Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selectivity of Bio-oils Catalytic Hydrotreatment Assessed by Petroleomic and GC*GC/MS-FID Analysis

Identifieur interne : 000066 ( PascalFrancis/Corpus ); précédent : 000065; suivant : 000067

Selectivity of Bio-oils Catalytic Hydrotreatment Assessed by Petroleomic and GC*GC/MS-FID Analysis

Auteurs : Roberto Olcese ; Vincent Carre ; Frédéric Aubriet ; Anthony Dufour

Source :

RBID : Pascal:13-0168162

Descripteurs français

English descriptors

Abstract

We propose to assess the selectivity of hydrotreatment catalysts by two complementary analytical methods: (1) high-resolution mass spectrometry (MS), called "petroleomic" analysis, by Fourier transform ion cyclotron resonance (FT ICR, 9.4T) MS for species heavier than m/z of about 200 Da and (2) quantitative GC*GC (heart-cutting)/MS-flame ionization detector (FID) analysis of lighter species. The methodology is illustrated on methanol-soluble bio-oils produced by lignin pyrolysis and hydrotreated by iron-based catalysts. GC*GC analysis is calibrated by a combination of internal standard and prediction of response factors on the FID. Laser desorption ionization (LDI) and electro spray ionization (ESI) in negative-ion mode are combined for the petroleomic analysis. The selectivity of hydrotreatment (catalytic fixed bed, 1 atm, 400 °C) is assessed as a function of catalyst loads and iron support (silica and activated carbon). Hundreds of species are analyzed by GC*GC and petroleomic and mapped in Van Krevelen diagrams. The high selectivity of reduced iron for the hydrodeoxygenation of lignin pyrolysis vapors is demonstrated. The effect of the catalytic treatment on oxygen content and unsaturation is studied for a broad range of species: from C2 to C14 by GC analysis and from C8 to C37 by petroleomic. Many heavy lignin oligomers produced by the pyrolysis are trapped by the catalytic bed, highlighting the need of new catalytic systems to convert them into valuable fuels or chemicals.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0887-0624
A02 01      @0 ENFUEM
A03   1    @0 Energy fuels
A05       @2 27
A06       @2 MARAVR
A08 01  1  ENG  @1 Selectivity of Bio-oils Catalytic Hydrotreatment Assessed by Petroleomic and GC*GC/MS-FID Analysis
A11 01  1    @1 OLCESE (Roberto)
A11 02  1    @1 CARRE (Vincent)
A11 03  1    @1 AUBRIET (Frédéric)
A11 04  1    @1 DUFOUR (Anthony)
A14 01      @1 Reactions and Processes Engineering Laboratory, CNRS, Lorraine University, ENSIC, 1 rue Grandville @2 54000 Nancy @3 FRA @Z 1 aut. @Z 4 aut.
A14 02      @1 Laboratoire Chimie et de Physique des Milieux Complexes, Lorraine University, ICPM, 1 Boulevard Arago @2 57078 Metz @3 FRA @Z 2 aut. @Z 3 aut.
A20       @1 2135-2145
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 21106 @5 354000503775721020
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 59 ref.
A47 01  1    @0 13-0168162
A60       @1 P
A61       @0 A
A64 01  1    @0 Energy & fuels
A66 01      @0 USA
