Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Control of Swelling of Responsive Nanogels by Nanoconfinement

Identifieur interne : 000907 ( Main/Curation ); précédent : 000906; suivant : 000908

Control of Swelling of Responsive Nanogels by Nanoconfinement

Auteurs : Stéphane Cuenot [France] ; Sadia Radji [France] ; Halima Alem [France] ; Sophie Demoustier-Champagne [Belgique] ; Alain M. Jonas [Belgique]

Source :

RBID : ISTEX:A0B094C688CC18D44F7B3F82202BCD0DF00775D8

Descripteurs français

English descriptors

Abstract

The volume phase transition (VPT) behavior and the swelling properties of individual thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM)‐based nanogels are investigated by in situ atomic force microscopy (AFM). Using a template‐based synthesis method, cylindrical nanogels are synthesized for different polymerization times within nanopores (80 nm) of poly(ethylene terephthalate) (PET) track‐etched membranes. The confinement conditions, characterized by the ratio Φ between the average chain length and the pore diameter, are varied between 0.35 and 0.8. After dissolving the membranes, the volume of individual nanogels composed of PNIPAM‐g‐PET diblock copolymers is numerically extracted from AFM images while varying the water temperature from 28 to 44 °C. From the measured volumes, the swelling of nanogels is investigated as a function of both the water temperature and the confinement conditions imposed during the synthesis. Contrary to the VPT, the maximum swelling of the nanogels is strongly affected by these confinement conditions. The volume of nanogels in the swollen state can reach 1.1 to 2.1 times their volume in the collapsed state for a ratio Φ of 0.8 and 0.5, respectively. These results open a new way to tune the swelling of nanogels, simply by adjusting the degree of confinement imposed during their synthesis within nanopores, which is particularly interesting for biomedical applications requiring a high degree of control over swelling properties, such as drug‐delivery nanotools.

Url:
DOI: 10.1002/smll.201200417

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:A0B094C688CC18D44F7B3F82202BCD0DF00775D8

