Serveur d'exploration sur le nickel au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An efficient approach to designing and optimizing the analysis of Ni(II) by AdCSV in seawater.

Identifieur interne : 000097 ( PubMed/Corpus ); précédent : 000096; suivant : 000098

An efficient approach to designing and optimizing the analysis of Ni(II) by AdCSV in seawater.

Auteurs : A. Aouarram ; M D Galindo-Ria O ; M. García-Vargas ; M. Stitou ; F. El Yousfi ; E. Espada-Bellido

Source :

RBID : pubmed:20875572

English descriptors

Abstract

A highly sensitive voltammetric method was developed for the determination of nickel in seawater at nanomolar concentrations. The measurement is based on the differential pulse cathodic adsorptive stripping of Ni(II) complexed with pyridoxal salicyloylhydrazone at a hanging mercury drop electrode. Optimal conditions were found following a two-step study strategy based on a Plackett Burman design and subsequently a modified simplex method. They were: deposition potential -0.8 V; deposition time 120 s; differential pulse scan mode; pulse amplitude -0.07 V; pulse time 0.04 s; voltage step 0.017 V; time interval for voltage step 0.05 s; supporting electrolyte ammonium chloride/ammonia (0.08 M, pH=8.9) and concentration of PSH 5.32 × 10(-6)M. The response of the system was found to be linear in a range of Ni concentrations from 0 to 306.7 × 10(-9)M. The detection limit was found to be 0.04 × 10(-9)M of Ni(II). The precision of the method was 1.4% for 3.4×10(-8)M of Ni(II) and 1.48% for the blank at a significance level of 95% (n=9). The method was free from interferences of inorganic salts and trace metals at usual concentrations in seawater. The application to seawater was demonstrated by analysis of CRM 505 and LGC 6016 certified reference estuarine water and real seawater samples from Tangier Bay (Morocco).