C01 01    ENG  @0 We propose to assess the selectivity of hydrotreatment catalysts by two complementary analytical methods: (1) high-resolution mass spectrometry (MS), called "petroleomic" analysis, by Fourier transform ion cyclotron resonance (FT ICR, 9.4T) MS for species heavier than m/z of about 200 Da and (2) quantitative GC*GC (heart-cutting)/MS-flame ionization detector (FID) analysis of lighter species. The methodology is illustrated on methanol-soluble bio-oils produced by lignin pyrolysis and hydrotreated by iron-based catalysts. GC*GC analysis is calibrated by a combination of internal standard and prediction of response factors on the FID. Laser desorption ionization (LDI) and electro spray ionization (ESI) in negative-ion mode are combined for the petroleomic analysis. The selectivity of hydrotreatment (catalytic fixed bed, 1 atm, 400 °C) is assessed as a function of catalyst loads and iron support (silica and activated carbon). Hundreds of species are analyzed by GC*GC and petroleomic and mapped in Van Krevelen diagrams. The high selectivity of reduced iron for the hydrodeoxygenation of lignin pyrolysis vapors is demonstrated. The effect of the catalytic treatment on oxygen content and unsaturation is studied for a broad range of species: from C2 to C14 by GC analysis and from C8 to C37 by petroleomic. Many heavy lignin oligomers produced by the pyrolysis are trapped by the catalytic bed, highlighting the need of new catalytic systems to convert them into valuable fuels or chemicals.
C02 01  X    @0 001D06B02D
C02 02  X    @0 001D06D
C02 03  X    @0 230
C03 01  X  FRE  @0 Hydrotraitement @5 05
C03 01  X  ENG  @0 Hydrotreating @5 05
C03 01  X  SPA  @0 Hidrotratamiento @5 05
C03 02  X  FRE  @0 Sélectivité catalyseur @5 06
C03 02  X  ENG  @0 Catalyst selectivity @5 06
C03 02  X  SPA  @0 Selectividad catalizador @5 06
C03 03  X  FRE  @0 Haute résolution @5 07
C03 03  X  ENG  @0 High resolution @5 07
C03 03  X  SPA  @0 Alta resolucion @5 07
C03 04  X  FRE  @0 Spectrométrie masse @5 08
C03 04  X  ENG  @0 Mass spectrometry @5 08
C03 04  X  SPA  @0 Espectrometría masa @5 08
C03 05  X  FRE  @0 Transformation Fourier @5 09
C03 05  X  ENG  @0 Fourier transformation @5 09
C03 05  X  SPA  @0 Transformación Fourier @5 09
C03 06  X  FRE  @0 Résonance cyclotronique @5 10
C03 06  X  ENG  @0 Cyclotron resonance @5 10
C03 06  X  SPA  @0 Resonancia ciclotrónica @5 10
C03 07  X  FRE  @0 Détecteur ionisation flamme @5 11
C03 07  X  ENG  @0 Flame ionization detector @5 11
C03 07  X  SPA  @0 Detector ionización por llama @5 11
C03 08  X  FRE  @0 Méthanol @2 NK @2 FX @5 12
C03 08  X  ENG  @0 Methanol @2 NK @2 FX @5 12
C03 08  X  SPA  @0 Metanol @2 NK @2 FX @5 12
C03 09  X  FRE  @0 Lignine @5 13
C03 09  X  ENG  @0 Lignin @5 13
C03 09  X  SPA  @0 Lignina @5 13
C03 10  X  FRE  @0 Pyrolyse @5 14
C03 10  X  ENG  @0 Pyrolysis @5 14
C03 10  X  SPA  @0 Pirólisis @5 14
C03 11  X  FRE  @0 Fer @2 NC @5 15
C03 11  X  ENG  @0 Iron @2 NC @5 15
C03 11  X  SPA  @0 Hierro @2 NC @5 15
C03 12  X  FRE  @0 Catalyseur sur support @5 16
C03 12  X  ENG  @0 Supported catalyst @5 16
C03 12  X  SPA  @0 Catalizador sobre soporte @5 16
C03 13  X  FRE  @0 Norme @5 17
C03 13  X  ENG  @0 Standards @5 17
C03 13  X  SPA  @0 Norma @5 17
C03 14  X  FRE  @0 Désorption laser @5 18
C03 14  X  ENG  @0 Laser desorption @5 18
C03 14  X  SPA  @0 Desorción láser @5 18
C03 15  X  FRE  @0 Ionisation @5 19
C03 15  X  ENG  @0 Ionization @5 19
C03 15  X  SPA  @0 Ionización @5 19
C03 16  X  FRE  @0 Lit fixe @5 20
C03 16  X  ENG  @0 Fixed bed @5 20
C03 16  X  SPA  @0 Lecho fijo @5 20
C03 17  X  FRE  @0 Silice @2 NK @2 FX @5 21
C03 17  X  ENG  @0 Silica @2 NK @2 FX @5 21
C03 17  X  SPA  @0 Sílice @2 NK @2 FX @5 21
C03 18  X  FRE  @0 Charbon actif @5 22
C03 18  X  ENG  @0 Activated carbon @5 22
C03 18  X  SPA  @0 Carbón activado @5 22
C03 19  X  FRE  @0 Teneur oxygène @5 23