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Control of Swelling of Responsive Nanogels by Nanoconfinement</title>
<author>
<name sortKey="Cuenot, Stephane" sort="Cuenot, Stephane" uniqKey="Cuenot S" first="Stéphane" last="Cuenot">Stéphane Cuenot</name>
</author>
<author>
<name sortKey="Radji, Sadia" sort="Radji, Sadia" uniqKey="Radji S" first="Sadia" last="Radji">Sadia Radji</name>
</author>
<author>
<name sortKey="Alem, Halima" sort="Alem, Halima" uniqKey="Alem H" first="Halima" last="Alem">Halima Alem</name>
</author>
<author>
<name sortKey="Demoustier Hampagne, Sophie" sort="Demoustier Hampagne, Sophie" uniqKey="Demoustier Hampagne S" first="Sophie" last="Demoustier-Champagne">Sophie Demoustier-Champagne</name>
</author>
<author>
<name sortKey="Jonas, Alain M" sort="Jonas, Alain M" uniqKey="Jonas A" first="Alain M." last="Jonas">Alain M. Jonas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A0B094C688CC18D44F7B3F82202BCD0DF00775D8</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/smll.201200417</idno>
<idno type="url">https://api.istex.fr/document/A0B094C688CC18D44F7B3F82202BCD0DF00775D8/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001556</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001556</idno>
<idno type="wicri:Area/Istex/Curation">001556</idno>
<idno type="wicri:Area/Istex/Checkpoint">000054</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000054</idno>
<idno type="wicri:doubleKey">1613-6810:2012:Cuenot S:control:of:swelling</idno>
<idno type="wicri:Area/Main/Merge">000986</idno>
<idno type="wicri:Area/Main/Curation">000907</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Control of Swelling of Responsive Nanogels by Nanoconfinement</title>
<author>
<name sortKey="Cuenot, Stephane" sort="Cuenot, Stephane" uniqKey="Cuenot S" first="Stéphane" last="Cuenot">Stéphane Cuenot</name>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, 2 Rue de la Houssinière, 44322 Nantes cedex 3</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Correspondence address: Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, 2 Rue de la Houssinière, 44322 Nantes cedex 3</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Radji, Sadia" sort="Radji, Sadia" uniqKey="Radji S" first="Sadia" last="Radji">Sadia Radji</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>EPCP UMR IPREM 5254, Université de Pau et des pays de l'Adour, 2 Av. du Président d'Angot, 64053 Pau cedex 09</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
<settlement type="city">Pau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alem, Halima" sort="Alem, Halima" uniqKey="Alem H" first="Halima" last="Alem">Halima Alem</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Nancy Université ENSIC, 1 rue Grandville, BP451, 54001 Nancy cedex 1</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Demoustier Hampagne, Sophie" sort="Demoustier Hampagne, Sophie" uniqKey="Demoustier Hampagne S" first="Sophie" last="Demoustier-Champagne">Sophie Demoustier-Champagne</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Institute of Condensed Matter and Nanosciences, Bio & Soft Matter (IMCN/BSMA), Université Catholique de Louvain, Place Croix du Sud 1, 1348 Louvain‐la‐Neuve</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
<orgName type="university">Université catholique de Louvain</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jonas, Alain M" sort="Jonas, Alain M" uniqKey="Jonas A" first="Alain M." last="Jonas">Alain M. Jonas</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Institute of Condensed Matter and Nanosciences, Bio & Soft Matter (IMCN/BSMA), Université Catholique de Louvain, Place Croix du Sud 1, 1348 Louvain‐la‐Neuve</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
<orgName type="university">Université catholique de Louvain</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Small</title>
<title level="j" type="alt">SMALL</title>
<idno type="ISSN">1613-6810</idno>
<idno type="eISSN">1613-6829</idno>
<imprint>
<biblScope unit="vol">8</biblScope>
<biblScope unit="issue">19</biblScope>
<biblScope unit="page" from="2978">2978</biblScope>
<biblScope unit="page" to="2985">2985</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2012-10-08">2012-10-08</date>
</imprint>
<idno type="ISSN">1613-6810</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1613-6810</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acros</term>
<term>Alcohol groups</term>
<term>Atomic force microscopy</term>
<term>Average value</term>
<term>Chain length</term>
<term>Chem</term>
<term>Colloid interface</term>
<term>Cuenot</term>
<term>Cylindrical shape</term>
<term>Diblock copolymer chains</term>
<term>Diblock copolymers</term>
<term>Different polymerization times</term>
<term>Different polymers</term>
<term>Different positions</term>
<term>Encapsulated drugs</term>
<term>Experimental data</term>
<term>Experimental dispersion</term>
<term>Experimental section</term>
<term>Force curves</term>
<term>Force spectroscopy experiments</term>
<term>Force spectroscopy measurements</term>
<term>Full papers</term>
<term>Functionalized membranes</term>
<term>Gmbh</term>
<term>High degree</term>
<term>Hydrogel</term>
<term>Individual nanogels</term>
<term>Jonas</term>
<term>Kgaa</term>
<term>Macroscopic pnipam</term>
<term>Membrane</term>
<term>Membrane dissolution</term>
<term>Nano lett</term>
<term>Nanogel</term>
<term>Nanogel volume</term>
<term>Nanogels</term>
<term>Nanometer scale</term>
<term>Nanometersized objects</term>
