Serveur d'exploration sur le nickel au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: kinetic and thermodynamic studies

Identifieur interne : 000136 ( PascalFrancis/Corpus ); précédent : 000135; suivant : 000137

Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: kinetic and thermodynamic studies

Auteurs : N. Boujelben ; J. Bouzid ; Z. Elouear ; M. Feki

Source :

RBID : Pascal:11-0040300

Descripteurs français

English descriptors

Abstract

In this study, the removal of nickel ions from aqueous solutions using iron oxide and manganese oxide coated sand (ICS and MCS) under different experimental conditions was investigated. The effect of metal concentration, contact time, solution pH and temperature on the amount of Ni(II) sorbed was studied and discussed. Langmuir and Freundlich isotherm constants and correlation coefficients for the present systems at different temperatures were calculated and compared. The equilibrium process was well described by the Langmuir isotherm model: the maximum sorption capacities (at 29 K) were 2.73 mg Ni/g and 3.33 mg Ni/g of sorbent for ICS and MCS, respectively. Isotherms were also used to evaluate the thermodynamic parameters (ΔG°, ΔH°, ΔS°) of adsorption. The sorption kinetics were tested for the pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Good correlation coefficients were obtained for the pseudo-second-order kinetic model, showing that the nickel uptake process followed the pseudo-second-order rate expression.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0959-3330
A03   1    @0 Environ. technol.
A05       @2 31
A06       @2 14
A08 01  1  ENG  @1 Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: kinetic and thermodynamic studies
A11 01  1    @1 BOUJELBEN (N.)
A11 02  1    @1 BOUZID (J.)
A11 03  1    @1 ELOUEAR (Z.)
A11 04  1    @1 FEKI (M.)
A14 01      @1 Laboratoire Eau Energie et Environnement, département de génie géologique, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax @3 TUN @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Unité de chimie industrielle I, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax @3 TUN @Z 4 aut.
A20       @1 1623-1634
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 19606 @5 354000195035730130
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 45 ref.
A47 01  1    @0 11-0040300
A60       @1 P
A61       @0 A
A64 01  1    @0 Environmental technology
A66 01      @0 GBR
C01 01    ENG  @0 In this study, the removal of nickel ions from aqueous solutions using iron oxide and manganese oxide coated sand (ICS and MCS) under different experimental conditions was investigated. The effect of metal concentration, contact time, solution pH and temperature on the amount of Ni(II) sorbed was studied and discussed. Langmuir and Freundlich isotherm constants and correlation coefficients for the present systems at different temperatures were calculated and compared. The equilibrium process was well described by the Langmuir isotherm model: the maximum sorption capacities (at 29 K) were 2.73 mg Ni/g and 3.33 mg Ni/g of sorbent for ICS and MCS, respectively. Isotherms were also used to evaluate the thermodynamic parameters (ΔG°, ΔH°, ΔS°) of adsorption. The sorption kinetics were tested for the pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Good correlation coefficients were obtained for the pseudo-second-order kinetic model, showing that the nickel uptake process followed the pseudo-second-order rate expression.
C02 01  X    @0 001D16
C02 02  X    @0 001D07K
C03 01  X  FRE  @0 Rétention @5 01
C03 01  X  ENG  @0 Retention @5 01
C03 01  X  SPA  @0 Retención @5 01
C03 02  X  FRE  @0 Solution aqueuse @5 02
C03 02  X  ENG  @0 Aqueous solution @5 02
C03 02  X  SPA  @0 Solución acuosa @5 02
C03 03  X  FRE  @0 Cinétique @5 03
C03 03  X  ENG  @0 Kinetics @5 03
C03 03  X  SPA  @0 Cinética @5 03
C03 04  X  FRE  @0 Condition opératoire @5 04
C03 04  X  ENG  @0 Operating conditions @5 04
C03 04  X  SPA  @0 Condición operatoria @5 04
C03 05  X  FRE  @0 pH @5 05
C03 05  X  ENG  @0 pH @5 05
C03 05  X  SPA  @0 pH @5 05
C03 06  X  FRE  @0 Isotherme adsorption @5 06
C03 06  X  ENG  @0 Adsorption isotherm @5 06