C03 19  X  ENG  @0 Oxygen content @5 23
C03 19  X  SPA  @0 Contenido oxígeno @5 23
C03 20  X  FRE  @0 Oligomère @5 24
C03 20  X  ENG  @0 Oligomer @5 24
C03 20  X  SPA  @0 Oligómero @5 24
N21       @1 147
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 13-0168162 INIST
ET : Selectivity of Bio-oils Catalytic Hydrotreatment Assessed by Petroleomic and GC*GC/MS-FID Analysis
AU : OLCESE (Roberto); CARRE (Vincent); AUBRIET (Frédéric); DUFOUR (Anthony)
AF : Reactions and Processes Engineering Laboratory, CNRS, Lorraine University, ENSIC, 1 rue Grandville/54000 Nancy/France (1 aut., 4 aut.); Laboratoire Chimie et de Physique des Milieux Complexes, Lorraine University, ICPM, 1 Boulevard Arago/57078 Metz/France (2 aut., 3 aut.)
DT : Publication en série; Niveau analytique
SO : Energy & fuels; ISSN 0887-0624; Coden ENFUEM; Etats-Unis; Da. 2013; Vol. 27; No. MARAVR; Pp. 2135-2145; Bibl. 59 ref.
LA : Anglais
EA : We propose to assess the selectivity of hydrotreatment catalysts by two complementary analytical methods: (1) high-resolution mass spectrometry (MS), called "petroleomic" analysis, by Fourier transform ion cyclotron resonance (FT ICR, 9.4T) MS for species heavier than m/z of about 200 Da and (2) quantitative GC*GC (heart-cutting)/MS-flame ionization detector (FID) analysis of lighter species. The methodology is illustrated on methanol-soluble bio-oils produced by lignin pyrolysis and hydrotreated by iron-based catalysts. GC*GC analysis is calibrated by a combination of internal standard and prediction of response factors on the FID. Laser desorption ionization (LDI) and electro spray ionization (ESI) in negative-ion mode are combined for the petroleomic analysis. The selectivity of hydrotreatment (catalytic fixed bed, 1 atm, 400 °C) is assessed as a function of catalyst loads and iron support (silica and activated carbon). Hundreds of species are analyzed by GC*GC and petroleomic and mapped in Van Krevelen diagrams. The high selectivity of reduced iron for the hydrodeoxygenation of lignin pyrolysis vapors is demonstrated. The effect of the catalytic treatment on oxygen content and unsaturation is studied for a broad range of species: from C2 to C14 by GC analysis and from C8 to C37 by petroleomic. Many heavy lignin oligomers produced by the pyrolysis are trapped by the catalytic bed, highlighting the need of new catalytic systems to convert them into valuable fuels or chemicals.
CC : 001D06B02D; 001D06D; 230
FD : Hydrotraitement; Sélectivité catalyseur; Haute résolution; Spectrométrie masse; Transformation Fourier; Résonance cyclotronique; Détecteur ionisation flamme; Méthanol; Lignine; Pyrolyse; Fer; Catalyseur sur support; Norme; Désorption laser; Ionisation; Lit fixe; Silice; Charbon actif; Teneur oxygène; Oligomère
ED : Hydrotreating; Catalyst selectivity; High resolution; Mass spectrometry; Fourier transformation; Cyclotron resonance; Flame ionization detector; Methanol; Lignin; Pyrolysis; Iron; Supported catalyst; Standards; Laser desorption; Ionization; Fixed bed; Silica; Activated carbon; Oxygen content; Oligomer
SD : Hidrotratamiento; Selectividad catalizador; Alta resolucion; Espectrometría masa; Transformación Fourier; Resonancia ciclotrónica; Detector ionización por llama; Metanol; Lignina; Pirólisis; Hierro; Catalizador sobre soporte; Norma; Desorción láser; Ionización; Lecho fijo; Sílice; Carbón activado; Contenido oxígeno; Oligómero
LO : INIST-21106.354000503775721020
ID : 13-0168162

