Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea

Identifieur interne : 000057 ( Istex/Corpus ); précédent : 000056; suivant : 000058

Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea

Auteurs : S. R. Allen

Source :

RBID : ISTEX:752A6F229F627A441814B14F9471CD220481B9DE

English descriptors

Abstract

Abstract: The 161ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse. The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.

Url:
DOI: 10.1016/S0377-0273(00)00222-5

Links to Exploration step

ISTEX:752A6F229F627A441814B14F9471CD220481B9DE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea</title>
<author>
<name sortKey="Allen, S R" sort="Allen, S R" uniqKey="Allen S" first="S. R." last="Allen">S. R. Allen</name>
<affiliation>
<mods:affiliation>Department of Earth Science, Monash University, Clayton, Vic. 3168, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: allens@utas.edu.au</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:752A6F229F627A441814B14F9471CD220481B9DE</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0377-0273(00)00222-5</idno>
<idno type="url">https://api.istex.fr/document/752A6F229F627A441814B14F9471CD220481B9DE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000057</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000057</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea</title>
<author>
<name sortKey="Allen, S R" sort="Allen, S R" uniqKey="Allen S" first="S. R." last="Allen">S. R. Allen</name>
<affiliation>
<mods:affiliation>Department of Earth Science, Monash University, Clayton, Vic. 3168, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: allens@utas.edu.au</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Volcanology and Geothermal Research</title>
<title level="j" type="abbrev">VOLGEO</title>
<idno type="ISSN">0377-0273</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">105</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="141">141</biblScope>
<biblScope unit="page" to="162">162</biblScope>
</imprint>
<idno type="ISSN">0377-0273</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0377-0273</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allen journal</term>
<term>Andesitic</term>
<term>Andesitic magma</term>
<term>Basal</term>
<term>Basal lithic breccia</term>
<term>Breccia</term>
<term>Caldera</term>
<term>Caldera collapse</term>
<term>Catastrophic caldera collapse</term>
<term>Clast</term>
<term>Coarse vent</term>
<term>Conduit</term>
<term>Conduitderived lithic clasts</term>
<term>Crater lake</term>
<term>Crystal size</term>
<term>Distal locations</term>
<term>Dobran</term>
<term>Druitt</term>
<term>Early stages</term>
<term>Eastern aegean</term>
<term>Eruption</term>
<term>Eruption climax</term>
<term>Eruption columns</term>
<term>Eruption dynamics</term>
<term>Eruption intensity</term>
<term>Eruption style</term>
<term>Eruptive</term>
<term>Eruptive style</term>
<term>Explosive activity</term>
<term>Explosive eruption</term>
<term>Explosive eruptions</term>
<term>Facies</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Geothermal research</term>
<term>Grain size</term>
<term>Granitoid</term>
<term>Granitoid clasts</term>
<term>Heiken</term>
<term>Higher mass</term>
<term>Ignimbrite</term>
<term>Ignimbrites</term>
<term>Juvenile components</term>
<term>Keller</term>
<term>Kos Plateau Tuff</term>
<term>Lapillus</term>
<term>Lithic</term>
<term>Lithic breccia</term>
<term>Lithic clasts</term>
<term>Lithofacies</term>
<term>Lithofacies characteristics</term>
<term>Magma</term>
<term>Magma chamber</term>
<term>Massive ignimbrites</term>
<term>Medial</term>
<term>Medial locations</term>
<term>Minoan eruption</term>
<term>Nisyros</term>
<term>Pachia</term>
<term>Phase vesicularity</term>
<term>Phreatomagmatic</term>
<term>Phreatomagmatic activity</term>
<term>Phreatomagmatic units</term>
<term>Phreatoplinian</term>
<term>Plateau tuff</term>
<term>Plinian</term>
<term>Plinian eruptions</term>
<term>Pumice</term>
<term>Pumice clasts</term>
<term>Pumice types</term>
<term>Pumiceous</term>
<term>Pumiceous ignimbrite facies</term>
<term>Pyroclastic</term>
<term>Pyroclastic density</term>
<term>Pyroclastic density currents</term>
<term>Pyroclastic deposits</term>
<term>Pyroclasts</term>
<term>Rhyolite</term>
<term>Rhyolitic</term>
<term>Rhyolitic magma</term>
<term>Rhyolitic pumice</term>
<term>Santorini</term>
<term>Sigurdsson</term>
<term>Source area</term>
<term>Stadlbauer</term>
<term>Stratigraphic</term>
<term>Stratigraphic variations</term>
<term>Stratigraphy</term>
<term>Subunit</term>
<term>Taupo</term>
<term>Textural</term>
<term>Textural characteristics</term>
<term>Thin vesicle walls</term>
<term>Topographic</term>
<term>Tube pumice</term>