C03 06  X  SPA  @0 Isotermo adsorción @5 06
C03 07  X  FRE  @0 Coefficient corrélation @5 07
C03 07  X  ENG  @0 Correlation coefficient @5 07
C03 07  X  SPA  @0 Coeficiente correlación @5 07
C03 08  X  FRE  @0 Isotherme Langmuir @5 08
C03 08  X  ENG  @0 Langmuir isotherm @5 08
C03 08  X  SPA  @0 Isoterma Langmuir @5 08
C03 09  X  FRE  @0 Modélisation @5 09
C03 09  X  ENG  @0 Modeling @5 09
C03 09  X  SPA  @0 Modelización @5 09
C03 10  X  FRE  @0 Sorption @5 10
C03 10  X  ENG  @0 Sorption @5 10
C03 10  X  SPA  @0 Sorción @5 10
C03 11  X  FRE  @0 Sorbant @5 11
C03 11  X  ENG  @0 Sorbent @5 11
C03 11  X  SPA  @0 Sorbente @5 11
C03 12  X  FRE  @0 Paramètre thermodynamique @5 12
C03 12  X  ENG  @0 Thermodynamic parameter @5 12
C03 12  X  SPA  @0 Parámetro termodinámico @5 12
C03 13  X  FRE  @0 Adsorption @5 13
C03 13  X  ENG  @0 Adsorption @5 13
C03 13  X  SPA  @0 Adsorción @5 13
C03 14  X  FRE  @0 Ordre 1 @5 14
C03 14  X  ENG  @0 First order @5 14
C03 14  X  SPA  @0 Orden 1 @5 14
C03 15  X  FRE  @0 Ordre 2 @5 15
C03 15  X  ENG  @0 Second order @5 15
C03 15  X  SPA  @0 Orden 2 @5 15
C03 16  X  FRE  @0 Diffusion @5 16
C03 16  X  ENG  @0 Diffusion @5 16
C03 16  X  SPA  @0 Difusión @5 16
C03 17  X  FRE  @0 Modèle cinétique @5 17
C03 17  X  ENG  @0 Kinetic model @5 17
C03 17  X  SPA  @0 Modelo cinético @5 17
C03 18  X  FRE  @0 Captation @5 18
C03 18  X  ENG  @0 Uptake @5 18
C03 18  X  SPA  @0 Captación @5 18
C03 19  X  FRE  @0 Désorption @5 19
C03 19  X  ENG  @0 Desorption @5 19
C03 19  X  SPA  @0 Desorción @5 19
N21       @1 024
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0040300 INIST
ET : Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: kinetic and thermodynamic studies
AU : BOUJELBEN (N.); BOUZID (J.); ELOUEAR (Z.); FEKI (M.)
AF : Laboratoire Eau Energie et Environnement, département de génie géologique, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax/Tunisie (1 aut., 2 aut., 3 aut.); Unité de chimie industrielle I, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax/Tunisie (4 aut.)
DT : Publication en série; Niveau analytique
SO : Environmental technology; ISSN 0959-3330; Royaume-Uni; Da. 2010; Vol. 31; No. 14; Pp. 1623-1634; Bibl. 45 ref.
LA : Anglais
EA : In this study, the removal of nickel ions from aqueous solutions using iron oxide and manganese oxide coated sand (ICS and MCS) under different experimental conditions was investigated. The effect of metal concentration, contact time, solution pH and temperature on the amount of Ni(II) sorbed was studied and discussed. Langmuir and Freundlich isotherm constants and correlation coefficients for the present systems at different temperatures were calculated and compared. The equilibrium process was well described by the Langmuir isotherm model: the maximum sorption capacities (at 29 K) were 2.73 mg Ni/g and 3.33 mg Ni/g of sorbent for ICS and MCS, respectively. Isotherms were also used to evaluate the thermodynamic parameters (ΔG°, ΔH°, ΔS°) of adsorption. The sorption kinetics were tested for the pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Good correlation coefficients were obtained for the pseudo-second-order kinetic model, showing that the nickel uptake process followed the pseudo-second-order rate expression.
CC : 001D16; 001D07K
FD : Rétention; Solution aqueuse; Cinétique; Condition opératoire; pH; Isotherme adsorption; Coefficient corrélation; Isotherme Langmuir; Modélisation; Sorption; Sorbant; Paramètre thermodynamique; Adsorption; Ordre 1; Ordre 2; Diffusion; Modèle cinétique; Captation; Désorption
ED : Retention; Aqueous solution; Kinetics; Operating conditions; pH; Adsorption isotherm; Correlation coefficient; Langmuir isotherm; Modeling; Sorption; Sorbent; Thermodynamic parameter; Adsorption; First order; Second order; Diffusion; Kinetic model; Uptake; Desorption
SD : Retención; Solución acuosa; Cinética; Condición operatoria; pH; Isotermo adsorción; Coeficiente correlación; Isoterma Langmuir; Modelización; Sorción; Sorbente; Parámetro termodinámico; Adsorción; Orden 1; Orden 2; Difusión; Modelo cinético; Captación; Desorción
LO : INIST-19606.354000195035730130
ID : 11-0040300