Links to Exploration step

Pascal:13-0168162

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Selectivity of Bio-oils Catalytic Hydrotreatment Assessed by Petroleomic and GC
<sup>*</sup>
GC/MS-FID Analysis</title>
<author>
<name sortKey="Olcese, Roberto" sort="Olcese, Roberto" uniqKey="Olcese R" first="Roberto" last="Olcese">Roberto Olcese</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Reactions and Processes Engineering Laboratory, CNRS, Lorraine University, ENSIC, 1 rue Grandville</s1>
<s2>54000 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carre, Vincent" sort="Carre, Vincent" uniqKey="Carre V" first="Vincent" last="Carre">Vincent Carre</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire Chimie et de Physique des Milieux Complexes, Lorraine University, ICPM, 1 Boulevard Arago</s1>
<s2>57078 Metz</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Aubriet, Frederic" sort="Aubriet, Frederic" uniqKey="Aubriet F" first="Frédéric" last="Aubriet">Frédéric Aubriet</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire Chimie et de Physique des Milieux Complexes, Lorraine University, ICPM, 1 Boulevard Arago</s1>
<s2>57078 Metz</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dufour, Anthony" sort="Dufour, Anthony" uniqKey="Dufour A" first="Anthony" last="Dufour">Anthony Dufour</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Reactions and Processes Engineering Laboratory, CNRS, Lorraine University, ENSIC, 1 rue Grandville</s1>
<s2>54000 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0168162</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0168162 INIST</idno>
<idno type="RBID">Pascal:13-0168162</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000066</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Selectivity of Bio-oils Catalytic Hydrotreatment Assessed by Petroleomic and GC
<sup>*</sup>
GC/MS-FID Analysis</title>
<author>
<name sortKey="Olcese, Roberto" sort="Olcese, Roberto" uniqKey="Olcese R" first="Roberto" last="Olcese">Roberto Olcese</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Reactions and Processes Engineering Laboratory, CNRS, Lorraine University, ENSIC, 1 rue Grandville</s1>
<s2>54000 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carre, Vincent" sort="Carre, Vincent" uniqKey="Carre V" first="Vincent" last="Carre">Vincent Carre</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire Chimie et de Physique des Milieux Complexes, Lorraine University, ICPM, 1 Boulevard Arago</s1>
<s2>57078 Metz</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Aubriet, Frederic" sort="Aubriet, Frederic" uniqKey="Aubriet F" first="Frédéric" last="Aubriet">Frédéric Aubriet</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire Chimie et de Physique des Milieux Complexes, Lorraine University, ICPM, 1 Boulevard Arago</s1>
<s2>57078 Metz</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dufour, Anthony" sort="Dufour, Anthony" uniqKey="Dufour A" first="Anthony" last="Dufour">Anthony Dufour</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Reactions and Processes Engineering Laboratory, CNRS, Lorraine University, ENSIC, 1 rue Grandville</s1>
<s2>54000 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Energy & fuels</title>
<title level="j" type="abbreviated">Energy fuels</title>
<idno type="ISSN">0887-0624</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Energy & fuels</title>
<title level="j" type="abbreviated">Energy fuels</title>
<idno type="ISSN">0887-0624</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activated carbon</term>
<term>Catalyst selectivity</term>
<term>Cyclotron resonance</term>
<term>Fixed bed</term>
<term>Flame ionization detector</term>
<term>Fourier transformation</term>
<term>High resolution</term>
<term>Hydrotreating</term>
<term>Ionization</term>
<term>Iron</term>
<term>Laser desorption</term>
<term>Lignin</term>
<term>Mass spectrometry</term>
<term>Methanol</term>
<term>Oligomer</term>
<term>Oxygen content</term>
<term>Pyrolysis</term>
<term>Silica</term>
<term>Standards</term>
<term>Supported catalyst</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Hydrotraitement</term>
<term>Sélectivité catalyseur</term>
<term>Haute résolution</term>
<term>Spectrométrie masse</term>
<term>Transformation Fourier</term>
<term>Résonance cyclotronique</term>
<term>Détecteur ionisation flamme</term>
<term>Méthanol</term>
<term>Lignine</term>
<term>Pyrolyse</term>
<term>Fer</term>
<term>Catalyseur sur support</term>
<term>Norme</term>
<term>Désorption laser</term>
<term>Ionisation</term>
<term>Lit fixe</term>
<term>Silice</term>
<term>Charbon actif</term>
<term>Teneur oxygène</term>
<term>Oligomère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We propose to assess the selectivity of hydrotreatment catalysts by two complementary analytical methods: (1) high-resolution mass spectrometry (MS), called "petroleomic" analysis, by Fourier transform ion cyclotron resonance (FT ICR, 9.4T) MS for species heavier than m/z of about 200 Da and (2) quantitative GC
<sup>*</sup>
GC (heart-cutting)/MS-flame ionization detector (FID) analysis of lighter species. The methodology is illustrated on methanol-soluble bio-oils produced by lignin pyrolysis and hydrotreated by iron-based catalysts. GC
<sup>*</sup>
GC analysis is calibrated by a combination of internal standard and prediction of response factors on the FID. Laser desorption ionization (LDI) and electro spray ionization (ESI) in negative-ion mode are combined for the petroleomic analysis. The selectivity of hydrotreatment (catalytic fixed bed, 1 atm, 400 °C) is assessed as a function of catalyst loads and iron support (silica and activated carbon). Hundreds of species are analyzed by GC
<sup>*</sup>
