Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A mass conservative approach to model the ultrasonic de-agglomeration of ZnO nanoparticle suspension in water

Identifieur interne : 000960 ( PascalFrancis/Curation ); précédent : 000959; suivant : 000961

A mass conservative approach to model the ultrasonic de-agglomeration of ZnO nanoparticle suspension in water

Auteurs : J.-P. Guillemin [France] ; E. Schaer [France] ; P. Marchal [France] ; C. Lemaitre [France] ; H. Nonnet [France] ; A. Ledieu [France]

Source :

RBID : Pascal:12-0170340

Descripteurs français

English descriptors

Abstract

This paper deals with the non conservation of volume during ultrasonic breakage of ZnO particles whose density varies against size. The observed volumetric particle distributions, obtained by light scattering measurements, are transformed into mass distributions using an expression of the density variation against size based on the fractal dimension. Calculations are then performed using a discretization method given in literature. To validate calculated results, ultrasonic fragmentation of zinc dioxide nanopowder in water is performed in cell dispersion to follow the evolution of the particle size distribution against time. Furthermore, calculated results are adjusted to the experimental particle size distribution curves to determine the breakage frequency constant. This parameter varies with the energy released by the collapse of the cavitation bubbles. Most work on mechanisms of fragmentation by ultrasound is based on the electrical power consumption required for the dispersion of agglomerate. Here, the study focuses on the thermal power which is correlated to the breakage frequency constant. Finally it is found that this parameter is also function of the square root of the thermal power.
pA  
A01 01  1    @0 0032-5910
A02 01      @0 POTEBX
A03   1    @0 Powder technol.
A05       @2 219
A08 01  1  ENG  @1 A mass conservative approach to model the ultrasonic de-agglomeration of ZnO nanoparticle suspension in water
A11 01  1    @1 GUILLEMIN (J.-P.)
A11 02  1    @1 SCHAER (E.)
A11 03  1    @1 MARCHAL (P.)
A11 04  1    @1 LEMAITRE (C.)
A11 05  1    @1 NONNET (H.)
A11 06  1    @1 LEDIEU (A.)
A14 01      @1 Davey Bickford, le Moulin Gaspard @2 89550 Héry @3 FRA @Z 1 aut.
A14 02      @1 CEA, DEN, DTCD, SECM, Laboratoire d'étude et développement de matrices de conditionnement - Centre de Marcoule - BP 17171 @2 30207 Bagnols-sur-Cèze @3 FRA @Z 5 aut. @Z 6 aut.
A14 03      @1 Laboratoire de Réaction et de Genie des Procédé, GEMICO/LRGP/ENSIC (CNRS UPR3349), 1 rue Grandville - BP 20451 @2 54001 Nancy @3 FRA @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 59-64
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 13653 @5 354000509777770080
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 24 ref.
A47 01  1    @0 12-0170340
A60       @1 P
A61       @0 A
A64 01  1    @0 Powder technology
A66 01      @0 NLD
