Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tunneling in hydrogen-transfer isomerization of n-alkyl radicals.

Identifieur interne : 000058 ( PubMed/Checkpoint ); précédent : 000057; suivant : 000059

Tunneling in hydrogen-transfer isomerization of n-alkyl radicals.

Auteurs : Baptiste Sirjean [États-Unis] ; Enoch Dames ; Hai Wang ; Wing Tsang

Source :

RBID : pubmed:22129143

Abstract

The role of quantum tunneling in hydrogen shift in linear heptyl radicals is explored using multidimensional, small-curvature tunneling method for the transmission coefficients and a potential energy surface computed at the CBS-QB3 level of theory. Several one-dimensional approximations (Wigner, Skodje and Truhlar, and Eckart methods) were compared to the multidimensional results. The Eckart method was found to be sufficiently accurate in comparison to the small-curvature tunneling results for a wide range of temperature, but this agreement is in fact fortuitous and caused by error cancellations. High-pressure limit rate constants were calculated using the transition state theory with treatment of hindered rotations and Eckart transmission coefficients for all hydrogen-transfer isomerizations in n-pentyl to n-octyl radicals. Rate constants are found in good agreement with experimental kinetic data available for n-pentyl and n-hexyl radicals. In the case of n-heptyl and n-octyl, our calculated rates agree well with limited experimentally derived data. Several conclusions made in the experimental studies of Tsang et al. (Tsang, W.; McGivern, W. S.; Manion, J. A. Proc. Combust. Inst. 2009, 32, 131-138) are confirmed theoretically: older low-temperature experimental data, characterized by small pre-exponential factors and activation energies, can be reconciled with high-temperature data by taking into account tunneling; at low temperatures, transmission coefficients are substantially larger for H-atom transfers through a five-membered ring transition state than those with six-membered rings; channels with transition ring structures involving greater than 8 atoms can be neglected because of entropic effects that inhibit such transitions. The set of computational kinetic rates were used to derive a general rate rule that explicitly accounts for tunneling. The rate rule is shown to reproduce closely the theoretical rate constants.

