Serveur d'exploration sur le nickel au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrochemical properties of the MmNi3.55Mn0.4Al0.3 Co0.4Fe0.35 compound

Identifieur interne : 000136 ( PascalFrancis/Curation ); précédent : 000135; suivant : 000137

Electrochemical properties of the MmNi3.55Mn0.4Al0.3 Co0.4Fe0.35 compound

Auteurs : M. Ben Moussa [Tunisie] ; M. Abdellaoui [Tunisie] ; H. Mathlouthi [Tunisie] ; J. Lamloumi [Tunisie] ; A. Percheron Guegan [France]

Source :

RBID : Pascal:05-0406699

Descripteurs français

English descriptors

Abstract

In this paper, the electrochemical properties of the MmNi3.55Mn0.4Al0.3Co0.4Fe0.35 alloy used as a negative electrode in Ni-MH accumulators, have been investigated by different electrochemical methods such as cyclic voltammetry, chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy. The experimental results indicate that the discharge capacity reaches a maximum value of 260 mAh g-1 after 12 cycles and then decreases to about 200 mAh g-1 after 70 cycles. The value of the mean diffusion coefficient DH, determined by cyclic voltammetry, is about 3.44 × 10-9 cm2 s-1, whereas the charge transfer coefficient a, determined by the same method, is about 0.5 which allows us to conclude that the electrochemical reaction is reversible. The hydrogen diffusion coefficients in this compound, corresponding to 10 and 100% of the charge state, determined by electrochemical impedance spectroscopy, are, respectively, equal to 4.15 x 10-9 cm2 s-1 (a phase) and 2.15 x 10-9 cm2 s-1 (β phase). These values are higher, for the a phase and less, for the β phase, than the mean value determined by cyclic voltammetry. We assume that this is related to the number of interstitial sites susceptible to accept the hydrogen atom, which are more numerous in the a phase than in the β phase. The chronoamperometry shows that the average size of the particles involved in the electrochemical reaction is about 12 μm.
pA  
A01 01  1    @0 0925-8388
A03   1    @0 J. alloys compd.
A05       @2 400
A06       @2 1-2
A08 01  1  ENG  @1 Electrochemical properties of the MmNi3.55Mn0.4Al0.3 Co0.4Fe0.35 compound
A11 01  1    @1 MOUSSA (M. Ben)
A11 02  1    @1 ABDELLAOUI (M.)
A11 03  1    @1 MATHLOUTHI (H.)
A11 04  1    @1 LAMLOUMI (J.)
A11 05  1    @1 GUEGAN (A. Percheron)
A14 01      @1 Institut National de Recherche et d'Analyse Physico-chimique, Pôle Technologique de Sidi Thabet @2 2020 Sidi Thabet @3 TUN @Z 1 aut. @Z 2 aut.
A14 02      @1 Laboratoire de Mécanique, des Matériaux et Procédés, ESSTT, 5 Avenue @2 Taha Hussein 1008 @3 TUN @Z 1 aut. @Z 3 aut. @Z 4 aut.
A14 03      @1 Laboratoire de Chimie Métallurgique des Terres Rares, GLVT, 2-8 Rue Henri Dunant @2 94320 Thiais @3 FRA @Z 5 aut.
A20       @1 239-244
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 1151 @5 354000132154480410
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 19 ref.
