Serveur d'exploration sur le nickel au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Surface impedance in the antiferromagnetic and superconducting states of underdoped BaFe1.93Ni0.07As2 crystals

Identifieur interne : 000019 ( PascalFrancis/Corpus ); précédent : 000018; suivant : 000020

Surface impedance in the antiferromagnetic and superconducting states of underdoped BaFe1.93Ni0.07As2 crystals

Auteurs : M. Saint-Paul ; C. Guttin ; A. Abbassi ; Zhao-Sheng Wang ; HUIQIAN LUO ; XINGYE LU ; CONG REN ; Hai-Hu Wen ; K. Hasselbach

Source :

RBID : Pascal:14-0194445

Descripteurs français

English descriptors

Abstract

Measurements of the real R and imaginary X parts of the surface impedance were performed in underdoped BaFe1.93Ni0.07 As2 crystals in the frequency range 10 MHz-1.5 GHz. The establishment of the antiferromagnetic order at TÑ50 K gives rise to anomalous increase of electron scattering time. Drude type conductivity yields X and R differ from each other. The increase of the real conductivity σ1 in the superconducting state is attributed to a rapid decrease of the quasiparticle scattering time. This result gives evidence of coexistence of superconductivity and antiferromagnetism.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0038-1098
A02 01      @0 SSCOA4
A03   1    @0 Solid state commun.
A05       @2 192
A08 01  1  ENG  @1 Surface impedance in the antiferromagnetic and superconducting states of underdoped BaFe1.93Ni0.07As2 crystals
A11 01  1    @1 SAINT-PAUL (M.)
A11 02  1    @1 GUTTIN (C.)
A11 03  1    @1 ABBASSI (A.)
A11 04  1    @1 WANG (Zhao-Sheng)
A11 05  1    @1 HUIQIAN LUO
A11 06  1    @1 XINGYE LU
A11 07  1    @1 CONG REN
A11 08  1    @1 WEN (Hai-Hu)
A11 09  1    @1 HASSELBACH (K.)
A14 01      @1 Université Grenoble, CNRS, Institut Néel 166 @2 38042 Grenoble @3 FRA @Z 1 aut. @Z 2 aut. @Z 4 aut. @Z 9 aut.
A14 02      @1 Faculté des Sciences et Techniques de Tanger, BP 416 Tanger, Université Abdelmalek Essaâdi @3 MAR @Z 3 aut.
A14 03      @1 Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603 @2 Beijing 100190 @3 CHN @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut. @Z 8 aut.
A14 04      @1 National Laboratory for Solid State Microstuctures, Departement of Physics, Nanjing University @2 210093 Nanjing @3 CHN @Z 8 aut.
A20       @1 47-50
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 10917 @5 354000150323120110
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 15 ref.
A47 01  1    @0 14-0194445
A60       @1 P
A61       @0 A
A64 01  1    @0 Solid state communications
A66 01      @0 GBR
C01 01    ENG  @0 Measurements of the real R and imaginary X parts of the surface impedance were performed in underdoped BaFe1.93Ni0.07 As2 crystals in the frequency range 10 MHz-1.5 GHz. The establishment of the antiferromagnetic order at TÑ50 K gives rise to anomalous increase of electron scattering time. Drude type conductivity yields X and R differ from each other. The increase of the real conductivity σ1 in the superconducting state is attributed to a rapid decrease of the quasiparticle scattering time. This result gives evidence of coexistence of superconductivity and antiferromagnetism.
C02 01  3    @0 001B70D25N
C03 01  3  FRE  @0 Impédance surface @5 02
C03 01  3  ENG  @0 Surface impedance @5 02
C03 02  3  FRE  @0 Antiferromagnétisme @5 03
C03 02  3  ENG  @0 Antiferromagnetism @5 03
C03 03  3  FRE  @0 Supraconductivité @5 04
C03 03  3  ENG  @0 Superconductivity @5 04
C03 04  X  FRE  @0 Diffusion électron @5 05
C03 04  X  ENG  @0 Electron scattering @5 05
C03 04  X  SPA  @0 Difusión electrón @5 05
C03 05  3  FRE  @0 Modèle Drude @5 06
C03 05  3  ENG  @0 Drude model @5 06
C03 06  3  FRE  @0 Quasiparticule @5 07
C03 06  3  ENG  @0 Quasiparticles @5 07
C03 07  X  FRE  @0 Dopage @5 08
C03 07  X  ENG  @0 Doping @5 08
C03 07  X  SPA  @0 Doping @5 08
C03 08  X  FRE  @0 Conductivité hyperfréquence @5 09
C03 08  X  ENG  @0 Microwave conductivity @5 09
C03 08  X  SPA  @0 Conductividad hiperfrecuencia @5 09
C03 09  3  FRE  @0 Impureté @5 10
C03 09  3  ENG  @0 Impurities @5 10
C03 10  3  FRE  @0 Addition nickel @5 11
C03 10  3  ENG  @0 Nickel additions @5 11
C03 11  3  FRE  @0 Supraconducteur @5 15
C03 11  3  ENG  @0 Superconductors @5 15
C03 12  3  FRE  @0 Pnicture @2 NA @5 16
C03 12  3  ENG  @0 Pnictides @2 NA @5 16
C03 13  X  FRE  @0 Baryum Fer Arséniure Mixte @2 NC @2 NA @5 17
C03 13  X  ENG  @0 Barium Iron Arsenides Mixed @2 NC @2 NA @5 17
C03 13  X  SPA  @0 Mixto @2 NC @2 NA @5 17
C03 14  3  FRE  @0 Supraconducteur à base de fer @4 CD @5 96
C03 14  3  ENG  @0 Iron based superconductors @4 CD @5 96
N21       @1 244