Links to Exploration step

Pascal:11-0040300

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: kinetic and thermodynamic studies</title>
<author>
<name sortKey="Boujelben, N" sort="Boujelben, N" uniqKey="Boujelben N" first="N." last="Boujelben">N. Boujelben</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Eau Energie et Environnement, département de génie géologique, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bouzid, J" sort="Bouzid, J" uniqKey="Bouzid J" first="J." last="Bouzid">J. Bouzid</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Eau Energie et Environnement, département de génie géologique, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Elouear, Z" sort="Elouear, Z" uniqKey="Elouear Z" first="Z." last="Elouear">Z. Elouear</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Eau Energie et Environnement, département de génie géologique, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Feki, M" sort="Feki, M" uniqKey="Feki M" first="M." last="Feki">M. Feki</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Unité de chimie industrielle I, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax</s1>
<s3>TUN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0040300</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0040300 INIST</idno>
<idno type="RBID">Pascal:11-0040300</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000136</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: kinetic and thermodynamic studies</title>
<author>
<name sortKey="Boujelben, N" sort="Boujelben, N" uniqKey="Boujelben N" first="N." last="Boujelben">N. Boujelben</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Eau Energie et Environnement, département de génie géologique, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bouzid, J" sort="Bouzid, J" uniqKey="Bouzid J" first="J." last="Bouzid">J. Bouzid</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Eau Energie et Environnement, département de génie géologique, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Elouear, Z" sort="Elouear, Z" uniqKey="Elouear Z" first="Z." last="Elouear">Z. Elouear</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Eau Energie et Environnement, département de génie géologique, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Feki, M" sort="Feki, M" uniqKey="Feki M" first="M." last="Feki">M. Feki</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Unité de chimie industrielle I, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax</s1>
<s3>TUN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Environmental technology</title>
<title level="j" type="abbreviated">Environ. technol.</title>
<idno type="ISSN">0959-3330</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Environmental technology</title>
<title level="j" type="abbreviated">Environ. technol.</title>
<idno type="ISSN">0959-3330</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption</term>
<term>Adsorption isotherm</term>
<term>Aqueous solution</term>
<term>Correlation coefficient</term>
<term>Desorption</term>
<term>Diffusion</term>
<term>First order</term>
<term>Kinetic model</term>
<term>Kinetics</term>
<term>Langmuir isotherm</term>
<term>Modeling</term>
<term>Operating conditions</term>
<term>Retention</term>
<term>Second order</term>
<term>Sorbent</term>
<term>Sorption</term>
<term>Thermodynamic parameter</term>
<term>Uptake</term>
<term>pH</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rétention</term>
<term>Solution aqueuse</term>
<term>Cinétique</term>
<term>Condition opératoire</term>
<term>pH</term>
<term>Isotherme adsorption</term>
<term>Coefficient corrélation</term>
<term>Isotherme Langmuir</term>
<term>Modélisation</term>
<term>Sorption</term>
<term>Sorbant</term>
<term>Paramètre thermodynamique</term>
<term>Adsorption</term>
<term>Ordre 1</term>
<term>Ordre 2</term>
<term>Diffusion</term>
<term>Modèle cinétique</term>
<term>Captation</term>
<term>Désorption</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, the removal of nickel ions from aqueous solutions using iron oxide and manganese oxide coated sand (ICS and MCS) under different experimental conditions was investigated. The effect of metal concentration, contact time, solution pH and temperature on the amount of Ni(II) sorbed was studied and discussed. Langmuir and Freundlich isotherm constants and correlation coefficients for the present systems at different temperatures were calculated and compared. The equilibrium process was well described by the Langmuir isotherm model: the maximum sorption capacities (at 29 K) were 2.73 mg Ni/g and 3.33 mg Ni/g of sorbent for ICS and MCS, respectively. Isotherms were also used to evaluate the thermodynamic parameters (ΔG°, ΔH°, ΔS°) of adsorption. The sorption kinetics were tested for the pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Good correlation coefficients were obtained for the pseudo-second-order kinetic model, showing that the nickel uptake process followed the pseudo-second-order rate expression.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0959-3330</s0>
</fA01>
<fA03 i2="1">
<s0>Environ. technol.</s0>
</fA03>
<fA05>
<s2>31</s2>
</fA05>
<fA06>
<s2>14</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: kinetic and thermodynamic studies</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BOUJELBEN (N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BOUZID (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ELOUEAR (Z.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FEKI (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire Eau Energie et Environnement, département de génie géologique, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Unité de chimie industrielle I, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax</s1>
<s3>TUN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1623-1634</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>19606</s2>
<s5>354000195035730130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>45 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0040300</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Environmental technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this study, the removal of nickel ions from aqueous solutions using iron oxide and manganese oxide coated sand (ICS and MCS) under different experimental conditions was investigated. The effect of metal concentration, contact time, solution pH and temperature on the amount of Ni(II) sorbed was studied and discussed. Langmuir and Freundlich isotherm constants and correlation coefficients for the present systems at different temperatures were calculated and compared. The equilibrium process was well described by the Langmuir isotherm model: the maximum sorption capacities (at 29 K) were 2.73 mg Ni/g and 3.33 mg Ni/g of sorbent for ICS and MCS, respectively. Isotherms were also used to evaluate the thermodynamic parameters (ΔG°, ΔH°, ΔS°) of adsorption. The sorption kinetics were tested for the pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Good correlation coefficients were obtained for the pseudo-second-order kinetic model, showing that the nickel uptake process followed the pseudo-second-order rate expression.