Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach.

Identifieur interne : 000099 ( PubMed/Checkpoint ); précédent : 000098; suivant : 000100

Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach.

Auteurs : Eric B. Johansen [États-Unis] ; Francis C. Szoka ; Anthony Zaleski ; Michael A. Apicella ; Bradford W. Gibson

Source :

RBID : pubmed:20208062

Descripteurs français

English descriptors

Abstract

In previous work, our laboratory generated novel chimeric lipopolysaccharides (LPS) in Escherichia coli transformed with a plasmid containing exogenous lipooligosaccharide synthesis genes (lsg) from Haemophilus influenzae. Analysis of these novel oligosaccharide-LPS chimeras allowed characterization of the carbohydrate structures generated by several putative glycosyltransferase genes within the lsg locus. Here, we adapted this strategy to construct a modular approach to study the synthetic properties of individual glycosyltransferases expressed alone and in combinations. To this end, a set of expression vectors containing one to four putative glycosyltransferase genes from the lsg locus, lsgC-F, were transformed into E. coli K12 (XL-1) which is defective in LPS O-antigen biosynthesis. This strategy relied on the inclusion of the H. influenzae gene product lsgG in every plasmid construct, which partially rescues the E. coli LPS biosynthesis defect by priming uridine diphosphate-undecaprenyl in the WecA-dependent O-antigen synthetic pathway with N-acetyl-glucosamine (GlcNAc). This GlcNAc-undecaprenyl then served as an acceptor substrate for further carbohydrate extension by transformed glycosyltransferases. The resultant LPS-linked chimeric glycans were isolated from their E. coli constructs and characterized by mass spectrometry, methylation analysis and enzyme-linked immunosorbent assays. These structural data allowed the specificity of various glycosyltransferases to be unambiguously assigned to individual genes. LsgF was found to transfer a galactose (Gal) to terminal GlcNAc. LsgE was found to transfer GlcNAc to Gal-GlcNAc, and both LsgF and LsgD were found to transfer Gal to GlcNAc-Gal-GlcNAc but with differing linkage specificities. This method can be generalized and readily adapted to study the substrate specificity of other putative or uncharacterized glycosyltransferases.