A47 01  1    @0 05-0406699
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of alloys and compounds
A66 01      @0 CHE
C01 01    ENG  @0 In this paper, the electrochemical properties of the MmNi3.55Mn0.4Al0.3Co0.4Fe0.35 alloy used as a negative electrode in Ni-MH accumulators, have been investigated by different electrochemical methods such as cyclic voltammetry, chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy. The experimental results indicate that the discharge capacity reaches a maximum value of 260 mAh g-1 after 12 cycles and then decreases to about 200 mAh g-1 after 70 cycles. The value of the mean diffusion coefficient DH, determined by cyclic voltammetry, is about 3.44 × 10-9 cm2 s-1, whereas the charge transfer coefficient a, determined by the same method, is about 0.5 which allows us to conclude that the electrochemical reaction is reversible. The hydrogen diffusion coefficients in this compound, corresponding to 10 and 100% of the charge state, determined by electrochemical impedance spectroscopy, are, respectively, equal to 4.15 x 10-9 cm2 s-1 (a phase) and 2.15 x 10-9 cm2 s-1 (β phase). These values are higher, for the a phase and less, for the β phase, than the mean value determined by cyclic voltammetry. We assume that this is related to the number of interstitial sites susceptible to accept the hydrogen atom, which are more numerous in the a phase than in the β phase. The chronoamperometry shows that the average size of the particles involved in the electrochemical reaction is about 12 μm.
C02 01  X    @0 001D11F
C02 02  X    @0 001D06D05
C02 03  X    @0 240
C02 04  X    @0 230
C03 01  X  FRE  @0 Propriété électrochimique @5 02
C03 01  X  ENG  @0 Electrochemical properties @5 02
C03 01  X  GER  @0 Elektrochemische Eigenschaft @5 02
C03 01  X  SPA  @0 Propiedad electroquímica @5 02
C03 02  X  FRE  @0 Coefficient diffusion @5 03
C03 02  X  ENG  @0 Diffusion coefficient @5 03
C03 02  X  GER  @0 Diffusionskoeffizient @5 03
C03 02  X  SPA  @0 Coeficiente difusión @5 03
C03 03  X  FRE  @0 Voltammétrie cyclique @5 05
C03 03  X  ENG  @0 Cyclic voltammetry @5 05
C03 03  X  SPA  @0 Voltametría cíclica @5 05
C03 04  X  FRE  @0 Chronopotentiométrie @5 11
C03 04  X  ENG  @0 Chronopotentiometry @5 11
C03 04  X  GER  @0 Chronopotentiometrie @5 11
C03 04  X  SPA  @0 Cronopotenciometría @5 11
C03 05  X  FRE  @0 Chronoampérométrie @5 12
C03 05  X  ENG  @0 Chronoamperometry @5 12
C03 05  X  GER  @0 Chronoamperometrie @5 12
C03 05  X  SPA  @0 Cronoamperimetría @5 12
C03 06  3  FRE  @0 Batterie nickel hydrogène @5 13
C03 06  3  ENG  @0 Nickel hydrogen batteries @5 13
C03 07  X  FRE  @0 Impédance électrode @5 14
C03 07  X  ENG  @0 Electrode impedance @5 14
C03 07  X  SPA  @0 Impedancia electrodo @5 14
C03 08  X  FRE  @0 Matériau électrode @5 15
C03 08  X  ENG  @0 Electrode material @5 15
C03 08  X  SPA  @0 Material electrodo @5 15
N21       @1 283

