Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting.

Identifieur interne : 000112 ( PubMed/Checkpoint ); précédent : 000111; suivant : 000113

Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting.

Auteurs : Thibault Roques-Carmes [France] ; Alexandra Gigante ; Jean-Marc Commenge ; Serge Corbel [France]

Source :

RBID : pubmed:19785398

Abstract

The advantage of using electrowetting as a novel principle for a reflective display has been previously demonstrated. The principle is based on the controlled two-dimensional movement of an oil/water interface across a hydrophobic fluoropolymer insulator. The main objective of this paper is to show experimentally the influence of surfactants on the electro-optic behavior of a single electrowetting pixel. The concentration and type of nonionic surfactant (Tween 80 and Span 20) have been varied. The experimental data are compared with calculations from the electro-optic model developed previously. The electro-optic performance is significantly affected by the nature and the concentration of surfactant. In the presence of Tween, at concentrations lower than the critical micelle concentration (CMC), and mixtures of Tween and Span the electro-optic behavior can be related to the interfacial tension. When decreasing the oil/water interfacial tension, the amplitude of the driving voltage required for obtaining a given oil displacement decreases and the switching curve becomes steeper. These effects can be accurately reproduced by means of the previously developed electro-optic model. Mixtures of Tween and Span produce a significant synergetic reduction of the driving voltage. For Tween concentrations higher than the CMC and Span, a strong disagreement is observed between the previously developed model and experimental data. Here a new physical model is reported that describes the electro-optic behavior of electrowetting-based optical elements in the presence of surfactants. The model takes into account the actual voltage used to control the liquid movement in electrowetting (lower than the applied voltage), the amount of surfactant adsorbed at the decane/water interface, and the dipole moment of the surfactant molecules. The calculated results are in very good agreement with experimental data without employing fitting parameters. The dipoles interact with the applied field and lower the actual applied field. This reduction of the effective electric field across the solid-liquid interface induces a decrease in the charge density at the solid-liquid interface and reduces the electrowetting force. For surfactant concentrations higher than the CMC, the electro-optic performance does not depend on the surfactant concentration. This demonstrates that the reduction of the electrowetting field due to the large dipole moment of the surfactant molecules occurs at the oil/water interface. A new method for the test cell fabrication is also presented.

