Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

NMR study on a SRYD-containing fibronectin-like sequence (250–257) of Leishmania gp63: contribution of residual water in the dimethyl sulfoxide solution structure

Identifieur interne : 001833 ( Istex/Corpus ); précédent : 001832; suivant : 001834

NMR study on a SRYD-containing fibronectin-like sequence (250–257) of Leishmania gp63: contribution of residual water in the dimethyl sulfoxide solution structure

Auteurs : Vassilias Tsikaris ; Mahn Thong Cung ; Constantinos Sakarellos ; Athina K. Tzinia ; Ketty P. Soterladou ; Maria Sakarellos-Daitsiotis

Source :

RBID : ISTEX:C65D4067551148C7555E7DE99EB1B955AAA96923

English descriptors

Abstract

The conformational characteristics of the I250ASRYDQL257 synthetic octapeptide, which incorporates the SRYD adhesion site (252–255) of Leishmania gp63, have been investigated at pH 2 and 5, by means of 1 D and 2D 1H NMR spectroscopy (temperature coefficient values, chemical shifts, vicinal coupling constants and NOE effects). It was found that elimination of residual water from the dimethyl sulfoxide (DMSO) solution at pH 2 provides exchange peaks in the ROESY and HOHAHA spectra similar to those obtained for the DMSO peptide solution at pH 5. This common structure is stabilized (i) by the formation of a type I β-turn involving the QNH→RCO interaction and (ii) by a possible interaction between the guanidinium and the D-β-carboxylate groups. After treatment with molecular sieves, the remaining residual water is redistributed between the peptide functional groups and participates in the rigidification of the new conformational state.