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0406699

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrochemical properties of the MmNi
<sub>3.55</sub>
Mn
<sub>0.4</sub>
Al
<sub>0.3</sub>
Co
<sub>0.4</sub>
Fe
<sub>0.35</sub>
compound</title>
<author>
<name sortKey="Moussa, M Ben" sort="Moussa, M Ben" uniqKey="Moussa M" first="M. Ben" last="Moussa">M. Ben Moussa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut National de Recherche et d'Analyse Physico-chimique, Pôle Technologique de Sidi Thabet</s1>
<s2>2020 Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire de Mécanique, des Matériaux et Procédés, ESSTT, 5 Avenue</s1>
<s2>Taha Hussein 1008</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Abdellaoui, M" sort="Abdellaoui, M" uniqKey="Abdellaoui M" first="M." last="Abdellaoui">M. Abdellaoui</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut National de Recherche et d'Analyse Physico-chimique, Pôle Technologique de Sidi Thabet</s1>
<s2>2020 Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Mathlouthi, H" sort="Mathlouthi, H" uniqKey="Mathlouthi H" first="H." last="Mathlouthi">H. Mathlouthi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire de Mécanique, des Matériaux et Procédés, ESSTT, 5 Avenue</s1>
<s2>Taha Hussein 1008</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Lamloumi, J" sort="Lamloumi, J" uniqKey="Lamloumi J" first="J." last="Lamloumi">J. Lamloumi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire de Mécanique, des Matériaux et Procédés, ESSTT, 5 Avenue</s1>
<s2>Taha Hussein 1008</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Guegan, A Percheron" sort="Guegan, A Percheron" uniqKey="Guegan A" first="A. Percheron" last="Guegan">A. Percheron Guegan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Chimie Métallurgique des Terres Rares, GLVT, 2-8 Rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0406699</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0406699 INIST</idno>
<idno type="RBID">Pascal:05-0406699</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000305</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000136</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Electrochemical properties of the MmNi
<sub>3.55</sub>
Mn
<sub>0.4</sub>
Al
<sub>0.3</sub>
Co
<sub>0.4</sub>
Fe
<sub>0.35</sub>
compound</title>
<author>
<name sortKey="Moussa, M Ben" sort="Moussa, M Ben" uniqKey="Moussa M" first="M. Ben" last="Moussa">M. Ben Moussa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut National de Recherche et d'Analyse Physico-chimique, Pôle Technologique de Sidi Thabet</s1>
<s2>2020 Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire de Mécanique, des Matériaux et Procédés, ESSTT, 5 Avenue</s1>
<s2>Taha Hussein 1008</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Abdellaoui, M" sort="Abdellaoui, M" uniqKey="Abdellaoui M" first="M." last="Abdellaoui">M. Abdellaoui</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut National de Recherche et d'Analyse Physico-chimique, Pôle Technologique de Sidi Thabet</s1>
<s2>2020 Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Mathlouthi, H" sort="Mathlouthi, H" uniqKey="Mathlouthi H" first="H." last="Mathlouthi">H. Mathlouthi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire de Mécanique, des Matériaux et Procédés, ESSTT, 5 Avenue</s1>
<s2>Taha Hussein 1008</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Lamloumi, J" sort="Lamloumi, J" uniqKey="Lamloumi J" first="J." last="Lamloumi">J. Lamloumi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire de Mécanique, des Matériaux et Procédés, ESSTT, 5 Avenue</s1>
<s2>Taha Hussein 1008</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Guegan, A Percheron" sort="Guegan, A Percheron" uniqKey="Guegan A" first="A. Percheron" last="Guegan">A. Percheron Guegan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Chimie Métallurgique des Terres Rares, GLVT, 2-8 Rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chronoamperometry</term>
<term>Chronopotentiometry</term>
<term>Cyclic voltammetry</term>
<term>Diffusion coefficient</term>
<term>Electrochemical properties</term>
<term>Electrode impedance</term>
<term>Electrode material</term>
<term>Nickel hydrogen batteries</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété électrochimique</term>
<term>Coefficient diffusion</term>
<term>Voltammétrie cyclique</term>
<term>Chronopotentiométrie</term>
<term>Chronoampérométrie</term>
<term>Batterie nickel hydrogène</term>
<term>Impédance électrode</term>
<term>Matériau électrode</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, the electrochemical properties of the MmNi
<sub>3.55</sub>
Mn
<sub>0.4</sub>
Al
<sub>0.3</sub>
Co
<sub>0.4</sub>
Fe
<sub>0.35</sub>
alloy used as a negative electrode in Ni-MH accumulators, have been investigated by different electrochemical methods such as cyclic voltammetry, chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy. The experimental results indicate that the discharge capacity reaches a maximum value of 260 mAh g
<sup>-1</sup>
after 12 cycles and then decreases to about 200 mAh g
<sup>-1</sup>
after 70 cycles. The value of the mean diffusion coefficient D
<sub>H</sub>
, determined by cyclic voltammetry, is about 3.44 × 10
<sup>-9</sup>
cm
<sup>2</sup>
s
<sup>-1</sup>
, whereas the charge transfer coefficient a, determined by the same method, is about 0.5 which allows us to conclude that the electrochemical reaction is reversible. The hydrogen diffusion coefficients in this compound, corresponding to 10 and 100% of the charge state, determined by electrochemical impedance spectroscopy, are, respectively, equal to 4.15 x 10
<sup>-9</sup>
cm
<sup>2</sup>
s
<sup>-1</sup>
(a phase) and 2.15 x 10
<sup>-9</sup>
cm
<sup>2</sup>
s
<sup>-1</sup>