<term>Tuff</term>
<term>Vesicle</term>
<term>Vesicular</term>
<term>Vesicular pumice</term>
<term>Vesicularity</term>
<term>Volcanic</term>
<term>Volcanol</term>
<term>Volcanology</term>
<term>Waxing</term>
<term>Waxing phase</term>
<term>Widespread ignimbrite</term>
<term>Yali</term>
<term>caldera</term>
<term>eruption dynamics</term>
<term>eruption intensity</term>
<term>magma chamber</term>
<term>rhyolite</term>
<term>stratigraphy</term>
<term>textural characteristics</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Allen journal</term>
<term>Andesitic</term>
<term>Andesitic magma</term>
<term>Basal</term>
<term>Basal lithic breccia</term>
<term>Breccia</term>
<term>Caldera</term>
<term>Caldera collapse</term>
<term>Catastrophic caldera collapse</term>
<term>Clast</term>
<term>Coarse vent</term>
<term>Conduit</term>
<term>Conduitderived lithic clasts</term>
<term>Crater lake</term>
<term>Crystal size</term>
<term>Distal locations</term>
<term>Dobran</term>
<term>Druitt</term>
<term>Early stages</term>
<term>Eastern aegean</term>
<term>Eruption</term>
<term>Eruption climax</term>
<term>Eruption columns</term>
<term>Eruption dynamics</term>
<term>Eruption intensity</term>
<term>Eruption style</term>
<term>Eruptive</term>
<term>Eruptive style</term>
<term>Explosive activity</term>
<term>Explosive eruption</term>
<term>Explosive eruptions</term>
<term>Facies</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Geothermal research</term>
<term>Grain size</term>
<term>Granitoid</term>
<term>Granitoid clasts</term>
<term>Heiken</term>
<term>Higher mass</term>
<term>Ignimbrite</term>
<term>Ignimbrites</term>
<term>Juvenile components</term>
<term>Keller</term>
<term>Lapillus</term>
<term>Lithic</term>
<term>Lithic breccia</term>
<term>Lithic clasts</term>
<term>Lithofacies</term>
<term>Lithofacies characteristics</term>
<term>Magma</term>
<term>Magma chamber</term>
<term>Massive ignimbrites</term>
<term>Medial</term>
<term>Medial locations</term>
<term>Minoan eruption</term>
<term>Nisyros</term>
<term>Pachia</term>
<term>Phase vesicularity</term>
<term>Phreatomagmatic</term>
<term>Phreatomagmatic activity</term>
<term>Phreatomagmatic units</term>
<term>Phreatoplinian</term>
<term>Plateau tuff</term>
<term>Plinian</term>
<term>Plinian eruptions</term>
<term>Pumice</term>
<term>Pumice clasts</term>
<term>Pumice types</term>
<term>Pumiceous</term>
<term>Pumiceous ignimbrite facies</term>
<term>Pyroclastic</term>
<term>Pyroclastic density</term>
<term>Pyroclastic density currents</term>
<term>Pyroclastic deposits</term>
<term>Pyroclasts</term>
<term>Rhyolite</term>
<term>Rhyolitic</term>
<term>Rhyolitic magma</term>
<term>Rhyolitic pumice</term>
<term>Santorini</term>
<term>Sigurdsson</term>
<term>Source area</term>
<term>Stadlbauer</term>
<term>Stratigraphic</term>
<term>Stratigraphic variations</term>
<term>Stratigraphy</term>
<term>Subunit</term>
<term>Taupo</term>
<term>Textural</term>
<term>Textural characteristics</term>
<term>Thin vesicle walls</term>
<term>Topographic</term>
<term>Tube pumice</term>
<term>Tuff</term>
<term>Vesicle</term>
<term>Vesicular</term>
<term>Vesicular pumice</term>
<term>Vesicularity</term>
<term>Volcanic</term>
<term>Volcanol</term>
<term>Volcanology</term>
<term>Waxing</term>
<term>Waxing phase</term>
<term>Widespread ignimbrite</term>
<term>Yali</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The 161ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse. The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>clast</json:string>
<json:string>lithic</json:string>
<json:string>pumice</json:string>
<json:string>magma</json:string>
<json:string>ignimbrite</json:string>
<json:string>pyroclastic</json:string>
<json:string>caldera</json:string>
<json:string>lithic clasts</json:string>
<json:string>subunit</json:string>
<json:string>eruption</json:string>
<json:string>volcanol</json:string>
<json:string>volcanology</json:string>
<json:string>geothermal</json:string>
<json:string>geothermal research</json:string>
<json:string>ignimbrites</json:string>
<json:string>phreatomagmatic</json:string>
<json:string>granitoid</json:string>
<json:string>allen journal</json:string>
<json:string>magma chamber</json:string>
<json:string>rhyolitic</json:string>
<json:string>geophys</json:string>
<json:string>vesicle</json:string>
<json:string>tuff</json:string>
<json:string>breccia</json:string>
<json:string>granitoid clasts</json:string>
<json:string>andesitic</json:string>
<json:string>textural</json:string>
<json:string>nisyros</json:string>
<json:string>lapillus</json:string>
<json:string>geotherm</json:string>
<json:string>stratigraphic</json:string>
<json:string>keller</json:string>
<json:string>eruptive</json:string>