Url:
DOI: 10.1039/P29940000821

Links to Exploration step

ISTEX:C65D4067551148C7555E7DE99EB1B955AAA96923

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>NMR study on a SRYD-containing fibronectin-like sequence (250–257) of Leishmania gp63: contribution of residual water in the dimethyl sulfoxide solution structure</title>
<author wicri:is="90%">
<name sortKey="Tsikaris, Vassilias" sort="Tsikaris, Vassilias" uniqKey="Tsikaris V" first="Vassilias" last="Tsikaris">Vassilias Tsikaris</name>
</author>
<author wicri:is="90%">
<name sortKey="Cung, Mahn Thong" sort="Cung, Mahn Thong" uniqKey="Cung M" first="Mahn Thong" last="Cung">Mahn Thong Cung</name>
</author>
<author wicri:is="90%">
<name sortKey="Sakarellos, Constantinos" sort="Sakarellos, Constantinos" uniqKey="Sakarellos C" first="Constantinos" last="Sakarellos">Constantinos Sakarellos</name>
</author>
<author wicri:is="90%">
<name sortKey="Tzinia, Athina K" sort="Tzinia, Athina K" uniqKey="Tzinia A" first="Athina K." last="Tzinia">Athina K. Tzinia</name>
</author>
<author wicri:is="90%">
<name sortKey="Soterladou, Ketty P" sort="Soterladou, Ketty P" uniqKey="Soterladou K" first="Ketty P." last="Soterladou">Ketty P. Soterladou</name>
</author>
<author wicri:is="90%">
<name sortKey="Sakarellos Daitsiotis, Maria" sort="Sakarellos Daitsiotis, Maria" uniqKey="Sakarellos Daitsiotis M" first="Maria" last="Sakarellos-Daitsiotis">Maria Sakarellos-Daitsiotis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C65D4067551148C7555E7DE99EB1B955AAA96923</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1039/P29940000821</idno>
<idno type="url">https://api.istex.fr/document/C65D4067551148C7555E7DE99EB1B955AAA96923/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001833</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001833</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">NMR study on a SRYD-containing fibronectin-like sequence (250–257) of Leishmania gp63: contribution of residual water in the dimethyl sulfoxide solution structure</title>
<author wicri:is="90%">
<name sortKey="Tsikaris, Vassilias" sort="Tsikaris, Vassilias" uniqKey="Tsikaris V" first="Vassilias" last="Tsikaris">Vassilias Tsikaris</name>
</author>
<author wicri:is="90%">
<name sortKey="Cung, Mahn Thong" sort="Cung, Mahn Thong" uniqKey="Cung M" first="Mahn Thong" last="Cung">Mahn Thong Cung</name>
</author>
<author wicri:is="90%">
<name sortKey="Sakarellos, Constantinos" sort="Sakarellos, Constantinos" uniqKey="Sakarellos C" first="Constantinos" last="Sakarellos">Constantinos Sakarellos</name>
</author>
<author wicri:is="90%">
<name sortKey="Tzinia, Athina K" sort="Tzinia, Athina K" uniqKey="Tzinia A" first="Athina K." last="Tzinia">Athina K. Tzinia</name>
</author>
<author wicri:is="90%">
<name sortKey="Soterladou, Ketty P" sort="Soterladou, Ketty P" uniqKey="Soterladou K" first="Ketty P." last="Soterladou">Ketty P. Soterladou</name>
</author>
<author wicri:is="90%">
<name sortKey="Sakarellos Daitsiotis, Maria" sort="Sakarellos Daitsiotis, Maria" uniqKey="Sakarellos Daitsiotis M" first="Maria" last="Sakarellos-Daitsiotis">Maria Sakarellos-Daitsiotis</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of the Chemical Society, Perkin Transactions 2</title>
<title level="j" type="abbrev">J. Chem. Soc., Perkin Trans. 2</title>
<idno type="ISSN">0300-9580</idno>
<idno type="eISSN">1364-5471</idno>
<imprint>
<publisher>The Royal Society of Chemistry.</publisher>
<date type="published" when="1994">1994</date>
<biblScope unit="volume">0</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="821">821</biblScope>
<biblScope unit="page" to="826">826</biblScope>
</imprint>
<idno type="ISSN">0300-9580</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0300-9580</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amide</term>
<term>Chem</term>
<term>Coefficient</term>
<term>Conformational</term>
<term>Connectivity</term>
<term>Data points</term>
<term>Diagonal peaks</term>
<term>Dmso</term>
<term>Dmso peptide solution</term>
<term>Dmso solution</term>
<term>Hohaha</term>
<term>Hohaha experiment</term>
<term>Hydrate</term>
<term>Iasrydql octapeptide</term>
<term>Molecular sieves</term>
<term>Octapeptide</term>
<term>Octapeptide hydrate</term>
<term>Peptide</term>
<term>Peptide hydrate</term>
<term>Perkin</term>
<term>Perkin trans</term>
<term>Possible interaction</term>
<term>Proton</term>
<term>Residual</term>
<term>Residual water</term>
<term>Resonance data</term>
<term>Roesy</term>
<term>Roesy spectrum</term>
<term>Same sign</term>
<term>Sieve</term>
<term>Synthetic octapeptide</term>
<term>Temperature coefficient</term>
<term>Temperature coefficient values</term>
<term>Trace water</term>
<term>Trans</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Amide</term>
<term>Chem</term>
<term>Coefficient</term>
<term>Conformational</term>
<term>Connectivity</term>
<term>Data points</term>
<term>Diagonal peaks</term>
<term>Dmso</term>
<term>Dmso peptide solution</term>
<term>Dmso solution</term>
<term>Hohaha</term>
<term>Hohaha experiment</term>
<term>Hydrate</term>
<term>Iasrydql octapeptide</term>
<term>Molecular sieves</term>
<term>Octapeptide</term>