DOI: 10.1021/la900882h
PubMed: 19785398


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19785398

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting.</title>
<author>
<name sortKey="Roques Carmes, Thibault" sort="Roques Carmes, Thibault" uniqKey="Roques Carmes T" first="Thibault" last="Roques-Carmes">Thibault Roques-Carmes</name>
<affiliation wicri:level="3">
<nlm:affiliation>Departement de Chimie Physique des Réactions, UMR 7630 CNRS-INPL, Nancy-Université 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France. thibault.roques-carmes@ensic.inpl-nancy.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Departement de Chimie Physique des Réactions, UMR 7630 CNRS-INPL, Nancy-Université 1, rue Grandville, BP 20451, 54001 Nancy Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gigante, Alexandra" sort="Gigante, Alexandra" uniqKey="Gigante A" first="Alexandra" last="Gigante">Alexandra Gigante</name>
</author>
<author>
<name sortKey="Commenge, Jean Marc" sort="Commenge, Jean Marc" uniqKey="Commenge J" first="Jean-Marc" last="Commenge">Jean-Marc Commenge</name>
</author>
<author>
<name sortKey="Corbel, Serge" sort="Corbel, Serge" uniqKey="Corbel S" first="Serge" last="Corbel">Serge Corbel</name>
<affiliation>
<country>France</country>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
</placeName>
<orgName type="laboratoire" n="5">Département de chimie physique des réactions</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
<orgName type="mergingLab" from="2010">Laboratoire réactions et génie des procédés</orgName>
<country>France</country>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
</placeName>
<orgName type="laboratoire" n="5">Département de chimie physique des réactions</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
<orgName type="mergingLab" from="2010">Laboratoire réactions et génie des procédés</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="doi">10.1021/la900882h</idno>
<idno type="RBID">pubmed:19785398</idno>
<idno type="pmid">19785398</idno>
<idno type="wicri:Area/PubMed/Corpus">000119</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000119</idno>
<idno type="wicri:Area/PubMed/Curation">000119</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000119</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000119</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000119</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting.</title>
<author>
<name sortKey="Roques Carmes, Thibault" sort="Roques Carmes, Thibault" uniqKey="Roques Carmes T" first="Thibault" last="Roques-Carmes">Thibault Roques-Carmes</name>
<affiliation wicri:level="3">
<nlm:affiliation>Departement de Chimie Physique des Réactions, UMR 7630 CNRS-INPL, Nancy-Université 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France. thibault.roques-carmes@ensic.inpl-nancy.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Departement de Chimie Physique des Réactions, UMR 7630 CNRS-INPL, Nancy-Université 1, rue Grandville, BP 20451, 54001 Nancy Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gigante, Alexandra" sort="Gigante, Alexandra" uniqKey="Gigante A" first="Alexandra" last="Gigante">Alexandra Gigante</name>
</author>
<author>
<name sortKey="Commenge, Jean Marc" sort="Commenge, Jean Marc" uniqKey="Commenge J" first="Jean-Marc" last="Commenge">Jean-Marc Commenge</name>
</author>
<author>
<name sortKey="Corbel, Serge" sort="Corbel, Serge" uniqKey="Corbel S" first="Serge" last="Corbel">Serge Corbel</name>
<affiliation>
<country>France</country>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
</placeName>
<orgName type="laboratoire" n="5">Département de chimie physique des réactions</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
<orgName type="mergingLab" from="2010">Laboratoire réactions et génie des procédés</orgName>
<country>France</country>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
</placeName>
<orgName type="laboratoire" n="5">Département de chimie physique des réactions</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
<orgName type="mergingLab" from="2010">Laboratoire réactions et génie des procédés</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Langmuir : the ACS journal of surfaces and colloids</title>
<idno type="eISSN">1520-5827</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The advantage of using electrowetting as a novel principle for a reflective display has been previously demonstrated. The principle is based on the controlled two-dimensional movement of an oil/water interface across a hydrophobic fluoropolymer insulator. The main objective of this paper is to show experimentally the influence of surfactants on the electro-optic behavior of a single electrowetting pixel. The concentration and type of nonionic surfactant (Tween 80 and Span 20) have been varied. The experimental data are compared with calculations from the electro-optic model developed previously. The electro-optic performance is significantly affected by the nature and the concentration of surfactant. In the presence of Tween, at concentrations lower than the critical micelle concentration (CMC), and mixtures of Tween and Span the electro-optic behavior can be related to the interfacial tension. When decreasing the oil/water interfacial tension, the amplitude of the driving voltage required for obtaining a given oil displacement decreases and the switching curve becomes steeper. These effects can be accurately reproduced by means of the previously developed electro-optic model. Mixtures of Tween and Span produce a significant synergetic reduction of the driving voltage. For Tween concentrations higher than the CMC and Span, a strong disagreement is observed between the previously developed model and experimental data. Here a new physical model is reported that describes the electro-optic behavior of electrowetting-based optical elements in the presence of surfactants. The model takes into account the actual voltage used to control the liquid movement in electrowetting (lower than the applied voltage), the amount of surfactant adsorbed at the decane/water interface, and the dipole moment of the surfactant molecules. The calculated results are in very good agreement with experimental data without employing fitting parameters. The dipoles interact with the applied field and lower the actual applied field. This reduction of the effective electric field across the solid-liquid interface induces a decrease in the charge density at the solid-liquid interface and reduces the electrowetting force. For surfactant concentrations higher than the CMC, the electro-optic performance does not depend on the surfactant concentration. This demonstrates that the reduction of the electrowetting field due to the large dipole moment of the surfactant molecules occurs at the oil/water interface. A new method for the test cell fabrication is also presented.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">19785398</PMID>
