Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Amphiphilic polysaccharides: useful tools for the preparation of nanoparticles with controlled surface characteristics.

Identifieur interne : 000058 ( Ncbi/Curation ); précédent : 000057; suivant : 000059

Amphiphilic polysaccharides: useful tools for the preparation of nanoparticles with controlled surface characteristics.

Auteurs : A. Durand [France] ; E. Marie ; E. Rotureau ; M. Leonard ; Édith Dellacherie [France]

Source :

RBID : pubmed:15274610

Descripteurs français

English descriptors

Abstract

Polymeric surfactants obtained by hydrophobic modification of dextran are used as stabilizers for oil-in-water emulsions. The kinetics of interfacial tension decrease is studied as a function of polymer structural characteristics (degree of hydrophobic substitution) and at various polymer concentrations. Several hydrocarbon oils, either aliphatic (octane, decane, dodecane, and hexadecane) or aromatic (styrene), are tested. Kinetics exhibits the same general trends no matter which oil or polymer is considered. The emulsifying properties of the polymeric surfactants are illustrated by the preparation of oil-in-water emulsions. The droplet size at the preparation is correlated to the amount of oil and to the polymer concentration in the aqueous phase. For low polymer/oil ratios, it is shown that the droplet size is limited by the initial amount of polymer. On the contrary, for high polymer/oil ratios, the droplet size seems to level down, indicating that other parameters become predominant. Emulsion aging occurs by Ostwald ripening, and it is demonstrated that the theoretical equation of Lifshitz, Slyozov, and Wagner (LSW) correctly describes the experimental results. The nature of the oil has important effects on emulsion aging, as described by the LSW equation. The aging of emulsions containing oil mixtures is quantitatively described on the basis of the results with pure oils. The influence of polymer chemical structure can be conveniently correlated to interfacial tension results through the LSW equation. On the contrary, the influence of oil volume fraction seems to be overestimated by the usual correction factor, k(phi). The effect of temperature on emulsion aging is finally examined. Miniemulsions stabilized with dextran derivatives are used for the radical polymerization of styrene. Following this procedure, polysaccharide-covered polystyrene nanoparticles are prepared and characterized (size and surface coverage). The size of the particles is directly correlated to that of the initial droplets for styrene volume fractions around 10%. On the contrary, for initial styrene volume fractions around 20%, particles exhibit a larger size than the initial droplets, indicating that coalescence processes take place during polymerization. The amount of dextran at the surface of the particles is determined and compared to the adsorbed amounts resulting from emulsion preparation.