DOI: 10.1093/glycob/cwq033
PubMed: 20208062


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20208062

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach.</title>
<author>
<name sortKey="Johansen, Eric B" sort="Johansen, Eric B" uniqKey="Johansen E" first="Eric B" last="Johansen">Eric B. Johansen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmaceutical Chemistry and Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry and Pharmaceutical Sciences, University of California, San Francisco, CA 94143</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Szoka, Francis C" sort="Szoka, Francis C" uniqKey="Szoka F" first="Francis C" last="Szoka">Francis C. Szoka</name>
</author>
<author>
<name sortKey="Zaleski, Anthony" sort="Zaleski, Anthony" uniqKey="Zaleski A" first="Anthony" last="Zaleski">Anthony Zaleski</name>
</author>
<author>
<name sortKey="Apicella, Michael A" sort="Apicella, Michael A" uniqKey="Apicella M" first="Michael A" last="Apicella">Michael A. Apicella</name>
</author>
<author>
<name sortKey="Gibson, Bradford W" sort="Gibson, Bradford W" uniqKey="Gibson B" first="Bradford W" last="Gibson">Bradford W. Gibson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="doi">10.1093/glycob/cwq033</idno>
<idno type="RBID">pubmed:20208062</idno>
<idno type="pmid">20208062</idno>
<idno type="wicri:Area/PubMed/Corpus">000111</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000111</idno>
<idno type="wicri:Area/PubMed/Curation">000111</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000111</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000111</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000111</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach.</title>
<author>
<name sortKey="Johansen, Eric B" sort="Johansen, Eric B" uniqKey="Johansen E" first="Eric B" last="Johansen">Eric B. Johansen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmaceutical Chemistry and Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry and Pharmaceutical Sciences, University of California, San Francisco, CA 94143</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Szoka, Francis C" sort="Szoka, Francis C" uniqKey="Szoka F" first="Francis C" last="Szoka">Francis C. Szoka</name>
</author>
<author>
<name sortKey="Zaleski, Anthony" sort="Zaleski, Anthony" uniqKey="Zaleski A" first="Anthony" last="Zaleski">Anthony Zaleski</name>
</author>
<author>
<name sortKey="Apicella, Michael A" sort="Apicella, Michael A" uniqKey="Apicella M" first="Michael A" last="Apicella">Michael A. Apicella</name>
</author>
<author>
<name sortKey="Gibson, Bradford W" sort="Gibson, Bradford W" uniqKey="Gibson B" first="Bradford W" last="Gibson">Bradford W. Gibson</name>
</author>
</analytic>
<series>
<title level="j">Glycobiology</title>
<idno type="eISSN">1460-2423</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrate Conformation</term>
<term>Carbohydrate Sequence</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Escherichia coli (metabolism)</term>
<term>Genetic Vectors (genetics)</term>
<term>Glycosyltransferases (genetics)</term>
<term>Glycosyltransferases (metabolism)</term>
<term>Haemophilus influenzae (enzymology)</term>
<term>Haemophilus influenzae (genetics)</term>
<term>O Antigens (biosynthesis)</term>
<term>O Antigens (chemistry)</term>
<term>O Antigens (genetics)</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antigènes O ()</term>
<term>Antigènes O (biosynthèse)</term>
<term>Antigènes O (génétique)</term>
<term>Conformation des glucides</term>
<term>Escherichia coli (métabolisme)</term>
<term>Glycosyltransferase (génétique)</term>
<term>Glycosyltransferase (métabolisme)</term>
<term>Haemophilus influenzae (enzymologie)</term>
<term>Haemophilus influenzae (génétique)</term>
<term>Spécificité du substrat</term>
<term>Séquence glucidique</term>
<term>Test ELISA</term>
<term>Vecteurs génétiques (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>O Antigens</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>O Antigens</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glycosyltransferases</term>
<term>O Antigens</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Antigènes O</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Haemophilus influenzae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Haemophilus influenzae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genetic Vectors</term>
<term>Haemophilus influenzae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Antigènes O</term>
<term>Glycosyltransferase</term>
<term>Haemophilus influenzae</term>
<term>Vecteurs génétiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Glycosyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli</term>
<term>Glycosyltransferase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Conformation</term>
<term>Carbohydrate Sequence</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Antigènes O</term>
<term>Conformation des glucides</term>
<term>Spécificité du substrat</term>
<term>Séquence glucidique</term>