Format Inist (serveur)

NO : PASCAL 14-0194445 INIST
ET : Surface impedance in the antiferromagnetic and superconducting states of underdoped BaFe1.93Ni0.07As2 crystals
AU : SAINT-PAUL (M.); GUTTIN (C.); ABBASSI (A.); WANG (Zhao-Sheng); HUIQIAN LUO; XINGYE LU; CONG REN; WEN (Hai-Hu); HASSELBACH (K.)
AF : Université Grenoble, CNRS, Institut Néel 166/38042 Grenoble/France (1 aut., 2 aut., 4 aut., 9 aut.); Faculté des Sciences et Techniques de Tanger, BP 416 Tanger, Université Abdelmalek Essaâdi/Maroc (3 aut.); Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603/Beijing 100190/Chine (4 aut., 5 aut., 6 aut., 7 aut., 8 aut.); National Laboratory for Solid State Microstuctures, Departement of Physics, Nanjing University/210093 Nanjing/Chine (8 aut.)
DT : Publication en série; Niveau analytique
SO : Solid state communications; ISSN 0038-1098; Coden SSCOA4; Royaume-Uni; Da. 2014; Vol. 192; Pp. 47-50; Bibl. 15 ref.
LA : Anglais
EA : Measurements of the real R and imaginary X parts of the surface impedance were performed in underdoped BaFe1.93Ni0.07 As2 crystals in the frequency range 10 MHz-1.5 GHz. The establishment of the antiferromagnetic order at TÑ50 K gives rise to anomalous increase of electron scattering time. Drude type conductivity yields X and R differ from each other. The increase of the real conductivity σ1 in the superconducting state is attributed to a rapid decrease of the quasiparticle scattering time. This result gives evidence of coexistence of superconductivity and antiferromagnetism.
CC : 001B70D25N
FD : Impédance surface; Antiferromagnétisme; Supraconductivité; Diffusion électron; Modèle Drude; Quasiparticule; Dopage; Conductivité hyperfréquence; Impureté; Addition nickel; Supraconducteur; Pnicture; Baryum Fer Arséniure Mixte; Supraconducteur à base de fer
ED : Surface impedance; Antiferromagnetism; Superconductivity; Electron scattering; Drude model; Quasiparticles; Doping; Microwave conductivity; Impurities; Nickel additions; Superconductors; Pnictides; Barium Iron Arsenides Mixed; Iron based superconductors
SD : Difusión electrón; Doping; Conductividad hiperfrecuencia; Mixto
LO : INIST-10917.354000150323120110
ID : 14-0194445