GC and petroleomic and mapped in Van Krevelen diagrams. The high selectivity of reduced iron for the hydrodeoxygenation of lignin pyrolysis vapors is demonstrated. The effect of the catalytic treatment on oxygen content and unsaturation is studied for a broad range of species: from C
<sub>2</sub>
to C
<sub>14</sub>
by GC analysis and from C
<sub>8</sub>
to C
<sub>37</sub>
by petroleomic. Many heavy lignin oligomers produced by the pyrolysis are trapped by the catalytic bed, highlighting the need of new catalytic systems to convert them into valuable fuels or chemicals.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0887-0624</s0>
</fA01>
<fA02 i1="01">
<s0>ENFUEM</s0>
</fA02>
<fA03 i2="1">
<s0>Energy fuels</s0>
</fA03>
<fA05>
<s2>27</s2>
</fA05>
<fA06>
<s2>MARAVR</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Selectivity of Bio-oils Catalytic Hydrotreatment Assessed by Petroleomic and GC
<sup>*</sup>
GC/MS-FID Analysis</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OLCESE (Roberto)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CARRE (Vincent)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>AUBRIET (Frédéric)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DUFOUR (Anthony)</s1>
</fA11>
<fA14 i1="01">
<s1>Reactions and Processes Engineering Laboratory, CNRS, Lorraine University, ENSIC, 1 rue Grandville</s1>
<s2>54000 Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire Chimie et de Physique des Milieux Complexes, Lorraine University, ICPM, 1 Boulevard Arago</s1>
<s2>57078 Metz</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>2135-2145</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21106</s2>
<s5>354000503775721020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>59 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0168162</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Energy & fuels</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We propose to assess the selectivity of hydrotreatment catalysts by two complementary analytical methods: (1) high-resolution mass spectrometry (MS), called "petroleomic" analysis, by Fourier transform ion cyclotron resonance (FT ICR, 9.4T) MS for species heavier than m/z of about 200 Da and (2) quantitative GC
<sup>*</sup>
GC (heart-cutting)/MS-flame ionization detector (FID) analysis of lighter species. The methodology is illustrated on methanol-soluble bio-oils produced by lignin pyrolysis and hydrotreated by iron-based catalysts. GC
<sup>*</sup>
GC analysis is calibrated by a combination of internal standard and prediction of response factors on the FID. Laser desorption ionization (LDI) and electro spray ionization (ESI) in negative-ion mode are combined for the petroleomic analysis. The selectivity of hydrotreatment (catalytic fixed bed, 1 atm, 400 °C) is assessed as a function of catalyst loads and iron support (silica and activated carbon). Hundreds of species are analyzed by GC
<sup>*</sup>
GC and petroleomic and mapped in Van Krevelen diagrams. The high selectivity of reduced iron for the hydrodeoxygenation of lignin pyrolysis vapors is demonstrated. The effect of the catalytic treatment on oxygen content and unsaturation is studied for a broad range of species: from C
<sub>2</sub>
to C
<sub>14</sub>
by GC analysis and from C
<sub>8</sub>
to C
<sub>37</sub>
by petroleomic. Many heavy lignin oligomers produced by the pyrolysis are trapped by the catalytic bed, highlighting the need of new catalytic systems to convert them into valuable fuels or chemicals.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06B02D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Hydrotraitement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Hydrotreating</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Hidrotratamiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Sélectivité catalyseur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Catalyst selectivity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Selectividad catalizador</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Haute résolution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>High resolution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Alta resolucion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Spectrométrie masse</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Mass spectrometry</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Espectrometría masa</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Transformation Fourier</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Fourier transformation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Transformación Fourier</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Résonance cyclotronique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Cyclotron resonance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Resonancia ciclotrónica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Détecteur ionisation flamme</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Flame ionization detector</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Detector ionización por llama</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Méthanol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Methanol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Metanol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Lignine</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Lignin</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Lignina</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Pyrolyse</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Pyrolysis</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Pirólisis</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Fer</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Iron</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Hierro</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Catalyseur