C01 01    ENG  @0 This paper deals with the non conservation of volume during ultrasonic breakage of ZnO particles whose density varies against size. The observed volumetric particle distributions, obtained by light scattering measurements, are transformed into mass distributions using an expression of the density variation against size based on the fractal dimension. Calculations are then performed using a discretization method given in literature. To validate calculated results, ultrasonic fragmentation of zinc dioxide nanopowder in water is performed in cell dispersion to follow the evolution of the particle size distribution against time. Furthermore, calculated results are adjusted to the experimental particle size distribution curves to determine the breakage frequency constant. This parameter varies with the energy released by the collapse of the cavitation bubbles. Most work on mechanisms of fragmentation by ultrasound is based on the electrical power consumption required for the dispersion of agglomerate. Here, the study focuses on the thermal power which is correlated to the breakage frequency constant. Finally it is found that this parameter is also function of the square root of the thermal power.
C02 01  X    @0 001D07Q07
C02 02  X    @0 001D07Q04
C03 01  X  FRE  @0 Modélisation @5 01
C03 01  X  ENG  @0 Modeling @5 01
C03 01  X  SPA  @0 Modelización @5 01
C03 02  X  FRE  @0 Agglomération @5 02
C03 02  X  ENG  @0 Agglomeration @5 02
C03 02  X  SPA  @0 Aglomeración @5 02
C03 03  X  FRE  @0 Nanoparticule @5 03
C03 03  X  ENG  @0 Nanoparticle @5 03
C03 03  X  SPA  @0 Nanopartícula @5 03
C03 04  X  FRE  @0 Densité @5 04
C03 04  X  ENG  @0 Density @5 04
C03 04  X  SPA  @0 Densidad @5 04
C03 05  X  FRE  @0 Diffusion lumière @5 05
C03 05  X  ENG  @0 Light scattering @5 05
C03 05  X  SPA  @0 Difusión luz @5 05
C03 06  3  FRE  @0 Distribution masse @5 06
C03 06  3  ENG  @0 Mass distribution @5 06
C03 07  X  FRE  @0 Dimension fractale @5 07
C03 07  X  ENG  @0 Fractal dimension @5 07
C03 07  X  SPA  @0 Dimensión fractal @5 07
C03 08  X  FRE  @0 Méthode discrétisation @5 08
C03 08  X  ENG  @0 Discretization method @5 08
C03 08  X  SPA  @0 Método discretización @5 08
C03 09  X  FRE  @0 Fragmentation @5 09
C03 09  X  ENG  @0 Fragmentation @5 09
C03 09  X  SPA  @0 Fragmentación @5 09
C03 10  X  FRE  @0 Dispersion @5 10
C03 10  X  ENG  @0 Dispersion @5 10
C03 10  X  SPA  @0 Dispersión @5 10
C03 11  X  FRE  @0 Distribution dimension particule @5 11
C03 11  X  ENG  @0 Particle size distribution @5 11
C03 11  X  SPA  @0 Distribución dimensión partícula @5 11
C03 12  X  FRE  @0 Bulle cavitation @5 12
C03 12  X  ENG  @0 Cavitation bubble @5 12
C03 12  X  SPA  @0 Burbuja cavitación @5 12
C03 13  X  FRE  @0 Ultrason @5 13
C03 13  X  ENG  @0 Ultrasound @5 13
C03 13  X  SPA  @0 Ultrasonido @5 13
C03 14  X  FRE  @0 Consommation énergie @5 14
C03 14  X  ENG  @0 Energy consumption @5 14
C03 14  X  SPA  @0 Consumo energía @5 14
C03 15  X  FRE  @0 Puissance thermique @5 15
C03 15  X  ENG  @0 Thermal power @5 15
C03 15  X  SPA  @0 Potencia térmica @5 15
N21       @1 129
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0170340

