Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling spreading-pressure-dependent binary gas coadsorption equilibria using gravimetric data.

Identifieur interne : 000172 ( PubMed/Corpus ); précédent : 000171; suivant : 000173

Modeling spreading-pressure-dependent binary gas coadsorption equilibria using gravimetric data.

Auteurs : D. Tondeur ; F. Yu ; K. Bonnot ; L. Luo

Source :

RBID : pubmed:16087185

Abstract

The present work proposes an approach to building nonideal coadsorption models in a thermodynamically consistent fashion, including the effects of pressure and spreading pressure, from simple gravimetric measurements. This is an "inverse problem" of parameter determination from appropriate and limited experimental data. The approach relies on the nonideal adsorbed solution theory, which includes activity coefficients and their dependence on spreading pressure, and on an original form of the excess Gibbs energy of mixing. A fully analytical development leads to explicit relations between the infinite dilution activity coefficients and three sets of independent information: the parameters of this excess Gibbs function, the limiting slopes of measured binary gravimetric curves at two different total pressures, and the properties of the single-component isotherms. From there, the four parameters of the model may be determined quasi-analytically and uniquely. The method is exemplified with the coadsorption of CO(2) and CH(4) on activated carbon, and a heterogeneous set of data. On one hand, the total adsorbed mass of the two components is measured at 1 bar by "incremental gravimetry." On the other hand, data obtained from independent batch-type equilibration measurements at 2 bar allow a comparison of calculated and measured data for the individual component concentrations. It is emphasized, however, that only total adsorbed mass data are needed for application of the method.

DOI: 10.1016/j.jcis.2005.06.067
PubMed: 16087185

Links to Exploration step

pubmed:16087185

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling spreading-pressure-dependent binary gas coadsorption equilibria using gravimetric data.</title>
<author>
<name sortKey="Tondeur, D" sort="Tondeur, D" uniqKey="Tondeur D" first="D" last="Tondeur">D. Tondeur</name>
<affiliation>
<nlm:affiliation>Laboratoire des Sciences du Génie Chimique-CNRS, ENSIC-INPL, 1 rue Grandville, 54000 Nancy, France. tondeur@ensic.inpl-nancy.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yu, F" sort="Yu, F" uniqKey="Yu F" first="F" last="Yu">F. Yu</name>
</author>
<author>
<name sortKey="Bonnot, K" sort="Bonnot, K" uniqKey="Bonnot K" first="K" last="Bonnot">K. Bonnot</name>
</author>
<author>
<name sortKey="Luo, L" sort="Luo, L" uniqKey="Luo L" first="L" last="Luo">L. Luo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="doi">10.1016/j.jcis.2005.06.067</idno>
<idno type="RBID">pubmed:16087185</idno>
<idno type="pmid">16087185</idno>
<idno type="wicri:Area/PubMed/Corpus">000172</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000172</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modeling spreading-pressure-dependent binary gas coadsorption equilibria using gravimetric data.</title>
<author>
<name sortKey="Tondeur, D" sort="Tondeur, D" uniqKey="Tondeur D" first="D" last="Tondeur">D. Tondeur</name>
<affiliation>
<nlm:affiliation>Laboratoire des Sciences du Génie Chimique-CNRS, ENSIC-INPL, 1 rue Grandville, 54000 Nancy, France. tondeur@ensic.inpl-nancy.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yu, F" sort="Yu, F" uniqKey="Yu F" first="F" last="Yu">F. Yu</name>
</author>
<author>
<name sortKey="Bonnot, K" sort="Bonnot, K" uniqKey="Bonnot K" first="K" last="Bonnot">K. Bonnot</name>
</author>
<author>
<name sortKey="Luo, L" sort="Luo, L" uniqKey="Luo L" first="L" last="Luo">L. Luo</name>
</author>
</analytic>
<series>
<title level="j">Journal of colloid and interface science</title>
<idno type="ISSN">0021-9797</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present work proposes an approach to building nonideal coadsorption models in a thermodynamically consistent fashion, including the effects of pressure and spreading pressure, from simple gravimetric measurements. This is an "inverse problem" of parameter determination from appropriate and limited experimental data. The approach relies on the nonideal adsorbed solution theory, which includes activity coefficients and their dependence on spreading pressure, and on an original form of the excess Gibbs energy of mixing. A fully analytical development leads to explicit relations between the infinite dilution activity coefficients and three sets of independent information: the parameters of this excess Gibbs function, the limiting slopes of measured binary gravimetric curves at two different total pressures, and the properties of the single-component isotherms. From there, the four parameters of the model may be determined quasi-analytically and uniquely. The method is exemplified with the coadsorption of CO(2) and CH(4) on activated carbon, and a heterogeneous set of data. On one hand, the total adsorbed mass of the two components is measured at 1 bar by "incremental gravimetry." On the other hand, data obtained from independent batch-type equilibration measurements at 2 bar allow a comparison of calculated and measured data for the individual component concentrations. It is emphasized, however, that only total adsorbed mass data are needed for application of the method.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">16087185</PMID>
<DateCreated>
<Year>2005</Year>
<Month>11</Month>
<Day>21</Day>
</DateCreated>
<DateCompleted>
<Year>2007</Year>
<Month>05</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2009</Year>
<Month>11</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9797</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>293</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jan</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of colloid and interface science</Title>
<ISOAbbreviation>J Colloid Interface Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Modeling spreading-pressure-dependent binary gas coadsorption equilibria using gravimetric data.</ArticleTitle>
<Pagination>
<MedlinePgn>342-52</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The present work proposes an approach to building nonideal coadsorption models in a thermodynamically consistent fashion, including the effects of pressure and spreading pressure, from simple gravimetric measurements. This is an "inverse problem" of parameter determination from appropriate and limited experimental data. The approach relies on the nonideal adsorbed solution theory, which includes activity coefficients and their dependence on spreading pressure, and on an original form of the excess Gibbs energy of mixing. A fully analytical development leads to explicit relations between the infinite dilution activity coefficients and three sets of independent information: the parameters of this excess Gibbs function, the limiting slopes of measured binary gravimetric curves at two different total pressures, and the properties of the single-component isotherms. From there, the four parameters of the model may be determined quasi-analytically and uniquely. The method is exemplified with the coadsorption of CO(2) and CH(4) on activated carbon, and a heterogeneous set of data. On one hand, the total adsorbed mass of the two components is measured at 1 bar by "incremental gravimetry." On the other hand, data obtained from independent batch-type equilibration measurements at 2 bar allow a comparison of calculated and measured data for the individual component concentrations. It is emphasized, however, that only total adsorbed mass data are needed for application of the method.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tondeur</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire des Sciences du Génie Chimique-CNRS, ENSIC-INPL, 1 rue Grandville, 54000 Nancy, France. tondeur@ensic.inpl-nancy.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bonnot</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>08</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Colloid Interface Sci</MedlineTA>
<NlmUniqueID>0043125</NlmUniqueID>
<ISSNLinking>0021-9797</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>5</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>6</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2005</Year>
<Month>8</Month>
<Day>8</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S0021-9797(05)00727-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.jcis.2005.06.067</ArticleId>
<ArticleId IdType="pubmed">16087185</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000172 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000172 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16087185
   |texte=   Modeling spreading-pressure-dependent binary gas coadsorption equilibria using gravimetric data.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16087185" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LrgpV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024