Links to Exploration step

Pascal:14-0194445

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Surface impedance in the antiferromagnetic and superconducting states of underdoped BaFe
<sub>1.93</sub>
Ni
<sub>0.07</sub>
As
<sub>2</sub>
crystals</title>
<author>
<name sortKey="Saint Paul, M" sort="Saint Paul, M" uniqKey="Saint Paul M" first="M." last="Saint-Paul">M. Saint-Paul</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université Grenoble, CNRS, Institut Néel 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guttin, C" sort="Guttin, C" uniqKey="Guttin C" first="C." last="Guttin">C. Guttin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université Grenoble, CNRS, Institut Néel 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Abbassi, A" sort="Abbassi, A" uniqKey="Abbassi A" first="A." last="Abbassi">A. Abbassi</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculté des Sciences et Techniques de Tanger, BP 416 Tanger, Université Abdelmalek Essaâdi</s1>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhao Sheng" sort="Wang, Zhao Sheng" uniqKey="Wang Z" first="Zhao-Sheng" last="Wang">Zhao-Sheng Wang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université Grenoble, CNRS, Institut Néel 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huiqian Luo" sort="Huiqian Luo" uniqKey="Huiqian Luo" last="Huiqian Luo">HUIQIAN LUO</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xingye Lu" sort="Xingye Lu" uniqKey="Xingye Lu" last="Xingye Lu">XINGYE LU</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cong Ren" sort="Cong Ren" uniqKey="Cong Ren" last="Cong Ren">CONG REN</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wen, Hai Hu" sort="Wen, Hai Hu" uniqKey="Wen H" first="Hai-Hu" last="Wen">Hai-Hu Wen</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>National Laboratory for Solid State Microstuctures, Departement of Physics, Nanjing University</s1>
<s2>210093 Nanjing</s2>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hasselbach, K" sort="Hasselbach, K" uniqKey="Hasselbach K" first="K." last="Hasselbach">K. Hasselbach</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université Grenoble, CNRS, Institut Néel 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0194445</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0194445 INIST</idno>
<idno type="RBID">Pascal:14-0194445</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000019</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Surface impedance in the antiferromagnetic and superconducting states of underdoped BaFe
<sub>1.93</sub>
Ni
<sub>0.07</sub>
As
<sub>2</sub>
crystals</title>
<author>
<name sortKey="Saint Paul, M" sort="Saint Paul, M" uniqKey="Saint Paul M" first="M." last="Saint-Paul">M. Saint-Paul</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université Grenoble, CNRS, Institut Néel 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guttin, C" sort="Guttin, C" uniqKey="Guttin C" first="C." last="Guttin">C. Guttin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université Grenoble, CNRS, Institut Néel 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Abbassi, A" sort="Abbassi, A" uniqKey="Abbassi A" first="A." last="Abbassi">A. Abbassi</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculté des Sciences et Techniques de Tanger, BP 416 Tanger, Université Abdelmalek Essaâdi</s1>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhao Sheng" sort="Wang, Zhao Sheng" uniqKey="Wang Z" first="Zhao-Sheng" last="Wang">Zhao-Sheng Wang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université Grenoble, CNRS, Institut Néel 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huiqian Luo" sort="Huiqian Luo" uniqKey="Huiqian Luo" last="Huiqian Luo">HUIQIAN LUO</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xingye Lu" sort="Xingye Lu" uniqKey="Xingye Lu" last="Xingye Lu">XINGYE LU</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cong Ren" sort="Cong Ren" uniqKey="Cong Ren" last="Cong Ren">CONG REN</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wen, Hai Hu" sort="Wen, Hai Hu" uniqKey="Wen H" first="Hai-Hu" last="Wen">Hai-Hu Wen</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>National Laboratory for Solid State Microstuctures, Departement of Physics, Nanjing University</s1>
<s2>210093 Nanjing</s2>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hasselbach, K" sort="Hasselbach, K" uniqKey="Hasselbach K" first="K." last="Hasselbach">K. Hasselbach</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Université Grenoble, CNRS, Institut Néel 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Solid state communications</title>