<DateCreated>
<Year>2009</Year>
<Month>10</Month>
<Day>27</Day>
</DateCreated>
<DateCompleted>
<Year>2009</Year>
<Month>12</Month>
<Day>28</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1520-5827</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2009</Year>
<Month>Nov</Month>
<Day>3</Day>
</PubDate>
</JournalIssue>
<Title>Langmuir : the ACS journal of surfaces and colloids</Title>
<ISOAbbreviation>Langmuir</ISOAbbreviation>
</Journal>
<ArticleTitle>Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting.</ArticleTitle>
<Pagination>
<MedlinePgn>12771-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/la900882h</ELocationID>
<Abstract>
<AbstractText>The advantage of using electrowetting as a novel principle for a reflective display has been previously demonstrated. The principle is based on the controlled two-dimensional movement of an oil/water interface across a hydrophobic fluoropolymer insulator. The main objective of this paper is to show experimentally the influence of surfactants on the electro-optic behavior of a single electrowetting pixel. The concentration and type of nonionic surfactant (Tween 80 and Span 20) have been varied. The experimental data are compared with calculations from the electro-optic model developed previously. The electro-optic performance is significantly affected by the nature and the concentration of surfactant. In the presence of Tween, at concentrations lower than the critical micelle concentration (CMC), and mixtures of Tween and Span the electro-optic behavior can be related to the interfacial tension. When decreasing the oil/water interfacial tension, the amplitude of the driving voltage required for obtaining a given oil displacement decreases and the switching curve becomes steeper. These effects can be accurately reproduced by means of the previously developed electro-optic model. Mixtures of Tween and Span produce a significant synergetic reduction of the driving voltage. For Tween concentrations higher than the CMC and Span, a strong disagreement is observed between the previously developed model and experimental data. Here a new physical model is reported that describes the electro-optic behavior of electrowetting-based optical elements in the presence of surfactants. The model takes into account the actual voltage used to control the liquid movement in electrowetting (lower than the applied voltage), the amount of surfactant adsorbed at the decane/water interface, and the dipole moment of the surfactant molecules. The calculated results are in very good agreement with experimental data without employing fitting parameters. The dipoles interact with the applied field and lower the actual applied field. This reduction of the effective electric field across the solid-liquid interface induces a decrease in the charge density at the solid-liquid interface and reduces the electrowetting force. For surfactant concentrations higher than the CMC, the electro-optic performance does not depend on the surfactant concentration. This demonstrates that the reduction of the electrowetting field due to the large dipole moment of the surfactant molecules occurs at the oil/water interface. A new method for the test cell fabrication is also presented.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Roques-Carmes</LastName>
<ForeName>Thibault</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Departement de Chimie Physique des Réactions, UMR 7630 CNRS-INPL, Nancy-Université 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France. thibault.roques-carmes@ensic.inpl-nancy.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gigante</LastName>
<ForeName>Alexandra</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Commenge</LastName>
<ForeName>Jean-Marc</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Corbel</LastName>
<ForeName>Serge</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Langmuir</MedlineTA>
<NlmUniqueID>9882736</NlmUniqueID>
<ISSNLinking>0743-7463</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/la900882h</ArticleId>
<ArticleId IdType="pubmed">19785398</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Nancy</li>
</settlement>
<orgName>
<li>Centre national de la recherche scientifique</li>
<li>Département de chimie physique des réactions</li>
<li>Laboratoire réactions et génie des procédés</li>
<li>Université de Lorraine</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Commenge, Jean Marc" sort="Commenge, Jean Marc" uniqKey="Commenge J" first="Jean-Marc" last="Commenge">Jean-Marc Commenge</name>
<name sortKey="Gigante, Alexandra" sort="Gigante, Alexandra" uniqKey="Gigante A" first="Alexandra" last="Gigante">Alexandra Gigante</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Roques Carmes, Thibault" sort="Roques Carmes, Thibault" uniqKey="Roques Carmes T" first="Thibault" last="Roques-Carmes">Thibault Roques-Carmes</name>
</region>
<name sortKey="Corbel, Serge" sort="Corbel, Serge" uniqKey="Corbel S" first="Serge" last="Corbel">Serge Corbel</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000112 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000112 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:19785398
   |texte=   Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:19785398" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LrgpV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024