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A mass conservative approach to model the ultrasonic de-agglomeration of ZnO nanoparticle suspension in water</title>
<author>
<name sortKey="Guillemin, J P" sort="Guillemin, J P" uniqKey="Guillemin J" first="J.-P." last="Guillemin">J.-P. Guillemin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Davey Bickford, le Moulin Gaspard</s1>
<s2>89550 Héry</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Schaer, E" sort="Schaer, E" uniqKey="Schaer E" first="E." last="Schaer">E. Schaer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Réaction et de Genie des Procédé, GEMICO/LRGP/ENSIC (CNRS UPR3349), 1 rue Grandville - BP 20451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Marchal, P" sort="Marchal, P" uniqKey="Marchal P" first="P." last="Marchal">P. Marchal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Réaction et de Genie des Procédé, GEMICO/LRGP/ENSIC (CNRS UPR3349), 1 rue Grandville - BP 20451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Lemaitre, C" sort="Lemaitre, C" uniqKey="Lemaitre C" first="C." last="Lemaitre">C. Lemaitre</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Réaction et de Genie des Procédé, GEMICO/LRGP/ENSIC (CNRS UPR3349), 1 rue Grandville - BP 20451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Nonnet, H" sort="Nonnet, H" uniqKey="Nonnet H" first="H." last="Nonnet">H. Nonnet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CEA, DEN, DTCD, SECM, Laboratoire d'étude et développement de matrices de conditionnement - Centre de Marcoule - BP 17171</s1>
<s2>30207 Bagnols-sur-Cèze</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Ledieu, A" sort="Ledieu, A" uniqKey="Ledieu A" first="A." last="Ledieu">A. Ledieu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CEA, DEN, DTCD, SECM, Laboratoire d'étude et développement de matrices de conditionnement - Centre de Marcoule - BP 17171</s1>
<s2>30207 Bagnols-sur-Cèze</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0170340</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0170340 INIST</idno>
<idno type="RBID">Pascal:12-0170340</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000150</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000960</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A mass conservative approach to model the ultrasonic de-agglomeration of ZnO nanoparticle suspension in water</title>
<author>
<name sortKey="Guillemin, J P" sort="Guillemin, J P" uniqKey="Guillemin J" first="J.-P." last="Guillemin">J.-P. Guillemin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Davey Bickford, le Moulin Gaspard</s1>
<s2>89550 Héry</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Schaer, E" sort="Schaer, E" uniqKey="Schaer E" first="E." last="Schaer">E. Schaer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Réaction et de Genie des Procédé, GEMICO/LRGP/ENSIC (CNRS UPR3349), 1 rue Grandville - BP 20451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Marchal, P" sort="Marchal, P" uniqKey="Marchal P" first="P." last="Marchal">P. Marchal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Réaction et de Genie des Procédé, GEMICO/LRGP/ENSIC (CNRS UPR3349), 1 rue Grandville - BP 20451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Lemaitre, C" sort="Lemaitre, C" uniqKey="Lemaitre C" first="C." last="Lemaitre">C. Lemaitre</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Réaction et de Genie des Procédé, GEMICO/LRGP/ENSIC (CNRS UPR3349), 1 rue Grandville - BP 20451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Nonnet, H" sort="Nonnet, H" uniqKey="Nonnet H" first="H." last="Nonnet">H. Nonnet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CEA, DEN, DTCD, SECM, Laboratoire d'étude et développement de matrices de conditionnement - Centre de Marcoule - BP 17171</s1>
<s2>30207 Bagnols-sur-Cèze</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Ledieu, A" sort="Ledieu, A" uniqKey="Ledieu A" first="A." last="Ledieu">A. Ledieu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CEA, DEN, DTCD, SECM, Laboratoire d'étude et développement de matrices de conditionnement - Centre de Marcoule - BP 17171</s1>
<s2>30207 Bagnols-sur-Cèze</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Powder technology</title>
<title level="j" type="abbreviated">Powder technol.</title>
<idno type="ISSN">0032-5910</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Powder technology</title>
<title level="j" type="abbreviated">Powder technol.</title>
<idno type="ISSN">0032-5910</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agglomeration</term>
<term>Cavitation bubble</term>
<term>Density</term>
<term>Discretization method</term>
<term>Dispersion</term>
<term>Energy consumption</term>
<term>Fractal dimension</term>
<term>Fragmentation</term>
<term>Light scattering</term>
<term>Mass distribution</term>
<term>Modeling</term>
<term>Nanoparticle</term>
<term>Particle size distribution</term>
<term>Thermal power</term>
<term>Ultrasound</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modélisation</term>
<term>Agglomération</term>
<term>Nanoparticule</term>
<term>Densité</term>
<term>Diffusion lumière</term>
<term>Distribution masse</term>
<term>Dimension fractale</term>
<term>Méthode discrétisation</term>
<term>Fragmentation</term>
<term>Dispersion</term>
<term>Distribution dimension particule</term>
<term>Bulle cavitation</term>
<term>Ultrason</term>
<term>Consommation énergie</term>
<term>Puissance thermique</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Agglomération</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper deals with the non conservation of volume during ultrasonic breakage of ZnO particles whose density varies against size. The observed volumetric particle distributions, obtained by light scattering measurements, are transformed into mass distributions using an expression of the density variation against size based on the fractal dimension. Calculations are then performed using a discretization method given in literature. To validate calculated results, ultrasonic fragmentation of zinc dioxide nanopowder in water is performed in cell dispersion to follow the evolution of the particle size distribution against time. Furthermore, calculated results are adjusted to the experimental particle size distribution curves to determine the breakage frequency constant. This parameter varies with the energy released by the collapse of the cavitation bubbles. Most work on mechanisms of fragmentation by ultrasound is based on the electrical power consumption required for the dispersion of agglomerate. Here, the study focuses on the thermal power which is correlated to the breakage frequency constant. Finally it is found that this parameter is also function of the square root of the thermal power.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0032-5910</s0>