<title level="j" type="abbreviated">Solid state commun.</title>
<idno type="ISSN">0038-1098</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Solid state communications</title>
<title level="j" type="abbreviated">Solid state commun.</title>
<idno type="ISSN">0038-1098</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antiferromagnetism</term>
<term>Barium Iron Arsenides Mixed</term>
<term>Doping</term>
<term>Drude model</term>
<term>Electron scattering</term>
<term>Impurities</term>
<term>Iron based superconductors</term>
<term>Microwave conductivity</term>
<term>Nickel additions</term>
<term>Pnictides</term>
<term>Quasiparticles</term>
<term>Superconductivity</term>
<term>Superconductors</term>
<term>Surface impedance</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Impédance surface</term>
<term>Antiferromagnétisme</term>
<term>Supraconductivité</term>
<term>Diffusion électron</term>
<term>Modèle Drude</term>
<term>Quasiparticule</term>
<term>Dopage</term>
<term>Conductivité hyperfréquence</term>
<term>Impureté</term>
<term>Addition nickel</term>
<term>Supraconducteur</term>
<term>Pnicture</term>
<term>Baryum Fer Arséniure Mixte</term>
<term>Supraconducteur à base de fer</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Measurements of the real R and imaginary X parts of the surface impedance were performed in underdoped BaFe
<sub>1.93</sub>
Ni
<sub>0.07</sub>
As
<sub>2</sub>
crystals in the frequency range 10 MHz-1.5 GHz. The establishment of the antiferromagnetic order at T
<sub>Ñ</sub>
50 K gives rise to anomalous increase of electron scattering time. Drude type conductivity yields X and R differ from each other. The increase of the real conductivity σ
<sub>1</sub>
in the superconducting state is attributed to a rapid decrease of the quasiparticle scattering time. This result gives evidence of coexistence of superconductivity and antiferromagnetism.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1098</s0>
</fA01>
<fA02 i1="01">
<s0>SSCOA4</s0>
</fA02>
<fA03 i2="1">
<s0>Solid state commun.</s0>
</fA03>
<fA05>
<s2>192</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Surface impedance in the antiferromagnetic and superconducting states of underdoped BaFe
<sub>1.93</sub>
Ni
<sub>0.07</sub>
As
<sub>2</sub>
crystals</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SAINT-PAUL (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUTTIN (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ABBASSI (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WANG (Zhao-Sheng)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HUIQIAN LUO</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>XINGYE LU</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CONG REN</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>WEN (Hai-Hu)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>HASSELBACH (K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Université Grenoble, CNRS, Institut Néel 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Faculté des Sciences et Techniques de Tanger, BP 416 Tanger, Université Abdelmalek Essaâdi</s1>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>National Laboratory for Solid State Microstuctures, Departement of Physics, Nanjing University</s1>
<s2>210093 Nanjing</s2>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>47-50</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10917</s2>
<s5>354000150323120110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0194445</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid state communications</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Measurements of the real R and imaginary X parts of the surface impedance were performed in underdoped BaFe
<sub>1.93</sub>
Ni
<sub>0.07</sub>
As
<sub>2</sub>
crystals in the frequency range 10 MHz-1.5 GHz. The establishment of the antiferromagnetic order at T
<sub>Ñ</sub>
50 K gives rise to anomalous increase of electron scattering time. Drude type conductivity yields X and R differ from each other. The increase of the real conductivity σ
<sub>1</sub>