<json:string>medial</json:string>
<json:string>vesicularity</json:string>
<json:string>yali</json:string>
<json:string>pyroclasts</json:string>
<json:string>rhyolite</json:string>
<json:string>pachia</json:string>
<json:string>grain size</json:string>
<json:string>eruption intensity</json:string>
<json:string>facies</json:string>
<json:string>stadlbauer</json:string>
<json:string>pumice clasts</json:string>
<json:string>pumiceous</json:string>
<json:string>stratigraphy</json:string>
<json:string>santorini</json:string>
<json:string>druitt</json:string>
<json:string>sigurdsson</json:string>
<json:string>phreatoplinian</json:string>
<json:string>lithofacies</json:string>
<json:string>eruption climax</json:string>
<json:string>geol</json:string>
<json:string>heiken</json:string>
<json:string>eruption dynamics</json:string>
<json:string>lithofacies characteristics</json:string>
<json:string>plateau tuff</json:string>
<json:string>plinian</json:string>
<json:string>dobran</json:string>
<json:string>basal</json:string>
<json:string>taupo</json:string>
<json:string>conduit</json:string>
<json:string>crystal size</json:string>
<json:string>rhyolitic pumice</json:string>
<json:string>pyroclastic density</json:string>
<json:string>eastern aegean</json:string>
<json:string>phreatomagmatic activity</json:string>
<json:string>waxing phase</json:string>
<json:string>distal locations</json:string>
<json:string>textural characteristics</json:string>
<json:string>tube pumice</json:string>
<json:string>eruption style</json:string>
<json:string>caldera collapse</json:string>
<json:string>lithic breccia</json:string>
<json:string>vesicular</json:string>
<json:string>basal lithic breccia</json:string>
<json:string>medial locations</json:string>
<json:string>explosive activity</json:string>
<json:string>crater lake</json:string>
<json:string>plinian eruptions</json:string>
<json:string>minoan eruption</json:string>
<json:string>source area</json:string>
<json:string>pyroclastic density currents</json:string>
<json:string>waxing</json:string>
<json:string>topographic</json:string>
<json:string>widespread ignimbrite</json:string>
<json:string>conduitderived lithic clasts</json:string>
<json:string>explosive eruptions</json:string>
<json:string>rhyolitic magma</json:string>
<json:string>pyroclastic deposits</json:string>
<json:string>juvenile components</json:string>
<json:string>massive ignimbrites</json:string>
<json:string>eruptive style</json:string>
<json:string>catastrophic caldera collapse</json:string>
<json:string>vesicular pumice</json:string>
<json:string>stratigraphic variations</json:string>
<json:string>higher mass</json:string>
<json:string>eruption columns</json:string>
<json:string>coarse vent</json:string>
<json:string>andesitic magma</json:string>
<json:string>pumice types</json:string>
<json:string>thin vesicle walls</json:string>
<json:string>phase vesicularity</json:string>
<json:string>pumiceous ignimbrite facies</json:string>
<json:string>explosive eruption</json:string>
<json:string>phreatomagmatic units</json:string>
<json:string>early stages</json:string>
<json:string>volcanic</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>S.R. Allen</name>
<affiliations>
<json:string>Department of Earth Science, Monash University, Clayton, Vic. 3168, Australia</json:string>
<json:string>E-mail: allens@utas.edu.au</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Kos Plateau Tuff</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stratigraphy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>textural characteristics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>caldera</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>eruption dynamics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>eruption intensity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>magma chamber</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>rhyolite</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>The 161ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse. The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>544 x 743 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>8</keywordCount>
<abstractCharCount>1931</abstractCharCount>
<pdfWordCount>8960</pdfWordCount>
<pdfCharCount>55483</pdfCharCount>
<pdfPageCount>22</pdfPageCount>
<abstractWordCount>276</abstractWordCount>
</qualityIndicators>
<title>Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea</title>
<pii>
<json:string>S0377-0273(00)00222-5</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>From Magma to Tephra. Developments in Volcanology</title>
<language>
<json:string>unknown</json:string>
</language>
<volume>vol. 4</volume>
<pages>
<first>91</first>
<last>138</last>
</pages>
<editor>
