup>
°C
<sup>−1</sup>
. Using the CO
<sub>2</sub>
soil fluxes as a tracer of the deep fluids, we estimated that the total heat released by steam condensation in the systems considered varies from 1 to 100 MW.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>CARBON DIOXIDE DIFFUSE DEGASSING</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Chiodini</namePart>
<affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</affiliation>
<affiliation>E-mail: chiod@ov.ingv.it</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Granieri</namePart>
<affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Avino</namePart>
<affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Caliro</namePart>
<affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Costa</namePart>
<affiliation>Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Werner</namePart>
<affiliation>Institute of Geological and Nuclear Sciences, Taupo, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2005-08</dateIssued>
<dateCaptured encoding="w3cdtf">2004-11-16</dateCaptured>
<dateValid encoding="w3cdtf">2005-05-03</dateValid>
<edition>Chiodini, G., D. Granieri, R. Avino, S. Caliro, A. Costa, and C. Werner (2005), Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems, J. Geophys. Res., 110, B08204, doi:10.1029/2004JB003542.</edition>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">10</extent>
<extent unit="tables">4</extent>
</physicalDescription>
<abstract>We present a reliable methodology to estimate the energy associated with the subaerial diffuse degassing of volcanic‐hydrothermal fluids. The fumaroles of 15 diffuse degassing structures (DDSs) located in eight volcanic systems in the world were sampled and analyzed. Furthermore, each area was measured for soil temperature gradients and for soil CO2 fluxes. The results show that each hydrothermal or volcanic system is characterized by a typical source fluid which feeds both the fumaroles and diffuse degassing through the soil. Experimental data and the results of physical numerical modeling of the process demonstrate that the heat released by condensation of steam at depth is almost totally transferred by conduction in the uppermost part of the soil. A linear relationship is observed between the log of the steam/gas ratio measured in the fumaroles and the log of the ratio between soil thermal gradient and soil‐gas flux. The main parameter controlling this relation is the thermal conductivity of the soil (Kc). For each area, we computed the values of Kc which range from 0.4 to 2.3 W m−1 °C−1. Using the CO2 soil fluxes as a tracer of the deep fluids, we estimated that the total heat released by steam condensation in the systems considered varies from 1 to 100 MW.</abstract>
<note type="additional physical form">Tab‐delimited Table 1.Tab‐delimited Table 2.Tab‐delimited Table 3.Tab‐delimited Table 4.</note>
<subject>
<genre>keywords</genre>
<topic>carbon dioxide</topic>
<topic>diffuse degassing</topic>
<topic>thermal heat</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ECV">Chemistry and Physics of Minerals and Rocks/Volcanology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0450">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0450">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0900">EXPLORATION GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0994">Instruments and techniques</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1034">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1094">Instruments and techniques</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1034">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3017">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3017">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3616">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3616">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4832">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4832">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8135">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8135">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8424">Hydrothermal systems</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8430">Volcanic gases</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8424">Hydrothermal systems</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Chemistry and Physics of Minerals and Rocks/Volcanology</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>110</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B8</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>17</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E</identifier>
<identifier type="DOI">10.1029/2004JB003542</identifier>
<identifier type="ArticleID">2004JB003542</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2005 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000064 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000064 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:E385BF3FCCABB722CD6BBC8898B5E4F584FE2B3E
   |texte=   Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021