in the superconducting state is attributed to a rapid decrease of the quasiparticle scattering time. This result gives evidence of coexistence of superconductivity and antiferromagnetism.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70D25N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Impédance surface</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Surface impedance</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Antiferromagnétisme</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Antiferromagnetism</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Supraconductivité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Superconductivity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Diffusion électron</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electron scattering</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Difusión electrón</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Modèle Drude</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Drude model</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Quasiparticule</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Quasiparticles</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Doping</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Doping</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Conductivité hyperfréquence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Microwave conductivity</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Conductividad hiperfrecuencia</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Impureté</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Impurities</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Addition nickel</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nickel additions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Supraconducteur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Superconductors</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Pnicture</s0>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Pnictides</s0>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Baryum Fer Arséniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Barium Iron Arsenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Supraconducteur à base de fer</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Iron based superconductors</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>244</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 14-0194445 INIST</NO>
<ET>Surface impedance in the antiferromagnetic and superconducting states of underdoped BaFe
<sub>1.93</sub>
Ni
<sub>0.07</sub>
As
<sub>2</sub>
crystals</ET>
<AU>SAINT-PAUL (M.); GUTTIN (C.); ABBASSI (A.); WANG (Zhao-Sheng); HUIQIAN LUO; XINGYE LU; CONG REN; WEN (Hai-Hu); HASSELBACH (K.)</AU>
<AF>Université Grenoble, CNRS, Institut Néel 166/38042 Grenoble/France (1 aut., 2 aut., 4 aut., 9 aut.); Faculté des Sciences et Techniques de Tanger, BP 416 Tanger, Université Abdelmalek Essaâdi/Maroc (3 aut.); Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603/Beijing 100190/Chine (4 aut., 5 aut., 6 aut., 7 aut., 8 aut.); National Laboratory for Solid State Microstuctures, Departement of Physics, Nanjing University/210093 Nanjing/Chine (8 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Solid state communications; ISSN 0038-1098; Coden SSCOA4; Royaume-Uni; Da. 2014; Vol. 192; Pp. 47-50; Bibl. 15 ref.</SO>
<LA>Anglais</LA>
<EA>Measurements of the real R and imaginary X parts of the surface impedance were performed in underdoped BaFe
<sub>1.93</sub>
Ni
<sub>0.07</sub>
As
<sub>2</sub>
crystals in the frequency range 10 MHz-1.5 GHz. The establishment of the antiferromagnetic order at T
<sub>Ñ</sub>
50 K gives rise to anomalous increase of electron scattering time. Drude type conductivity yields X and R differ from each other. The increase of the real conductivity σ
<sub>1</sub>
in the superconducting state is attributed to a rapid decrease of the quasiparticle scattering time. This result gives evidence of coexistence of superconductivity and antiferromagnetism.</EA>
<CC>001B70D25N</CC>
<FD>Impédance surface; Antiferromagnétisme; Supraconductivité; Diffusion électron; Modèle Drude; Quasiparticule; Dopage; Conductivité hyperfréquence; Impureté; Addition nickel; Supraconducteur; Pnicture; Baryum Fer Arséniure Mixte; Supraconducteur à base de fer</FD>
<ED>Surface impedance; Antiferromagnetism; Superconductivity; Electron scattering; Drude model; Quasiparticles; Doping; Microwave conductivity; Impurities; Nickel additions; Superconductors; Pnictides; Barium Iron Arsenides Mixed; Iron based superconductors</ED>
<SD>Difusión electrón; Doping; Conductividad hiperfrecuencia; Mixto</SD>
<LO>INIST-10917.354000150323120110</LO>
<ID>14-0194445</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NickelMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000019 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000019 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NickelMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0194445
   |texte=   Surface impedance in the antiferromagnetic and superconducting states of underdoped BaFe1.93Ni0.07As2 crystals
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Fri Mar 24 23:14:20 2017. Site generation: Tue Mar 5 17:03:47 2024