</fA01>
<fA02 i1="01">
<s0>POTEBX</s0>
</fA02>
<fA03 i2="1">
<s0>Powder technol.</s0>
</fA03>
<fA05>
<s2>219</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>A mass conservative approach to model the ultrasonic de-agglomeration of ZnO nanoparticle suspension in water</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GUILLEMIN (J.-P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHAER (E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MARCHAL (P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LEMAITRE (C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>NONNET (H.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LEDIEU (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Davey Bickford, le Moulin Gaspard</s1>
<s2>89550 Héry</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CEA, DEN, DTCD, SECM, Laboratoire d'étude et développement de matrices de conditionnement - Centre de Marcoule - BP 17171</s1>
<s2>30207 Bagnols-sur-Cèze</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratoire de Réaction et de Genie des Procédé, GEMICO/LRGP/ENSIC (CNRS UPR3349), 1 rue Grandville - BP 20451</s1>
<s2>54001 Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>59-64</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13653</s2>
<s5>354000509777770080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0170340</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Powder technology</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper deals with the non conservation of volume during ultrasonic breakage of ZnO particles whose density varies against size. The observed volumetric particle distributions, obtained by light scattering measurements, are transformed into mass distributions using an expression of the density variation against size based on the fractal dimension. Calculations are then performed using a discretization method given in literature. To validate calculated results, ultrasonic fragmentation of zinc dioxide nanopowder in water is performed in cell dispersion to follow the evolution of the particle size distribution against time. Furthermore, calculated results are adjusted to the experimental particle size distribution curves to determine the breakage frequency constant. This parameter varies with the energy released by the collapse of the cavitation bubbles. Most work on mechanisms of fragmentation by ultrasound is based on the electrical power consumption required for the dispersion of agglomerate. Here, the study focuses on the thermal power which is correlated to the breakage frequency constant. Finally it is found that this parameter is also function of the square root of the thermal power.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D07Q07</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D07Q04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Agglomération</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Agglomeration</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Aglomeración</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Densité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Density</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Densidad</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Diffusion lumière</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Light scattering</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Difusión luz</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Distribution masse</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Mass distribution</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dimension fractale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Fractal dimension</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Dimensión fractal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Méthode discrétisation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Discretization method</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Método discretización</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Fragmentation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Fragmentation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Fragmentación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dispersion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Dispersion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Dispersión</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Distribution dimension particule</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Particle size distribution</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Distribución dimensión partícula</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Bulle cavitation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Cavitation bubble</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Burbuja cavitación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Ultrason</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Ultrasound</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Ultrasonido</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Consommation énergie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Energy consumption</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Consumo energía</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Puissance thermique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Thermal power</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Potencia térmica</s0>
<s5>15</s5>
</fC03>
<fN21>
<s1>129</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000960 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000960 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0170340
   |texte=   A mass conservative approach to model the ultrasonic de-agglomeration of ZnO nanoparticle suspension in water
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024