<json:item>
<name>A. Freudt</name>
</json:item>
<json:item>
<name>M. Rosi</name>
</json:item>
</editor>
</serie>
<host>
<title>Journal of Volcanology and Geothermal Research</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2001</publicationDate>
<issn>
<json:string>0377-0273</json:string>
</issn>
<pii>
<json:string>S0377-0273(00)X0068-6</json:string>
</pii>
<volume>105</volume>
<issue>1–2</issue>
<pages>
<first>141</first>
<last>162</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>geochemistry & geophysics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>terre, ocean, espace</json:string>
<json:string>sciences de la terre</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0377-0273(00)00222-5</json:string>
</doi>
<id>752A6F229F627A441814B14F9471CD220481B9DE</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/752A6F229F627A441814B14F9471CD220481B9DE/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/752A6F229F627A441814B14F9471CD220481B9DE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/752A6F229F627A441814B14F9471CD220481B9DE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Simplified geology of the area around Kos in the eastern Aegean, showing volcanic formations of the Kos-Nisyros area. Insert: regional setting and position of the Hellenic arc (from DiPaola, 1974).</note>
<note type="content">Fig. 2: Stratigraphy, textural characteristics and components of the KPT. Left: simplified stratigraphic profile of the units and subunits of the KPT on Kos, indicating eruption style and waxing and waning phases. (a) Textural characteristics, components and volume of the various units and subunits. Grain size and componentry data are averages of all measured exposures on Kos. (b) Size, compositions and volumes of the vent- and conduit-derived lithic clasts. Only lithologies with volumes greater than 1% are listed. Pyroclastic-density-current deposit (pdcd), median diameter (Md), weight% ash <63μm (F2), componentry (comp), average of three largest lithic clasts in cm (ML).</note>
<note type="content">Fig. 3: (a) KPT section of Ebx and lower KPT units (A, B, C, Dl) in the central part of Kos. Ebx occurs at the base of ignimbrite El and includes an erosional lower contact with unit D (b) 12m-thick section of the KPT in the southwestern part of central Kos. The lower part comprises the phreatomagmatic units A and B. Unit C can be distinguished from unit B by a colour change. Ignimbrite Dm includes trails of small lithic clasts (>30cm diameter) at its base, and large scattered lithic clasts (<2m diameter) within. Ignimbrite El at the top of the section includes coarser pumice clasts and lithic clasts at its base. Scale bar, 4m. (c) 6m-thick KPT section in the northeastern part of central Kos. The lower part of the section is dominated by ignimbrite Dl, which includes trails of lithic clasts (arrows). The coarser grained ignimbrite Dm overlies ignimbrite Dl with a layer of lithic breccia. Some of the lithic clasts have penetrated into the underlying Dl ignimbrite. The upper part of the section consists of the coarsest KPT ignimbrite, El. (d) Pumiceous ignimbrite facies of ignimbrite El including a large, rounded partially melted co-magmatic granitoid clast. In the absence of a basal lithic breccia, the base of ignimbrite El is a fine-grained layer.</note>
<note type="content">Fig. 4: Top: distribution of preserved KPT units D and E on Kos. Unit E is the most extensive unit on Kos, whereas the distribution of unit D is restricted to the southwestern and northeastern part of central Kos. Bottom: KPT profiles on a transect through central Kos (8d, 11m, 18f), downcurrent of topography (2l) and in the distal section of Tilos. On central Kos, the KPT is dominated by 10m-thick unit D in the topographically lowest and southern most sections (8d). Inland and with increasing basal topography, unit D is much thinner (<1m) and the sections are dominated by 7m-thick unit E (11n), which in places includes a coarse basal lithic breccia (Ebx, 18f). Section 2l occurs along the western coast of Kos and is separated from the source by 300m-high topographic barriers. Distal KPT sections (Tilos) are dominated by 12-m thick unit E, which decreases in grain size stratigraphically upwards (from El to Eu).</note>
<note type="content">Fig. 5: Thickness and ML data for selected units of the KPT showing estimated positions for the centre of the corresponding vent(s) (shaded or dot). All diagrams are at the same scale. (a) Thickness data and isopachs (cm) of unit A. (b) ML (cm) for ignimbrite Dm. (c) ML (cm) for the coarse basal lithic breccia, Ebx, of ignimbrite El. (d) Inferred position for the centre of the KPT source area (shaded circle) based on a combination of thickness and ML data for the KPT (data for units B, C, Dl from Allen et al., 1999).</note>