DOI: 10.1016/j.talanta.2010.07.069
PubMed: 20875572

Links to Exploration step

pubmed:20875572

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An efficient approach to designing and optimizing the analysis of Ni(II) by AdCSV in seawater.</title>
<author>
<name sortKey="Aouarram, A" sort="Aouarram, A" uniqKey="Aouarram A" first="A" last="Aouarram">A. Aouarram</name>
<affiliation>
<nlm:affiliation>Department of Analytical Chemistry, Faculty of Science, University of Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Galindo Ria O, M D" sort="Galindo Ria O, M D" uniqKey="Galindo Ria O M" first="M D" last="Galindo-Ria O">M D Galindo-Ria O</name>
</author>
<author>
<name sortKey="Garcia Vargas, M" sort="Garcia Vargas, M" uniqKey="Garcia Vargas M" first="M" last="García-Vargas">M. García-Vargas</name>
</author>
<author>
<name sortKey="Stitou, M" sort="Stitou, M" uniqKey="Stitou M" first="M" last="Stitou">M. Stitou</name>
</author>
<author>
<name sortKey="El Yousfi, F" sort="El Yousfi, F" uniqKey="El Yousfi F" first="F" last="El Yousfi">F. El Yousfi</name>
</author>
<author>
<name sortKey="Espada Bellido, E" sort="Espada Bellido, E" uniqKey="Espada Bellido E" first="E" last="Espada-Bellido">E. Espada-Bellido</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20875572</idno>
<idno type="pmid">20875572</idno>
<idno type="doi">10.1016/j.talanta.2010.07.069</idno>
<idno type="wicri:Area/PubMed/Corpus">000097</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000097</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An efficient approach to designing and optimizing the analysis of Ni(II) by AdCSV in seawater.</title>
<author>
<name sortKey="Aouarram, A" sort="Aouarram, A" uniqKey="Aouarram A" first="A" last="Aouarram">A. Aouarram</name>
<affiliation>
<nlm:affiliation>Department of Analytical Chemistry, Faculty of Science, University of Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Galindo Ria O, M D" sort="Galindo Ria O, M D" uniqKey="Galindo Ria O M" first="M D" last="Galindo-Ria O">M D Galindo-Ria O</name>
</author>
<author>
<name sortKey="Garcia Vargas, M" sort="Garcia Vargas, M" uniqKey="Garcia Vargas M" first="M" last="García-Vargas">M. García-Vargas</name>
</author>
<author>
<name sortKey="Stitou, M" sort="Stitou, M" uniqKey="Stitou M" first="M" last="Stitou">M. Stitou</name>
</author>
<author>
<name sortKey="El Yousfi, F" sort="El Yousfi, F" uniqKey="El Yousfi F" first="F" last="El Yousfi">F. El Yousfi</name>
</author>
<author>
<name sortKey="Espada Bellido, E" sort="Espada Bellido, E" uniqKey="Espada Bellido E" first="E" last="Espada-Bellido">E. Espada-Bellido</name>
</author>
</analytic>
<series>
<title level="j">Talanta</title>
<idno type="eISSN">1873-3573</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption</term>
<term>Electrochemical Techniques (instrumentation)</term>
<term>Electrochemical Techniques (methods)</term>
<term>Electrodes</term>
<term>Indicators and Reagents</term>
<term>Ligands</term>
<term>Limit of Detection</term>
<term>Mercury (chemistry)</term>
<term>Morocco</term>
<term>Nickel (analysis)</term>
<term>Reference Standards</term>
<term>Research Design</term>
<term>Seawater (analysis)</term>
<term>Seawater (chemistry)</term>
<term>Spectrophotometry, Ultraviolet</term>
<term>Trace Elements (analysis)</term>
<term>Water Pollutants, Chemical (analysis)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Nickel</term>
<term>Trace Elements</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Mercury</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Indicators and Reagents</term>
<term>Ligands</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Morocco</term>
</keywords>
<keywords scheme="MESH" qualifier="analysis" xml:lang="en">
<term>Seawater</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Seawater</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Electrochemical Techniques</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Electrochemical Techniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adsorption</term>
<term>Electrodes</term>
<term>Limit of Detection</term>
<term>Reference Standards</term>
<term>Research Design</term>
<term>Spectrophotometry, Ultraviolet</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A highly sensitive voltammetric method was developed for the determination of nickel in seawater at nanomolar concentrations. The measurement is based on the differential pulse cathodic adsorptive stripping of Ni(II) complexed with pyridoxal salicyloylhydrazone at a hanging mercury drop electrode. Optimal conditions were found following a two-step study strategy based on a Plackett Burman design and subsequently a modified simplex method. They were: deposition potential -0.8 V; deposition time 120 s; differential pulse scan mode; pulse amplitude -0.07 V; pulse time 0.04 s; voltage step 0.017 V; time interval for voltage step 0.05 s; supporting electrolyte ammonium chloride/ammonia (0.08 M, pH=8.9) and concentration of PSH 5.32 × 10(-6)M. The response of the system was found to be linear in a range of Ni concentrations from 0 to 306.7 × 10(-9)M. The detection limit was found to be 0.04 × 10(-9)M of Ni(II). The precision of the method was 1.4% for 3.4×10(-8)M of Ni(II) and 1.48% for the blank at a significance level of 95% (n=9). The method was free from interferences of inorganic salts and trace metals at usual concentrations in seawater. The application to seawater was demonstrated by analysis of CRM 505 and LGC 6016 certified reference estuarine water and real seawater samples from Tangier Bay (Morocco).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20875572</PMID>
<DateCreated>
<Year>2010</Year>
<Month>09</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>01</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3573</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>82</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2010</Year>
<Month>Oct</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Talanta</Title>
<ISOAbbreviation>Talanta</ISOAbbreviation>
</Journal>
<ArticleTitle>An efficient approach to designing and optimizing the analysis of Ni(II) by AdCSV in seawater.</ArticleTitle>
<Pagination>
<MedlinePgn>1749-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.talanta.2010.07.069</ELocationID>
<Abstract>
<AbstractText>A highly sensitive voltammetric method was developed for the determination of nickel in seawater at nanomolar concentrations. The measurement is based on the differential pulse cathodic adsorptive stripping of Ni(II) complexed with pyridoxal salicyloylhydrazone at a hanging mercury drop electrode. Optimal conditions were found following a two-step study strategy based on a Plackett Burman design and subsequently a modified simplex method. They were: deposition potential -0.8 V; deposition time 120 s; differential pulse scan mode; pulse amplitude -0.07 V; pulse time 0.04 s; voltage step 0.017 V; time interval for voltage step 0.05 s; supporting electrolyte ammonium chloride/ammonia (0.08 M, pH=8.9) and concentration of PSH 5.32 × 10(-6)M. The response of the system was found to be linear in a range of Ni concentrations from 0 to 306.7 × 10(-9)M. The detection limit was found to be 0.04 × 10(-9)M of Ni(II). The precision of the method was 1.4% for 3.4×10(-8)M of Ni(II) and 1.48% for the blank at a significance level of 95% (n=9). The method was free from interferences of inorganic salts and trace metals at usual concentrations in seawater. The application to seawater was demonstrated by analysis of CRM 505 and LGC 6016 certified reference estuarine water and real seawater samples from Tangier Bay (Morocco).</AbstractText>
<CopyrightInformation>Copyright © 2010 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aouarram</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Analytical Chemistry, Faculty of Science, University of Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Galindo-Riaño</LastName>
<ForeName>M D</ForeName>
<Initials>MD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>García-Vargas</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stitou</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>El Yousfi</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Espada-Bellido</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>08</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Talanta</MedlineTA>
<NlmUniqueID>2984816R</NlmUniqueID>
<ISSNLinking>0039-9140</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014131">Trace Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014874">Water Pollutants, Chemical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7OV03QG267</RegistryNumber>
<NameOfSubstance UI="D009532">Nickel</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>FXS1BY2PGL</RegistryNumber>
<NameOfSubstance UI="D008628">Mercury</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000327" MajorTopicYN="N">Adsorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055664" MajorTopicYN="N">Electrochemical Techniques</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004566" MajorTopicYN="N">Electrodes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007202" MajorTopicYN="N">Indicators and Reagents</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057230" MajorTopicYN="N">Limit of Detection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008628" MajorTopicYN="N">Mercury</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009018" MajorTopicYN="N" Type="Geographic">Morocco</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009532" MajorTopicYN="N">Nickel</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012015" MajorTopicYN="N">Reference Standards</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012107" MajorTopicYN="N">Research Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012623" MajorTopicYN="N">Seawater</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013056" MajorTopicYN="N">Spectrophotometry, Ultraviolet</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014131" MajorTopicYN="N">Trace Elements</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014874" MajorTopicYN="N">Water Pollutants, Chemical</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2010</Year>
<Month>07</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>07</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20875572</ArticleId>
<ArticleId IdType="pii">S0039-9140(10)00599-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.talanta.2010.07.069</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NickelMaghrebV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000097 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000097 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NickelMaghrebV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20875572
   |texte=   An efficient approach to designing and optimizing the analysis of Ni(II) by AdCSV in seawater.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20875572" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a NickelMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Fri Mar 24 23:14:20 2017. Site generation: Tue Mar 5 17:03:47 2024