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D07K</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Rétention</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Retention</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Retención</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Solution aqueuse</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Aqueous solution</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Solución acuosa</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cinétique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Kinetics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Cinética</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Condition opératoire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Operating conditions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Condición operatoria</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>pH</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>pH</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>pH</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Isotherme adsorption</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Adsorption isotherm</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Isotermo adsorción</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Coefficient corrélation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Correlation coefficient</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Coeficiente correlación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Isotherme Langmuir</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Langmuir isotherm</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Isoterma Langmuir</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Sorption</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Sorption</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Sorción</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Sorbant</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Sorbent</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Sorbente</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Paramètre thermodynamique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Thermodynamic parameter</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Parámetro termodinámico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Adsorption</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Adsorption</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Adsorción</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Ordre 1</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>First order</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Orden 1</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Ordre 2</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Second order</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Orden 2</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Diffusion</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Diffusion</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Difusión</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Modèle cinétique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Kinetic model</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Modelo cinético</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Captation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Uptake</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Captación</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Désorption</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Desorption</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Desorción</s0>
<s5>19</s5>
</fC03>
<fN21>
<s1>024</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0040300 INIST</NO>
<ET>Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: kinetic and thermodynamic studies</ET>
<AU>BOUJELBEN (N.); BOUZID (J.); ELOUEAR (Z.); FEKI (M.)</AU>
<AF>Laboratoire Eau Energie et Environnement, département de génie géologique, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax/Tunisie (1 aut., 2 aut., 3 aut.); Unité de chimie industrielle I, Ecole Nationale d'Ingénieurs de Sfax, BP W 3038 Sfax/Tunisie (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Environmental technology; ISSN 0959-3330; Royaume-Uni; Da. 2010; Vol. 31; No. 14; Pp. 1623-1634; Bibl. 45 ref.</SO>
<LA>Anglais</LA>
<EA>In this study, the removal of nickel ions from aqueous solutions using iron oxide and manganese oxide coated sand (ICS and MCS) under different experimental conditions was investigated. The effect of metal concentration, contact time, solution pH and temperature on the amount of Ni(II) sorbed was studied and discussed. Langmuir and Freundlich isotherm constants and correlation coefficients for the present systems at different temperatures were calculated and compared. The equilibrium process was well described by the Langmuir isotherm model: the maximum sorption capacities (at 29 K) were 2.73 mg Ni/g and 3.33 mg Ni/g of sorbent for ICS and MCS, respectively. Isotherms were also used to evaluate the thermodynamic parameters (ΔG°, ΔH°, ΔS°) of adsorption. The sorption kinetics were tested for the pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Good correlation coefficients were obtained for the pseudo-second-order kinetic model, showing that the nickel uptake process followed the pseudo-second-order rate expression.</EA>
<CC>001D16; 001D07K</CC>
<FD>Rétention; Solution aqueuse; Cinétique; Condition opératoire; pH; Isotherme adsorption; Coefficient corrélation; Isotherme Langmuir; Modélisation; Sorption; Sorbant; Paramètre thermodynamique; Adsorption; Ordre 1; Ordre 2; Diffusion; Modèle cinétique; Captation; Désorption</FD>
<ED>Retention; Aqueous solution; Kinetics; Operating conditions; pH; Adsorption isotherm; Correlation coefficient; Langmuir isotherm; Modeling; Sorption; Sorbent; Thermodynamic parameter; Adsorption; First order; Second order; Diffusion; Kinetic model; Uptake; Desorption</ED>
<SD>Retención; Solución acuosa; Cinética; Condición operatoria; pH; Isotermo adsorción; Coeficiente correlación; Isoterma Langmuir; Modelización; Sorción; Sorbente; Parámetro termodinámico; Adsorción; Orden 1; Orden 2; Difusión; Modelo cinético; Captación; Desorción</SD>
<LO>INIST-19606.354000195035730130</LO>
<ID>11-0040300</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NickelMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000136 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000136 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NickelMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0040300
   |texte=   Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: kinetic and thermodynamic studies
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Fri Mar 24 23:14:20 2017. Site generation: Tue Mar 5 17:03:47 2024