sur support</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Supported catalyst</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Catalizador sobre soporte</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Norme</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Standards</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Norma</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Désorption laser</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Laser desorption</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Desorción láser</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Ionisation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Ionization</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Ionización</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Lit fixe</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Fixed bed</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Lecho fijo</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Silice</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Silica</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Sílice</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>21</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Charbon actif</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Activated carbon</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Carbón activado</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Teneur oxygène</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Oxygen content</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Contenido oxígeno</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Oligomère</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Oligomer</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Oligómero</s0>
<s5>24</s5>
</fC03>
<fN21>
<s1>147</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 13-0168162 INIST</NO>
<ET>Selectivity of Bio-oils Catalytic Hydrotreatment Assessed by Petroleomic and GC
<sup>*</sup>
GC/MS-FID Analysis</ET>
<AU>OLCESE (Roberto); CARRE (Vincent); AUBRIET (Frédéric); DUFOUR (Anthony)</AU>
<AF>Reactions and Processes Engineering Laboratory, CNRS, Lorraine University, ENSIC, 1 rue Grandville/54000 Nancy/France (1 aut., 4 aut.); Laboratoire Chimie et de Physique des Milieux Complexes, Lorraine University, ICPM, 1 Boulevard Arago/57078 Metz/France (2 aut., 3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Energy & fuels; ISSN 0887-0624; Coden ENFUEM; Etats-Unis; Da. 2013; Vol. 27; No. MARAVR; Pp. 2135-2145; Bibl. 59 ref.</SO>
<LA>Anglais</LA>
<EA>We propose to assess the selectivity of hydrotreatment catalysts by two complementary analytical methods: (1) high-resolution mass spectrometry (MS), called "petroleomic" analysis, by Fourier transform ion cyclotron resonance (FT ICR, 9.4T) MS for species heavier than m/z of about 200 Da and (2) quantitative GC
<sup>*</sup>
GC (heart-cutting)/MS-flame ionization detector (FID) analysis of lighter species. The methodology is illustrated on methanol-soluble bio-oils produced by lignin pyrolysis and hydrotreated by iron-based catalysts. GC
<sup>*</sup>
GC analysis is calibrated by a combination of internal standard and prediction of response factors on the FID. Laser desorption ionization (LDI) and electro spray ionization (ESI) in negative-ion mode are combined for the petroleomic analysis. The selectivity of hydrotreatment (catalytic fixed bed, 1 atm, 400 °C) is assessed as a function of catalyst loads and iron support (silica and activated carbon). Hundreds of species are analyzed by GC
<sup>*</sup>
GC and petroleomic and mapped in Van Krevelen diagrams. The high selectivity of reduced iron for the hydrodeoxygenation of lignin pyrolysis vapors is demonstrated. The effect of the catalytic treatment on oxygen content and unsaturation is studied for a broad range of species: from C
<sub>2</sub>
to C
<sub>14</sub>
by GC analysis and from C
<sub>8</sub>
to C
<sub>37</sub>
by petroleomic. Many heavy lignin oligomers produced by the pyrolysis are trapped by the catalytic bed, highlighting the need of new catalytic systems to convert them into valuable fuels or chemicals.</EA>
<CC>001D06B02D; 001D06D; 230</CC>
<FD>Hydrotraitement; Sélectivité catalyseur; Haute résolution; Spectrométrie masse; Transformation Fourier; Résonance cyclotronique; Détecteur ionisation flamme; Méthanol; Lignine; Pyrolyse; Fer; Catalyseur sur support; Norme; Désorption laser; Ionisation; Lit fixe; Silice; Charbon actif; Teneur oxygène; Oligomère</FD>
<ED>Hydrotreating; Catalyst selectivity; High resolution; Mass spectrometry; Fourier transformation; Cyclotron resonance; Flame ionization detector; Methanol; Lignin; Pyrolysis; Iron; Supported catalyst; Standards; Laser desorption; Ionization; Fixed bed; Silica; Activated carbon; Oxygen content; Oligomer</ED>
<SD>Hidrotratamiento; Selectividad catalizador; Alta resolucion; Espectrometría masa; Transformación Fourier; Resonancia ciclotrónica; Detector ionización por llama; Metanol; Lignina; Pirólisis; Hierro; Catalizador sobre soporte; Norma; Desorción láser; Ionización; Lecho fijo; Sílice; Carbón activado; Contenido oxígeno; Oligómero</SD>
<LO>INIST-21106.354000503775721020</LO>
<ID>13-0168162</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000066 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000066 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0168162
   |texte=   Selectivity of Bio-oils Catalytic Hydrotreatment Assessed by Petroleomic and GC*GC/MS-FID Analysis
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024