<term>Nanopores</term>
<term>Nanotube</term>
<term>Other words</term>
<term>Phys</term>
<term>Physical density</term>
<term>Pnipam</term>
<term>Pnipam brushes</term>
<term>Pnipam chain length</term>
<term>Pnipam chains</term>
<term>Pnipam microparticles</term>
<term>Polymer</term>
<term>Polymer brush</term>
<term>Polymer chain length</term>
<term>Polymer chains</term>
<term>Polymerization time</term>
<term>Pore</term>
<term>Pore diameter</term>
<term>Previous work</term>
<term>Responsive nanogels</term>
<term>Responsive properties</term>
<term>Rupture length</term>
<term>Rupture lengths</term>
<term>Same nanogel</term>
<term>Several nanogels</term>
<term>Similar measurements</term>
<term>Statistical nature</term>
<term>Swollen state</term>
<term>Synthesis method</term>
<term>Synthesis time</term>
<term>Synthetic hydrogels</term>
<term>Template method</term>
<term>Thermodynamics theory</term>
<term>Thermoresponsive</term>
<term>Thermoresponsive nanogels exhibit</term>
<term>Total energy</term>
<term>Transition temperature</term>
<term>Typical spring</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Volume change</term>
<term>Water temperature</term>
<term>Weinheim</term>
<term>Whole length</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acros</term>
<term>Alcohol groups</term>
<term>Atomic force microscopy</term>
<term>Average value</term>
<term>Chain length</term>
<term>Chem</term>
<term>Colloid interface</term>
<term>Cuenot</term>
<term>Cylindrical shape</term>
<term>Diblock copolymer chains</term>
<term>Diblock copolymers</term>
<term>Different polymerization times</term>
<term>Different polymers</term>
<term>Different positions</term>
<term>Encapsulated drugs</term>
<term>Experimental data</term>
<term>Experimental dispersion</term>
<term>Experimental section</term>
<term>Force curves</term>
<term>Force spectroscopy experiments</term>
<term>Force spectroscopy measurements</term>
<term>Full papers</term>
<term>Functionalized membranes</term>
<term>Gmbh</term>
<term>High degree</term>
<term>Hydrogel</term>
<term>Individual nanogels</term>
<term>Jonas</term>
<term>Kgaa</term>
<term>Macroscopic pnipam</term>
<term>Membrane</term>
<term>Membrane dissolution</term>
<term>Nano lett</term>
<term>Nanogel</term>
<term>Nanogel volume</term>
<term>Nanogels</term>
<term>Nanometer scale</term>
<term>Nanometersized objects</term>
<term>Nanopores</term>
<term>Nanotube</term>
<term>Other words</term>
<term>Phys</term>
<term>Physical density</term>
<term>Pnipam</term>
<term>Pnipam brushes</term>
<term>Pnipam chain length</term>
<term>Pnipam chains</term>
<term>Pnipam microparticles</term>
<term>Polymer</term>
<term>Polymer brush</term>
<term>Polymer chain length</term>
<term>Polymer chains</term>
<term>Polymerization time</term>
<term>Pore</term>
<term>Pore diameter</term>
<term>Previous work</term>
<term>Responsive nanogels</term>
<term>Responsive properties</term>
<term>Rupture length</term>
<term>Rupture lengths</term>
<term>Same nanogel</term>
<term>Several nanogels</term>
<term>Similar measurements</term>
<term>Statistical nature</term>
<term>Swollen state</term>
<term>Synthesis method</term>
<term>Synthesis time</term>
<term>Synthetic hydrogels</term>
<term>Template method</term>
<term>Thermodynamics theory</term>
<term>Thermoresponsive</term>
<term>Thermoresponsive nanogels exhibit</term>
<term>Total energy</term>
<term>Transition temperature</term>
<term>Typical spring</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Volume change</term>
<term>Water temperature</term>
<term>Weinheim</term>
<term>Whole length</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The volume phase transition (VPT) behavior and the swelling properties of individual thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM)‐based nanogels are investigated by in situ atomic force microscopy (AFM). Using a template‐based synthesis method, cylindrical nanogels are synthesized for different polymerization times within nanopores (80 nm) of poly(ethylene terephthalate) (PET) track‐etched membranes. The confinement conditions, characterized by the ratio Φ between the average chain length and the pore diameter, are varied between 0.35 and 0.8. After dissolving the membranes, the volume of individual nanogels composed of PNIPAM‐g‐PET diblock copolymers is numerically extracted from AFM images while varying the water temperature from 28 to 44 °C. From the measured volumes, the swelling of nanogels is investigated as a function of both the water temperature and the confinement conditions imposed during the synthesis. Contrary to the VPT, the maximum swelling of the nanogels is strongly affected by these confinement conditions. The volume of nanogels in the swollen state can reach 1.1 to 2.1 times their volume in the collapsed state for a ratio Φ of 0.8 and 0.5, respectively. These results open a new way to tune the swelling of nanogels, simply by adjusting the degree of confinement imposed during their synthesis within nanopores, which is particularly interesting for biomedical applications requiring a high degree of control over swelling properties, such as drug‐delivery nanotools.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000907 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000907 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:A0B094C688CC18D44F7B3F82202BCD0DF00775D8
   |texte=   Control of Swelling of Responsive Nanogels by Nanoconfinement
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024