<note type="content">Fig. 6: Present-day bathymetry of the area south of central Kos to Nisyros. Possible margin of the KPT caldera is marked. Strongyle and Yali are post-KPT volcanic cones. Bathymetric contour interval, 100m.</note>
<note type="content">Fig. 7: Relative rates and duration for the KPT eruption and the correlation with either “wet” phreatomagmatic or “dry” explosive eruption style. Estimates of the eruption duration (e.g. days) were determined from magnitude comparisons with other historical and well documented plinian eruptions.</note>
<note type="content">Fig. 8: Schematic representation of the KPT eruption. (a) Initiation of the KPT eruption, with a phreatoplinian column from which widespread, fine-grained fallout (unit A) was deposited dominantly southeast of the source (downwind). (b) The eruptive activity fluctuated between wet phreatomagmatic and dry explosive style, causing column collapse at least northwards, generating a pyroclastic density current which deposited internally stratified unit B to medial locations. (c) Explosive activity transitional between wet and dry generated a pyroclastic density current that moved at least northward and westward from the vent, depositing internally stratified unit C to medial locations. (d) Eruption intensity increased and dominantly dry explosive activity prevailed. Incremental increases in mass flux and significant widening of the vent(s) occurred, ejecting pulses of lithic clasts into the pyroclastic density currents from which three relatively extensive ignimbrites (Dl, Di and Dm) were deposited. (e) The climax of the eruption was marked by the disintegration of the vent and conduit walls and ejection of a large amount of coarse vent- and conduit-derived lithic clasts and granitoid clasts (stippled). Multiple vents were possibly initiated at this stage. A lithic-rich, energetic pyroclastic density current spread radially from the source and eventually deposited a coarse lithic breccia (Ebx) and overlying coarse pumiceous ignimbrite (El) continuously from source to distal locations. The eruption started to wane, generating a finer grained ignimbrite (subunit Eu). (f) A further decline in eruption intensity is recorded by a finer-grained, lithic-poor stratified pyroclastic-density-current deposit (subunit Fs) limited to medial locations. The declining intensity may have been accompanied by resumption of phreatomagmatic activity.</note>
<note type="content">Fig. 9: Textural characteristics and components of KPT pumice clasts. (a) Photomicrograph sketches, vesicle wall thickness and size, crystal size and bulk density of the main five types of KPT pumice. Note the small irregular shape of vesicles and smaller crystal size within type I pumice, the wide range of vesicle sizes and larger crystals within type III pumice, highly vesicular, round-vesicle type IV pumice and the oval vesicles and smallest crystals within type V pumice. Type II is transitional between types I and III. (b) Variations in pumice types and pumice vesicularity, density and crystal contents in the KPT units. Left: Abundance (volume %) of fine-grained lapilli (2–4mm), medium-grained lapilli (4–64mm) and pumiceous blocks (>64mm). The units comprising co-magmatic granitoid clasts are marked (G). Proportions are based on visual estimates from outcrops and photographs. Centre: weight% crystals in single (Ebx) or groups (2–10 clasts) of crushed pumice clasts. Right: the density and melt phase vesicularity (volume% vesicles) of the KPT pumice calculated for each unit from a total of 900 pumice clasts. Density of single pumice clasts was determined using dry weights and the volume displaced by the clasts when immersed in water. Melt phase vesicularity was calculated on the basis of a glass density of 2.3g/cm3 and a crystal density of 2.7g/cm3.</note>
<note type="content">Fig. 10: Schematic reconstruction of the subvolcanic stratigraphy at the KPT vent and of the KPT magma chamber. During the eruption, lithic clasts were derived from progressively deeper parts of the subsurface stratigraphy. Also magma was tapped from different parts of the texturally heterogeneous magma chamber. Depth of the magma chamber (3–6km) was estimated by Keller (1969) and Stadlbauer (1988) by comparing the normative composition of KPT glass and pumice with experimentally determined cotectic lines in the Quartz–Albite–Orthoclase system. The depth of the metamorphic basement (>1km) was estimated from drilling on the nearby island of Nisyros (Barberi et al., 1988).</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea</title>
<author xml:id="author-0000">