<term>Test ELISA</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In previous work, our laboratory generated novel chimeric lipopolysaccharides (LPS) in Escherichia coli transformed with a plasmid containing exogenous lipooligosaccharide synthesis genes (lsg) from Haemophilus influenzae. Analysis of these novel oligosaccharide-LPS chimeras allowed characterization of the carbohydrate structures generated by several putative glycosyltransferase genes within the lsg locus. Here, we adapted this strategy to construct a modular approach to study the synthetic properties of individual glycosyltransferases expressed alone and in combinations. To this end, a set of expression vectors containing one to four putative glycosyltransferase genes from the lsg locus, lsgC-F, were transformed into E. coli K12 (XL-1) which is defective in LPS O-antigen biosynthesis. This strategy relied on the inclusion of the H. influenzae gene product lsgG in every plasmid construct, which partially rescues the E. coli LPS biosynthesis defect by priming uridine diphosphate-undecaprenyl in the WecA-dependent O-antigen synthetic pathway with N-acetyl-glucosamine (GlcNAc). This GlcNAc-undecaprenyl then served as an acceptor substrate for further carbohydrate extension by transformed glycosyltransferases. The resultant LPS-linked chimeric glycans were isolated from their E. coli constructs and characterized by mass spectrometry, methylation analysis and enzyme-linked immunosorbent assays. These structural data allowed the specificity of various glycosyltransferases to be unambiguously assigned to individual genes. LsgF was found to transfer a galactose (Gal) to terminal GlcNAc. LsgE was found to transfer GlcNAc to Gal-GlcNAc, and both LsgF and LsgD were found to transfer Gal to GlcNAc-Gal-GlcNAc but with differing linkage specificities. This method can be generalized and readily adapted to study the substrate specificity of other putative or uncharacterized glycosyltransferases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">20208062</PMID>
<DateCreated>
<Year>2010</Year>
<Month>05</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>09</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2423</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Glycobiology</Title>
<ISOAbbreviation>Glycobiology</ISOAbbreviation>
</Journal>
<ArticleTitle>Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach.</ArticleTitle>
<Pagination>
<MedlinePgn>763-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/glycob/cwq033</ELocationID>
<Abstract>
<AbstractText>In previous work, our laboratory generated novel chimeric lipopolysaccharides (LPS) in Escherichia coli transformed with a plasmid containing exogenous lipooligosaccharide synthesis genes (lsg) from Haemophilus influenzae. Analysis of these novel oligosaccharide-LPS chimeras allowed characterization of the carbohydrate structures generated by several putative glycosyltransferase genes within the lsg locus. Here, we adapted this strategy to construct a modular approach to study the synthetic properties of individual glycosyltransferases expressed alone and in combinations. To this end, a set of expression vectors containing one to four putative glycosyltransferase genes from the lsg locus, lsgC-F, were transformed into E. coli K12 (XL-1) which is defective in LPS O-antigen biosynthesis. This strategy relied on the inclusion of the H. influenzae gene product lsgG in every plasmid construct, which partially rescues the E. coli LPS biosynthesis defect by priming uridine diphosphate-undecaprenyl in the WecA-dependent O-antigen synthetic pathway with N-acetyl-glucosamine (GlcNAc). This GlcNAc-undecaprenyl then served as an acceptor substrate for further carbohydrate extension by transformed glycosyltransferases. The resultant LPS-linked chimeric glycans were isolated from their E. coli constructs and characterized by mass spectrometry, methylation analysis and enzyme-linked immunosorbent assays. These structural data allowed the specificity of various glycosyltransferases to be unambiguously assigned to individual genes. LsgF was found to transfer a galactose (Gal) to terminal GlcNAc. LsgE was found to transfer GlcNAc to Gal-GlcNAc, and both LsgF and LsgD were found to transfer Gal to GlcNAc-Gal-GlcNAc but with differing linkage specificities. This method can be generalized and readily adapted to study the substrate specificity of other putative or uncharacterized glycosyltransferases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Johansen</LastName>
<ForeName>Eric B</ForeName>
<Initials>EB</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical Chemistry and Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Szoka</LastName>
<ForeName>Francis C</ForeName>
<Initials>FC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zaleski</LastName>
<ForeName>Anthony</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Apicella</LastName>
<ForeName>Michael A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gibson</LastName>
<ForeName>Bradford W</ForeName>
<Initials>BW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI024616</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM61851</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI024616</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI024616-21A1</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>03</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Glycobiology</MedlineTA>
<NlmUniqueID>9104124</NlmUniqueID>
<ISSNLinking>0959-6658</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019081">O Antigens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.-</RegistryNumber>
<NameOfSubstance UI="D016695">Glycosyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Feb 18;275(7):4747-58</RefSource>
<PMID Version="1">10671507</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Commun (Camb). 2005 May 28;(20):2558-60</RefSource>
<PMID Version="1">15900325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2000 Oct 10;39(40):12406-14</RefSource>
<PMID Version="1">11015221</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glycobiology. 2000 Nov;10(11):1157-69</RefSource>
<PMID Version="1">11087708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2001 Mar 23;291(5512):2344-50</RefSource>