(β phase). These values are higher, for the a phase and less, for the β phase, than the mean value determined by cyclic voltammetry. We assume that this is related to the number of interstitial sites susceptible to accept the hydrogen atom, which are more numerous in the a phase than in the β phase. The chronoamperometry shows that the average size of the particles involved in the electrochemical reaction is about 12 μm.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>400</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrochemical properties of the MmNi
<sub>3.55</sub>
Mn
<sub>0.4</sub>
Al
<sub>0.3</sub>
Co
<sub>0.4</sub>
Fe
<sub>0.35</sub>
compound</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MOUSSA (M. Ben)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ABDELLAOUI (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MATHLOUTHI (H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LAMLOUMI (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GUEGAN (A. Percheron)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut National de Recherche et d'Analyse Physico-chimique, Pôle Technologique de Sidi Thabet</s1>
<s2>2020 Sidi Thabet</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Mécanique, des Matériaux et Procédés, ESSTT, 5 Avenue</s1>
<s2>Taha Hussein 1008</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratoire de Chimie Métallurgique des Terres Rares, GLVT, 2-8 Rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>239-244</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000132154480410</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0406699</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, the electrochemical properties of the MmNi
<sub>3.55</sub>
Mn
<sub>0.4</sub>
Al
<sub>0.3</sub>
Co
<sub>0.4</sub>
Fe
<sub>0.35</sub>
alloy used as a negative electrode in Ni-MH accumulators, have been investigated by different electrochemical methods such as cyclic voltammetry, chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy. The experimental results indicate that the discharge capacity reaches a maximum value of 260 mAh g
<sup>-1</sup>
after 12 cycles and then decreases to about 200 mAh g
<sup>-1</sup>
after 70 cycles. The value of the mean diffusion coefficient D
<sub>H</sub>
, determined by cyclic voltammetry, is about 3.44 × 10
<sup>-9</sup>
cm
<sup>2</sup>
s
<sup>-1</sup>
, whereas the charge transfer coefficient a, determined by the same method, is about 0.5 which allows us to conclude that the electrochemical reaction is reversible. The hydrogen diffusion coefficients in this compound, corresponding to 10 and 100% of the charge state, determined by electrochemical impedance spectroscopy, are, respectively, equal to 4.15 x 10
<sup>-9</sup>
cm
<sup>2</sup>
s
<sup>-1</sup>
(a phase) and 2.15 x 10
<sup>-9</sup>
cm
<sup>2</sup>
s
<sup>-1</sup>
(β phase). These values are higher, for the a phase and less, for the β phase, than the mean value determined by cyclic voltammetry. We assume that this is related to the number of interstitial sites susceptible to accept the hydrogen atom, which are more numerous in the a phase than in the β phase. The chronoamperometry shows that the average size of the particles involved in the electrochemical reaction is about 12 μm.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D11F</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06D05</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>240</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Propriété électrochimique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electrochemical properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="GER">
<s0>Elektrochemische Eigenschaft</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Propiedad electroquímica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Coefficient diffusion</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Diffusion coefficient</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="GER">
<s0>Diffusionskoeffizient</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Coeficiente difusión</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Voltammétrie cyclique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Cyclic voltammetry</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Voltametría cíclica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Chronopotentiométrie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Chronopotentiometry</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="GER">
<s0>Chronopotentiometrie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Cronopotenciometría</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Chronoampérométrie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Chronoamperometry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="GER">
<s0>Chronoamperometrie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Cronoamperimetría</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Batterie nickel hydrogène</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nickel hydrogen batteries</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Impédance électrode</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Electrode impedance</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Impedancia electrodo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Matériau électrode</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Electrode material</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Material electrodo</s0>
<s5>15</s5>
</fC03>
<fN21>
<s1>283</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NickelMaghrebV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000136 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000136 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NickelMaghrebV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:05-0406699
   |texte=   Electrochemical properties of the MmNi3.55Mn0.4Al0.3 Co0.4Fe0.35 compound
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Fri Mar 24 23:14:20 2017. Site generation: Tue Mar 5 17:03:47 2024