<persName>
<forename type="first">S.R.</forename>
<surname>Allen</surname>
</persName>
<email>allens@utas.edu.au</email>
<note type="biography">Present address: Centre for Ore Deposit Research, University of Tasmania, G.P.O. Box 252-79, Hobart, Tasmania 7001, Australia. Fax: +61-3-62267662</note>
<affiliation>Present address: Centre for Ore Deposit Research, University of Tasmania, G.P.O. Box 252-79, Hobart, Tasmania 7001, Australia. Fax: +61-3-62267662</affiliation>
<affiliation>Department of Earth Science, Monash University, Clayton, Vic. 3168, Australia</affiliation>
</author>
<idno type="istex">752A6F229F627A441814B14F9471CD220481B9DE</idno>
<idno type="DOI">10.1016/S0377-0273(00)00222-5</idno>
<idno type="PII">S0377-0273(00)00222-5</idno>
</analytic>
<monogr>
<title level="j">Journal of Volcanology and Geothermal Research</title>
<title level="j" type="abbrev">VOLGEO</title>
<idno type="pISSN">0377-0273</idno>
<idno type="PII">S0377-0273(00)X0068-6</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">105</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="141">141</biblScope>
<biblScope unit="page" to="162">162</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The 161ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse. The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Kos Plateau Tuff</term>
</item>
<item>
<term>stratigraphy</term>
</item>
<item>
<term>textural characteristics</term>
</item>
<item>
<term>caldera</term>
</item>
<item>
<term>eruption dynamics</term>
</item>
<item>
<term>eruption intensity</term>
</item>
<item>
<term>magma chamber</term>
</item>
<item>
<term>rhyolite</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/752A6F229F627A441814B14F9471CD220481B9DE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>VOLGEO</jid>
<aid>2209</aid>
<ce:pii>S0377-0273(00)00222-5</ce:pii>
<ce:doi>10.1016/S0377-0273(00)00222-5</ce:doi>
<ce:copyright type="us-gov" year="2001"></ce:copyright>
</item-info>
<head>
<ce:title>Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>S.R.</ce:given-name>
<ce:surname>Allen</ce:surname>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>allens@utas.edu.au</ce:e-address>
</ce:author>
<ce:affiliation>
<ce:textfn>Department of Earth Science, Monash University, Clayton, Vic. 3168, Australia</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Present address: Centre for Ore Deposit Research, University of Tasmania, G.P.O. Box 252-79, Hobart, Tasmania 7001, Australia. Fax: +61-3-62267662</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="2" month="5" year="2000"></ce:date-received>
<ce:date-accepted day="30" month="5" year="2000"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The 161
<ce:hsp sp="0.25"></ce:hsp>
ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60
<ce:hsp sp="0.25"></ce:hsp>
km
<ce:sup>3</ce:sup>
of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3
<ce:hsp sp="0.25"></ce:hsp>
km
<ce:sup>3</ce:sup>
of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse.</ce:simple-para>
<ce:simple-para>The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword" xml:lang="en">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Kos Plateau Tuff</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>stratigraphy</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>textural characteristics</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>caldera</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>eruption dynamics</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>eruption intensity</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>magma chamber</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>rhyolite</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea</title>
</titleInfo>
<name type="personal">
<namePart type="given">S.R.</namePart>
<namePart type="family">Allen</namePart>
<affiliation>Department of Earth Science, Monash University, Clayton, Vic. 3168, Australia</affiliation>
<affiliation>E-mail: allens@utas.edu.au</affiliation>
<description>Present address: Centre for Ore Deposit Research, University of Tasmania, G.P.O. Box 252-79, Hobart, Tasmania 7001, Australia. Fax: +61-3-62267662</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: The 161ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse. The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.</abstract>
<note type="content">Fig. 1: Simplified geology of the area around Kos in the eastern Aegean, showing volcanic formations of the Kos-Nisyros area. Insert: regional setting and position of the Hellenic arc (from DiPaola, 1974).</note>