DOI: 10.1021/jp209360u
PubMed: 22129143


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22129143

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tunneling in hydrogen-transfer isomerization of n-alkyl radicals.</title>
<author>
<name sortKey="Sirjean, Baptiste" sort="Sirjean, Baptiste" uniqKey="Sirjean B" first="Baptiste" last="Sirjean">Baptiste Sirjean</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089-1453, USA. baptiste.sirjean@ensic.inpl-nancy.fr</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089-1453</wicri:regionArea>
<orgName type="university">Université de Californie du Sud</orgName>
<placeName>
<settlement type="city">Los Angeles</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dames, Enoch" sort="Dames, Enoch" uniqKey="Dames E" first="Enoch" last="Dames">Enoch Dames</name>
</author>
<author>
<name sortKey="Wang, Hai" sort="Wang, Hai" uniqKey="Wang H" first="Hai" last="Wang">Hai Wang</name>
</author>
<author>
<name sortKey="Tsang, Wing" sort="Tsang, Wing" uniqKey="Tsang W" first="Wing" last="Tsang">Wing Tsang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1021/jp209360u</idno>
<idno type="RBID">pubmed:22129143</idno>
<idno type="pmid">22129143</idno>
<idno type="wicri:Area/PubMed/Corpus">000078</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000078</idno>
<idno type="wicri:Area/PubMed/Curation">000078</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000078</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000078</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000078</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tunneling in hydrogen-transfer isomerization of n-alkyl radicals.</title>
<author>
<name sortKey="Sirjean, Baptiste" sort="Sirjean, Baptiste" uniqKey="Sirjean B" first="Baptiste" last="Sirjean">Baptiste Sirjean</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089-1453, USA. baptiste.sirjean@ensic.inpl-nancy.fr</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089-1453</wicri:regionArea>
<orgName type="university">Université de Californie du Sud</orgName>
<placeName>
<settlement type="city">Los Angeles</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dames, Enoch" sort="Dames, Enoch" uniqKey="Dames E" first="Enoch" last="Dames">Enoch Dames</name>
</author>
<author>
<name sortKey="Wang, Hai" sort="Wang, Hai" uniqKey="Wang H" first="Hai" last="Wang">Hai Wang</name>
</author>
<author>
<name sortKey="Tsang, Wing" sort="Tsang, Wing" uniqKey="Tsang W" first="Wing" last="Tsang">Wing Tsang</name>
</author>
</analytic>
<series>
<title level="j">The journal of physical chemistry. A</title>
<idno type="eISSN">1520-5215</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The role of quantum tunneling in hydrogen shift in linear heptyl radicals is explored using multidimensional, small-curvature tunneling method for the transmission coefficients and a potential energy surface computed at the CBS-QB3 level of theory. Several one-dimensional approximations (Wigner, Skodje and Truhlar, and Eckart methods) were compared to the multidimensional results. The Eckart method was found to be sufficiently accurate in comparison to the small-curvature tunneling results for a wide range of temperature, but this agreement is in fact fortuitous and caused by error cancellations. High-pressure limit rate constants were calculated using the transition state theory with treatment of hindered rotations and Eckart transmission coefficients for all hydrogen-transfer isomerizations in n-pentyl to n-octyl radicals. Rate constants are found in good agreement with experimental kinetic data available for n-pentyl and n-hexyl radicals. In the case of n-heptyl and n-octyl, our calculated rates agree well with limited experimentally derived data. Several conclusions made in the experimental studies of Tsang et al. (Tsang, W.; McGivern, W. S.; Manion, J. A. Proc. Combust. Inst. 2009, 32, 131-138) are confirmed theoretically: older low-temperature experimental data, characterized by small pre-exponential factors and activation energies, can be reconciled with high-temperature data by taking into account tunneling; at low temperatures, transmission coefficients are substantially larger for H-atom transfers through a five-membered ring transition state than those with six-membered rings; channels with transition ring structures involving greater than 8 atoms can be neglected because of entropic effects that inhibit such transitions. The set of computational kinetic rates were used to derive a general rate rule that explicitly accounts for tunneling. The rate rule is shown to reproduce closely the theoretical rate constants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">22129143</PMID>
<DateCreated>
<Year>2012</Year>
<Month>01</Month>
<Day>12</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>05</Month>
<Day>25</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5215</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>116</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jan</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>The journal of physical chemistry. A</Title>
<ISOAbbreviation>J Phys Chem A</ISOAbbreviation>
</Journal>
<ArticleTitle>Tunneling in hydrogen-transfer isomerization of n-alkyl radicals.</ArticleTitle>
<Pagination>
<MedlinePgn>319-32</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/jp209360u</ELocationID>
<Abstract>
<AbstractText>The role of quantum tunneling in hydrogen shift in linear heptyl radicals is explored using multidimensional, small-curvature tunneling method for the transmission coefficients and a potential energy surface computed at the CBS-QB3 level of theory. Several one-dimensional approximations (Wigner, Skodje and Truhlar, and Eckart methods) were compared to the multidimensional results. The Eckart method was found to be sufficiently accurate in comparison to the small-curvature tunneling results for a wide range of temperature, but this agreement is in fact fortuitous and caused by error cancellations. High-pressure limit rate constants were calculated using the transition state theory with treatment of hindered rotations and Eckart transmission coefficients for all hydrogen-transfer isomerizations in n-pentyl to n-octyl radicals. Rate constants are found in good agreement with experimental kinetic data available for n-pentyl and n-hexyl radicals. In the case of n-heptyl and n-octyl, our calculated rates agree well with limited experimentally derived data. Several conclusions made in the experimental studies of Tsang et al. (Tsang, W.; McGivern, W. S.; Manion, J. A. Proc. Combust. Inst. 2009, 32, 131-138) are confirmed theoretically: older low-temperature experimental data, characterized by small pre-exponential factors and activation energies, can be reconciled with high-temperature data by taking into account tunneling; at low temperatures, transmission coefficients are substantially larger for H-atom transfers through a five-membered ring transition state than those with six-membered rings; channels with transition ring structures involving greater than 8 atoms can be neglected because of entropic effects that inhibit such transitions. The set of computational kinetic rates were used to derive a general rate rule that explicitly accounts for tunneling. The rate rule is shown to reproduce closely the theoretical rate constants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sirjean</LastName>
<ForeName>Baptiste</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089-1453, USA. baptiste.sirjean@ensic.inpl-nancy.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dames</LastName>
<ForeName>Enoch</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Hai</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsang</LastName>
<ForeName>Wing</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Phys Chem A</MedlineTA>
<NlmUniqueID>9890903</NlmUniqueID>
<ISSNLinking>1089-5639</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2011</Year>
<Month>12</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/jp209360u</ArticleId>
<ArticleId IdType="pubmed">22129143</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Los Angeles</li>
</settlement>
<orgName>
<li>Université de Californie du Sud</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Dames, Enoch" sort="Dames, Enoch" uniqKey="Dames E" first="Enoch" last="Dames">Enoch Dames</name>
<name sortKey="Tsang, Wing" sort="Tsang, Wing" uniqKey="Tsang W" first="Wing" last="Tsang">Wing Tsang</name>
<name sortKey="Wang, Hai" sort="Wang, Hai" uniqKey="Wang H" first="Hai" last="Wang">Hai Wang</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Sirjean, Baptiste" sort="Sirjean, Baptiste" uniqKey="Sirjean B" first="Baptiste" last="Sirjean">Baptiste Sirjean</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000058 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000058 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22129143
   |texte=   Tunneling in hydrogen-transfer isomerization of n-alkyl radicals.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22129143" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LrgpV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024