<PMID Version="1">11269314</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2001 Mar 15;61(6):2592-601</RefSource>
<PMID Version="1">11289136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Autoimmun. 2001 May;16(3):257-62</RefSource>
<PMID Version="1">11334490</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2001 Nov 7;123(44):10909-18</RefSource>
<PMID Version="1">11686694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 2001 Nov;42(3):659-72</RefSource>
<PMID Version="1">11722733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiology. 2002 Feb;148(Pt 2):571-82</RefSource>
<PMID Version="1">11832520</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Microbiol. 2002;10(10 Suppl):S32-7</RefSource>
<PMID Version="1">12377566</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chembiochem. 2003 May 9;4(5):406-12</RefSource>
<PMID Version="1">12740812</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Endotoxin Res. 2003;9(3):131-44</RefSource>
<PMID Version="1">12831454</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 2004 Nov;186(21):7429-39</RefSource>
<PMID Version="1">15489455</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Infect Dis. 1983 Sep;148(3):492-9</RefSource>
<PMID Version="1">6604761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 1988 Nov 15;177(3):483-92</RefSource>
<PMID Version="1">3264241</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Infect Immun. 1990 Jun;58(6):1558-64</RefSource>
<PMID Version="1">1692806</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Infect Dis. 1990 Aug;162(2):506-12</RefSource>
<PMID Version="1">1695655</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomed Environ Mass Spectrom. 1990 Nov;19(11):731-45</RefSource>
<PMID Version="1">2127548</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 1991 Oct;5(10):2475-80</RefSource>
<PMID Version="1">1724279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Infect Immun. 1992 Apr;60(4):1322-8</RefSource>
<PMID Version="1">1372291</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1992 May 12;31(18):4515-26</RefSource>
<PMID Version="1">1581306</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1993 Mar 2;32(8):2003-12</RefSource>
<PMID Version="1">8448159</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glycobiology. 1993 Apr;3(2):97-130</RefSource>
<PMID Version="1">8490246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Enzymol. 1994;235:242-52</RefSource>
<PMID Version="1">8057898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 1994 Nov;176(22):7079-84</RefSource>
<PMID Version="1">7525537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1996 May 7;35(18):5937-47</RefSource>
<PMID Version="1">8639556</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Crit Rev Microbiol. 1996;22(3):139-80</RefSource>
<PMID Version="1">8894399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Biochem Sci. 2004 Dec;29(12):656-63</RefSource>
<PMID Version="1">15544952</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Microbiol. 2000 Jun;36(5):1059-70</RefSource>
<PMID Version="1">10844691</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002236">Carbohydrate Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002240">Carbohydrate Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004797">Enzyme-Linked Immunosorbent Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004926">Escherichia coli</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005822">Genetic Vectors</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016695">Glycosyltransferases</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000235">genetics</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006193">Haemophilus influenzae</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000201">enzymology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000235">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019081">O Antigens</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000096">biosynthesis</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013379">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC2900885</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2010</Year>
<Month>3</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2010</Year>
<Month>4</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">cwq033</ArticleId>
<ArticleId IdType="doi">10.1093/glycob/cwq033</ArticleId>
<ArticleId IdType="pubmed">20208062</ArticleId>
<ArticleId IdType="pmc">PMC2900885</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Apicella, Michael A" sort="Apicella, Michael A" uniqKey="Apicella M" first="Michael A" last="Apicella">Michael A. Apicella</name>
<name sortKey="Gibson, Bradford W" sort="Gibson, Bradford W" uniqKey="Gibson B" first="Bradford W" last="Gibson">Bradford W. Gibson</name>
<name sortKey="Szoka, Francis C" sort="Szoka, Francis C" uniqKey="Szoka F" first="Francis C" last="Szoka">Francis C. Szoka</name>
<name sortKey="Zaleski, Anthony" sort="Zaleski, Anthony" uniqKey="Zaleski A" first="Anthony" last="Zaleski">Anthony Zaleski</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Johansen, Eric B" sort="Johansen, Eric B" uniqKey="Johansen E" first="Eric B" last="Johansen">Eric B. Johansen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000099 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000099 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:20208062
   |texte=   Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:20208062" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LrgpV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024