<term>Octapeptide hydrate</term>
<term>Peptide</term>
<term>Peptide hydrate</term>
<term>Perkin</term>
<term>Perkin trans</term>
<term>Possible interaction</term>
<term>Proton</term>
<term>Residual</term>
<term>Residual water</term>
<term>Resonance data</term>
<term>Roesy</term>
<term>Roesy spectrum</term>
<term>Same sign</term>
<term>Sieve</term>
<term>Synthetic octapeptide</term>
<term>Temperature coefficient</term>
<term>Temperature coefficient values</term>
<term>Trace water</term>
<term>Trans</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The conformational characteristics of the I250ASRYDQL257 synthetic octapeptide, which incorporates the SRYD adhesion site (252–255) of Leishmania gp63, have been investigated at pH 2 and 5, by means of 1 D and 2D 1H NMR spectroscopy (temperature coefficient values, chemical shifts, vicinal coupling constants and NOE effects). It was found that elimination of residual water from the dimethyl sulfoxide (DMSO) solution at pH 2 provides exchange peaks in the ROESY and HOHAHA spectra similar to those obtained for the DMSO peptide solution at pH 5. This common structure is stabilized (i) by the formation of a type I β-turn involving the QNH→RCO interaction and (ii) by a possible interaction between the guanidinium and the D-β-carboxylate groups. After treatment with molecular sieves, the remaining residual water is redistributed between the peptide functional groups and participates in the rigidification of the new conformational state.</div>
</front>
</TEI>
<istex>
<corpusName>rsc-journals</corpusName>
<keywords>
<teeft>
<json:string>octapeptide</json:string>
<json:string>molecular sieves</json:string>
<json:string>residual water</json:string>
<json:string>peptide</json:string>
<json:string>dmso</json:string>
<json:string>chem</json:string>
<json:string>roesy</json:string>
<json:string>connectivity</json:string>
<json:string>sieve</json:string>
<json:string>hohaha</json:string>
<json:string>residual</json:string>
<json:string>hydrate</json:string>
<json:string>perkin</json:string>
<json:string>perkin trans</json:string>
<json:string>trans</json:string>
<json:string>temperature coefficient values</json:string>
<json:string>proton</json:string>
<json:string>synthetic octapeptide</json:string>
<json:string>hohaha experiment</json:string>
<json:string>roesy spectrum</json:string>
<json:string>trace water</json:string>
<json:string>amide</json:string>
<json:string>possible interaction</json:string>
<json:string>diagonal peaks</json:string>
<json:string>resonance data</json:string>
<json:string>temperature coefficient</json:string>
<json:string>peptide hydrate</json:string>
<json:string>iasrydql octapeptide</json:string>
<json:string>octapeptide hydrate</json:string>
<json:string>same sign</json:string>
<json:string>dmso peptide solution</json:string>
<json:string>dmso solution</json:string>
<json:string>data points</json:string>
<json:string>conformational</json:string>
<json:string>coefficient</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Vassilias Tsikaris</name>
</json:item>
<json:item>
<name>Mahn Thong Cung</name>
</json:item>
<json:item>
<name>Constantinos Sakarellos</name>
</json:item>
<json:item>
<name>Athina K. Tzinia</name>
</json:item>
<json:item>
<name>Ketty P. Soterladou</name>
</json:item>
<json:item>
<name>Maria Sakarellos-Daitsiotis</name>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>ART</json:string>
</originalGenre>
<abstract>The conformational characteristics of the I250ASRYDQL257 synthetic octapeptide, which incorporates the SRYD adhesion site (252–255) of Leishmania gp63, have been investigated at pH 2 and 5, by means of 1 D and 2D 1H NMR spectroscopy (temperature coefficient values, chemical shifts, vicinal coupling constants and NOE effects). It was found that elimination of residual water from the dimethyl sulfoxide (DMSO) solution at pH 2 provides exchange peaks in the ROESY and HOHAHA spectra similar to those obtained for the DMSO peptide solution at pH 5. This common structure is stabilized (i) by the formation of a type I β-turn involving the QNH→RCO interaction and (ii) by a possible interaction between the guanidinium and the D-β-carboxylate groups. After treatment with molecular sieves, the remaining residual water is redistributed between the peptide functional groups and participates in the rigidification of the new conformational state.</abstract>
<qualityIndicators>
<score>6.756</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>594 x 845.759 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>944</abstractCharCount>
<pdfWordCount>3052</pdfWordCount>
<pdfCharCount>18742</pdfCharCount>
<pdfPageCount>6</pdfPageCount>
<abstractWordCount>142</abstractWordCount>
</qualityIndicators>
<title>NMR study on a SRYD-containing fibronectin-like sequence (250–257) of Leishmania gp63: contribution of residual water in the dimethyl sulfoxide solution structure</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of the Chemical Society, Perkin Transactions 2</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1994</publicationDate>
<issn>
<json:string>0300-9580</json:string>
</issn>
<eissn>
<json:string>1364-5471</json:string>
