Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.

Identifieur interne : 000104 ( PubMed/Corpus ); précédent : 000103; suivant : 000105

Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.

Auteurs : Pierre Alexandre Glaude ; Olivier Herbinet ; Sarah Bax ; Joffrey Biet ; Valérie Warth ; Frédérique Battin-Leclerc

Source :

RBID : pubmed:23710076

Abstract

The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.

DOI: 10.1016/j.combustflame.2010.03.012
PubMed: 23710076

Links to Exploration step

pubmed:23710076

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.</title>
<author>
<name sortKey="Glaude, Pierre Alexandre" sort="Glaude, Pierre Alexandre" uniqKey="Glaude P" first="Pierre Alexandre" last="Glaude">Pierre Alexandre Glaude</name>
<affiliation>
<nlm:affiliation>Laboratoire Réactions et Génie des Procédés, CNRS UPR 3349, Nancy-Université, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Herbinet, Olivier" sort="Herbinet, Olivier" uniqKey="Herbinet O" first="Olivier" last="Herbinet">Olivier Herbinet</name>
</author>
<author>
<name sortKey="Bax, Sarah" sort="Bax, Sarah" uniqKey="Bax S" first="Sarah" last="Bax">Sarah Bax</name>
</author>
<author>
<name sortKey="Biet, Joffrey" sort="Biet, Joffrey" uniqKey="Biet J" first="Joffrey" last="Biet">Joffrey Biet</name>
</author>
<author>
<name sortKey="Warth, Valerie" sort="Warth, Valerie" uniqKey="Warth V" first="Valérie" last="Warth">Valérie Warth</name>
</author>
<author>
<name sortKey="Battin Leclerc, Frederique" sort="Battin Leclerc, Frederique" uniqKey="Battin Leclerc F" first="Frédérique" last="Battin-Leclerc">Frédérique Battin-Leclerc</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="doi">10.1016/j.combustflame.2010.03.012</idno>
<idno type="RBID">pubmed:23710076</idno>
<idno type="pmid">23710076</idno>
<idno type="wicri:Area/PubMed/Corpus">000104</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000104</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.</title>
<author>
<name sortKey="Glaude, Pierre Alexandre" sort="Glaude, Pierre Alexandre" uniqKey="Glaude P" first="Pierre Alexandre" last="Glaude">Pierre Alexandre Glaude</name>
<affiliation>
<nlm:affiliation>Laboratoire Réactions et Génie des Procédés, CNRS UPR 3349, Nancy-Université, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Herbinet, Olivier" sort="Herbinet, Olivier" uniqKey="Herbinet O" first="Olivier" last="Herbinet">Olivier Herbinet</name>
</author>
<author>
<name sortKey="Bax, Sarah" sort="Bax, Sarah" uniqKey="Bax S" first="Sarah" last="Bax">Sarah Bax</name>
</author>
<author>
<name sortKey="Biet, Joffrey" sort="Biet, Joffrey" uniqKey="Biet J" first="Joffrey" last="Biet">Joffrey Biet</name>
</author>
<author>
<name sortKey="Warth, Valerie" sort="Warth, Valerie" uniqKey="Warth V" first="Valérie" last="Warth">Valérie Warth</name>
</author>
<author>
<name sortKey="Battin Leclerc, Frederique" sort="Battin Leclerc, Frederique" uniqKey="Battin Leclerc F" first="Frédérique" last="Battin-Leclerc">Frédérique Battin-Leclerc</name>
</author>
</analytic>
<series>
<title level="j">Combustion and flame</title>
<idno type="ISSN">0010-2180</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">23710076</PMID>
<DateCreated>
<Year>2013</Year>
<Month>5</Month>
<Day>27</Day>
</DateCreated>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0010-2180</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>157</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Combustion and flame</Title>
<ISOAbbreviation>Combust Flame</ISOAbbreviation>
</Journal>
<ArticleTitle>Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.</ArticleTitle>
<Pagination>
<MedlinePgn>2035-2050</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.</AbstractText>
</Abstract>
<AuthorList>
<Author>
<LastName>Glaude</LastName>
<ForeName>Pierre Alexandre</ForeName>
<Initials>PA</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Réactions et Génie des Procédés, CNRS UPR 3349, Nancy-Université, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author>
<LastName>Herbinet</LastName>
<ForeName>Olivier</ForeName>
<Initials>O</Initials>
</Author>
<Author>
<LastName>Bax</LastName>
<ForeName>Sarah</ForeName>
<Initials>S</Initials>
</Author>
<Author>
<LastName>Biet</LastName>
<ForeName>Joffrey</ForeName>
<Initials>J</Initials>
</Author>
<Author>
<LastName>Warth</LastName>
<ForeName>Valérie</ForeName>
<Initials>V</Initials>
</Author>
<Author>
<LastName>Battin-Leclerc</LastName>
<ForeName>Frédérique</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<GrantList>
<Grant>
<GrantID>227669</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="">JOURNAL ARTICLE</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<MedlineTA>Combust Flame</MedlineTA>
<NlmUniqueID>9891739</NlmUniqueID>
<ISSNLinking>0010-2180</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Detailed kinetic model</Keyword>
<Keyword MajorTopicYN="N">Methyl decanoate</Keyword>
<Keyword MajorTopicYN="N">Methyl esters</Keyword>
<Keyword MajorTopicYN="N">Methyl heptanoate</Keyword>
<Keyword MajorTopicYN="N">Methyl hexanoate</Keyword>
<Keyword MajorTopicYN="N">Oxidation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.combustflame.2010.03.012</ArticleId>
<ArticleId IdType="pubmed">23710076</ArticleId>
<ArticleId IdType="pmc">PMC3662211</ArticleId>
<ArticleId IdType="mid">EMS53326</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000104 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000104 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23710076
   |texte=   Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23710076" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LrgpV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024