<note type="content">Fig. 2: Stratigraphy, textural characteristics and components of the KPT. Left: simplified stratigraphic profile of the units and subunits of the KPT on Kos, indicating eruption style and waxing and waning phases. (a) Textural characteristics, components and volume of the various units and subunits. Grain size and componentry data are averages of all measured exposures on Kos. (b) Size, compositions and volumes of the vent- and conduit-derived lithic clasts. Only lithologies with volumes greater than 1% are listed. Pyroclastic-density-current deposit (pdcd), median diameter (Md), weight% ash <63μm (F2), componentry (comp), average of three largest lithic clasts in cm (ML).</note>
<note type="content">Fig. 3: (a) KPT section of Ebx and lower KPT units (A, B, C, Dl) in the central part of Kos. Ebx occurs at the base of ignimbrite El and includes an erosional lower contact with unit D (b) 12m-thick section of the KPT in the southwestern part of central Kos. The lower part comprises the phreatomagmatic units A and B. Unit C can be distinguished from unit B by a colour change. Ignimbrite Dm includes trails of small lithic clasts (>30cm diameter) at its base, and large scattered lithic clasts (<2m diameter) within. Ignimbrite El at the top of the section includes coarser pumice clasts and lithic clasts at its base. Scale bar, 4m. (c) 6m-thick KPT section in the northeastern part of central Kos. The lower part of the section is dominated by ignimbrite Dl, which includes trails of lithic clasts (arrows). The coarser grained ignimbrite Dm overlies ignimbrite Dl with a layer of lithic breccia. Some of the lithic clasts have penetrated into the underlying Dl ignimbrite. The upper part of the section consists of the coarsest KPT ignimbrite, El. (d) Pumiceous ignimbrite facies of ignimbrite El including a large, rounded partially melted co-magmatic granitoid clast. In the absence of a basal lithic breccia, the base of ignimbrite El is a fine-grained layer.</note>
<note type="content">Fig. 4: Top: distribution of preserved KPT units D and E on Kos. Unit E is the most extensive unit on Kos, whereas the distribution of unit D is restricted to the southwestern and northeastern part of central Kos. Bottom: KPT profiles on a transect through central Kos (8d, 11m, 18f), downcurrent of topography (2l) and in the distal section of Tilos. On central Kos, the KPT is dominated by 10m-thick unit D in the topographically lowest and southern most sections (8d). Inland and with increasing basal topography, unit D is much thinner (<1m) and the sections are dominated by 7m-thick unit E (11n), which in places includes a coarse basal lithic breccia (Ebx, 18f). Section 2l occurs along the western coast of Kos and is separated from the source by 300m-high topographic barriers. Distal KPT sections (Tilos) are dominated by 12-m thick unit E, which decreases in grain size stratigraphically upwards (from El to Eu).</note>
<note type="content">Fig. 5: Thickness and ML data for selected units of the KPT showing estimated positions for the centre of the corresponding vent(s) (shaded or dot). All diagrams are at the same scale. (a) Thickness data and isopachs (cm) of unit A. (b) ML (cm) for ignimbrite Dm. (c) ML (cm) for the coarse basal lithic breccia, Ebx, of ignimbrite El. (d) Inferred position for the centre of the KPT source area (shaded circle) based on a combination of thickness and ML data for the KPT (data for units B, C, Dl from Allen et al., 1999).</note>
<note type="content">Fig. 6: Present-day bathymetry of the area south of central Kos to Nisyros. Possible margin of the KPT caldera is marked. Strongyle and Yali are post-KPT volcanic cones. Bathymetric contour interval, 100m.</note>
<note type="content">Fig. 7: Relative rates and duration for the KPT eruption and the correlation with either “wet” phreatomagmatic or “dry” explosive eruption style. Estimates of the eruption duration (e.g. days) were determined from magnitude comparisons with other historical and well documented plinian eruptions.</note>
<note type="content">Fig. 8: Schematic representation of the KPT eruption. (a) Initiation of the KPT eruption, with a phreatoplinian column from which widespread, fine-grained fallout (unit A) was deposited dominantly southeast of the source (downwind). (b) The eruptive activity fluctuated between wet phreatomagmatic and dry explosive style, causing column collapse at least northwards, generating a pyroclastic density current which deposited internally stratified unit B to medial locations. (c) Explosive activity transitional between wet and dry generated a pyroclastic density current that moved at least northward and westward from the vent, depositing internally stratified unit C to medial locations. (d) Eruption intensity increased and dominantly dry explosive activity prevailed. Incremental