DOI: 10.1021/la0490341
PubMed: 15274610

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15274610

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Amphiphilic polysaccharides: useful tools for the preparation of nanoparticles with controlled surface characteristics.</title>
<author>
<name sortKey="Durand, A" sort="Durand, A" uniqKey="Durand A" first="A" last="Durand">A. Durand</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France. alain.durand@ensic.inpl-nancy.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marie, E" sort="Marie, E" uniqKey="Marie E" first="E" last="Marie">E. Marie</name>
</author>
<author>
<name sortKey="Rotureau, E" sort="Rotureau, E" uniqKey="Rotureau E" first="E" last="Rotureau">E. Rotureau</name>
</author>
<author>
<name sortKey="Leonard, M" sort="Leonard, M" uniqKey="Leonard M" first="M" last="Leonard">M. Leonard</name>
</author>
<author>
<name sortKey="Dellacherie, E" sort="Dellacherie, E" uniqKey="Dellacherie E" first="E" last="Dellacherie">Édith Dellacherie</name>
<affiliation>
<country>France</country>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15274610</idno>
<idno type="pmid">15274610</idno>
<idno type="doi">10.1021/la0490341</idno>
<idno type="wicri:Area/PubMed/Corpus">000193</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000193</idno>
<idno type="wicri:Area/PubMed/Curation">000193</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000193</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000193</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000193</idno>
<idno type="wicri:Area/Ncbi/Merge">000058</idno>
<idno type="wicri:Area/Ncbi/Curation">000058</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Amphiphilic polysaccharides: useful tools for the preparation of nanoparticles with controlled surface characteristics.</title>
<author>
<name sortKey="Durand, A" sort="Durand, A" uniqKey="Durand A" first="A" last="Durand">A. Durand</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France. alain.durand@ensic.inpl-nancy.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marie, E" sort="Marie, E" uniqKey="Marie E" first="E" last="Marie">E. Marie</name>
</author>
<author>
<name sortKey="Rotureau, E" sort="Rotureau, E" uniqKey="Rotureau E" first="E" last="Rotureau">E. Rotureau</name>
</author>
<author>
<name sortKey="Leonard, M" sort="Leonard, M" uniqKey="Leonard M" first="M" last="Leonard">M. Leonard</name>
</author>
<author>
<name sortKey="Dellacherie, E" sort="Dellacherie, E" uniqKey="Dellacherie E" first="E" last="Dellacherie">Édith Dellacherie</name>
<affiliation>
<country>France</country>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Langmuir : the ACS journal of surfaces and colloids</title>
<idno type="ISSN">0743-7463</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dextrans (chemistry)</term>
<term>Emulsions</term>
<term>Hydrocarbons (chemistry)</term>
<term>Kinetics</term>
<term>Nanostructures (chemistry)</term>
<term>Particle Size</term>
<term>Polysaccharides (chemistry)</term>
<term>Styrenes (chemical synthesis)</term>
<term>Styrenes (chemistry)</term>
<term>Surface Properties</term>
<term>Surface-Active Agents (chemistry)</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique</term>
<term>Dextrane ()</term>
<term>Facteurs temps</term>
<term>Hydrocarbures ()</term>
<term>Nanostructures ()</term>
<term>Polyosides ()</term>
<term>Propriétés de surface</term>
<term>Styrènes ()</term>
<term>Styrènes (synthèse chimique)</term>
<term>Taille de particule</term>
<term>Tensioactifs ()</term>
<term>Émulsions</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Styrenes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Dextrans</term>
<term>Hydrocarbons</term>
<term>Polysaccharides</term>
<term>Styrenes</term>
<term>Surface-Active Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Emulsions</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" qualifier="synthèse chimique" xml:lang="fr">
<term>Styrènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Kinetics</term>
<term>Particle Size</term>
<term>Surface Properties</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Dextrane</term>
<term>Facteurs temps</term>
<term>Hydrocarbures</term>
<term>Nanostructures</term>
<term>Polyosides</term>
<term>Propriétés de surface</term>
<term>Styrènes</term>
<term>Taille de particule</term>
<term>Tensioactifs</term>
<term>Émulsions</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Polymeric surfactants obtained by hydrophobic modification of dextran are used as stabilizers for oil-in-water emulsions. The kinetics of interfacial tension decrease is studied as a function of polymer structural characteristics (degree of hydrophobic substitution) and at various polymer concentrations. Several hydrocarbon oils, either aliphatic (octane, decane, dodecane, and hexadecane) or aromatic (styrene), are tested. Kinetics exhibits the same general trends no matter which oil or polymer is considered. The emulsifying properties of the polymeric surfactants are illustrated by the preparation of oil-in-water emulsions. The droplet size at the preparation is correlated to the amount of oil and to the polymer concentration in the aqueous phase. For low polymer/oil ratios, it is shown that the droplet size is limited by the initial amount of polymer. On the contrary, for high polymer/oil ratios, the droplet size seems to level down, indicating that other parameters become predominant. Emulsion aging occurs by Ostwald ripening, and it is demonstrated that the theoretical equation of Lifshitz, Slyozov, and Wagner (LSW) correctly describes the experimental results. The nature of the oil has important effects on emulsion aging, as described by the LSW equation. The aging of emulsions containing oil mixtures is quantitatively described on the basis of the results with pure oils. The influence of polymer chemical structure can be conveniently correlated to interfacial tension results through the LSW equation. On the contrary, the influence of oil volume fraction seems to be overestimated by the usual correction factor, k(phi). The effect of temperature on emulsion aging is finally examined. Miniemulsions stabilized with dextran derivatives are used for the radical polymerization of styrene. Following this procedure, polysaccharide-covered polystyrene nanoparticles are prepared and characterized (size and surface coverage). The size of the particles is directly correlated to that of the initial droplets for styrene volume fractions around 10%. On the contrary, for initial styrene volume fractions around 20%, particles exhibit a larger size than the initial droplets, indicating that coalescence processes take place during polymerization. The amount of dextran at the surface of the particles is determined and compared to the adsorbed amounts resulting from emulsion preparation.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Ncbi/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000058 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Curation/biblio.hfd -nk 000058 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Ncbi
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:15274610
   |texte=   Amphiphilic polysaccharides: useful tools for the preparation of nanoparticles with controlled surface characteristics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Curation/RBID.i   -Sk "pubmed:15274610" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a LrgpV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024