increases in mass flux and significant widening of the vent(s) occurred, ejecting pulses of lithic clasts into the pyroclastic density currents from which three relatively extensive ignimbrites (Dl, Di and Dm) were deposited. (e) The climax of the eruption was marked by the disintegration of the vent and conduit walls and ejection of a large amount of coarse vent- and conduit-derived lithic clasts and granitoid clasts (stippled). Multiple vents were possibly initiated at this stage. A lithic-rich, energetic pyroclastic density current spread radially from the source and eventually deposited a coarse lithic breccia (Ebx) and overlying coarse pumiceous ignimbrite (El) continuously from source to distal locations. The eruption started to wane, generating a finer grained ignimbrite (subunit Eu). (f) A further decline in eruption intensity is recorded by a finer-grained, lithic-poor stratified pyroclastic-density-current deposit (subunit Fs) limited to medial locations. The declining intensity may have been accompanied by resumption of phreatomagmatic activity.</note>
<note type="content">Fig. 9: Textural characteristics and components of KPT pumice clasts. (a) Photomicrograph sketches, vesicle wall thickness and size, crystal size and bulk density of the main five types of KPT pumice. Note the small irregular shape of vesicles and smaller crystal size within type I pumice, the wide range of vesicle sizes and larger crystals within type III pumice, highly vesicular, round-vesicle type IV pumice and the oval vesicles and smallest crystals within type V pumice. Type II is transitional between types I and III. (b) Variations in pumice types and pumice vesicularity, density and crystal contents in the KPT units. Left: Abundance (volume %) of fine-grained lapilli (2–4mm), medium-grained lapilli (4–64mm) and pumiceous blocks (>64mm). The units comprising co-magmatic granitoid clasts are marked (G). Proportions are based on visual estimates from outcrops and photographs. Centre: weight% crystals in single (Ebx) or groups (2–10 clasts) of crushed pumice clasts. Right: the density and melt phase vesicularity (volume% vesicles) of the KPT pumice calculated for each unit from a total of 900 pumice clasts. Density of single pumice clasts was determined using dry weights and the volume displaced by the clasts when immersed in water. Melt phase vesicularity was calculated on the basis of a glass density of 2.3g/cm3 and a crystal density of 2.7g/cm3.</note>
<note type="content">Fig. 10: Schematic reconstruction of the subvolcanic stratigraphy at the KPT vent and of the KPT magma chamber. During the eruption, lithic clasts were derived from progressively deeper parts of the subsurface stratigraphy. Also magma was tapped from different parts of the texturally heterogeneous magma chamber. Depth of the magma chamber (3–6km) was estimated by Keller (1969) and Stadlbauer (1988) by comparing the normative composition of KPT glass and pumice with experimentally determined cotectic lines in the Quartz–Albite–Orthoclase system. The depth of the metamorphic basement (>1km) was estimated from drilling on the nearby island of Nisyros (Barberi et al., 1988).</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Kos Plateau Tuff</topic>
<topic>stratigraphy</topic>
<topic>textural characteristics</topic>
<topic>caldera</topic>
<topic>eruption dynamics</topic>
<topic>eruption intensity</topic>
<topic>magma chamber</topic>
<topic>rhyolite</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Volcanology and Geothermal Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>VOLGEO</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">200101</dateIssued>
</originInfo>
<identifier type="ISSN">0377-0273</identifier>
<identifier type="PII">S0377-0273(00)X0068-6</identifier>
<part>
<date>200101</date>
<detail type="volume">
<number>105</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–2</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>182</end>
</extent>
<extent unit="pages">
<start>141</start>
<end>162</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">752A6F229F627A441814B14F9471CD220481B9DE</identifier>
<identifier type="ark">ark:/67375/6H6-GSN8XTNR-T</identifier>
<identifier type="DOI">10.1016/S0377-0273(00)00222-5</identifier>
<identifier type="PII">S0377-0273(00)00222-5</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/752A6F229F627A441814B14F9471CD220481B9DE/metadata/json</uri>
</json:item>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000057 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000057 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:752A6F229F627A441814B14F9471CD220481B9DE
   |texte=   Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021