</eissn>
<volume>0</volume>
<issue>4</issue>
<pages>
<first>821</first>
<last>826</last>
<total>6</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>protozoaires</json:string>
</inist>
</categories>
<publicationDate>1994</publicationDate>
<copyrightDate>1994</copyrightDate>
<doi>
<json:string>10.1039/P29940000821</json:string>
</doi>
<id>C65D4067551148C7555E7DE99EB1B955AAA96923</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/C65D4067551148C7555E7DE99EB1B955AAA96923/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/C65D4067551148C7555E7DE99EB1B955AAA96923/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C65D4067551148C7555E7DE99EB1B955AAA96923/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">NMR study on a SRYD-containing fibronectin-like sequence (250–257) of Leishmania gp63: contribution of residual water in the dimethyl sulfoxide solution structure</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">The Royal Society of Chemistry.</publisher>
<availability>
<licence>
<p>This journal is © The Royal Society of Chemistry</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-Z6ZBG4DQ-N">rsc-journals</p>
</availability>
<date>1994</date>
</publicationStmt>
<notesStmt>
<note type="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">NMR study on a SRYD-containing fibronectin-like sequence (250–257) of Leishmania gp63: contribution of residual water in the dimethyl sulfoxide solution structure</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Vassilias</forename>
<surname>Tsikaris</surname>
</persName>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Mahn Thong</forename>
<surname>Cung</surname>
</persName>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Constantinos</forename>
<surname>Sakarellos</surname>
</persName>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Athina K.</forename>
<surname>Tzinia</surname>
</persName>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Ketty P.</forename>
<surname>Soterladou</surname>
</persName>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Maria</forename>
<surname>Sakarellos-Daitsiotis</surname>
</persName>
</author>
<idno type="istex">C65D4067551148C7555E7DE99EB1B955AAA96923</idno>
<idno type="ark">ark:/67375/QHD-L5BJQFF7-S</idno>
<idno type="DOI">10.1039/P29940000821</idno>
<idno type="ms-id">P29940000821</idno>
</analytic>
<monogr>
<title level="j">Journal of the Chemical Society, Perkin Transactions 2</title>
<title level="j" type="abbrev">J. Chem. Soc., Perkin Trans. 2</title>
<idno type="pISSN">0300-9580</idno>
<idno type="eISSN">1364-5471</idno>
<idno type="coden">JCPKBH</idno>
<idno type="RSC-sercode">P2</idno>
<imprint>
<publisher>The Royal Society of Chemistry.</publisher>
<date type="published" when="1994"></date>
<biblScope unit="volume">0</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="821">821</biblScope>
<biblScope unit="page" to="826">826</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1994</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>The conformational characteristics of the I250ASRYDQL257 synthetic octapeptide, which incorporates the SRYD adhesion site (252–255) of Leishmania gp63, have been investigated at pH 2 and 5, by means of 1 D and 2D 1H NMR spectroscopy (temperature coefficient values, chemical shifts, vicinal coupling constants and NOE effects). It was found that elimination of residual water from the dimethyl sulfoxide (DMSO) solution at pH 2 provides exchange peaks in the ROESY and HOHAHA spectra similar to those obtained for the DMSO peptide solution at pH 5. This common structure is stabilized (i) by the formation of a type I β-turn involving the QNH→RCO interaction and (ii) by a possible interaction between the guanidinium and the D-β-carboxylate groups. After treatment with molecular sieves, the remaining residual water is redistributed between the peptide functional groups and participates in the rigidification of the new conformational state.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1994">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/C65D4067551148C7555E7DE99EB1B955AAA96923/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus rsc-journals not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article type="ART" xsi:schemaLocation="http://www.rsc.org/schema/rscart38 http://www.rsc.org/schema/rscart38/rscart38.xsd" dtd="RSCART3.8">
<metainfo>
<articletype code="ART" pubmedForm="research-article" headingForm="Papers" group="Paper" fullForm="Paper"></articletype>
</metainfo>
<art-admin>
<ms-id>P29940000821</ms-id>
<doi>10.1039/P29940000821</doi>
</art-admin>
<published type="print">
<journalref>
<link>P2</link>
</journalref>
<volumeref>
<link>0</link>
</volumeref>
<issueref>
<link>4</link>
</issueref>
<pubfront>
<fpage>821</fpage>
<lpage>826</lpage>
<no-of-pages>6</no-of-pages>
<date>
<year>1994</year>
</date>
</pubfront>
</published>
<published type="subsyear">
<journalref>
<title type="abbreviated">J. Chem. Soc., Perkin Trans. 2</title>
<title type="full">Journal of the Chemical Society, Perkin Transactions 2</title>
<title type="journal">Perkin Transactions 2</title>
<title type="display">Organic & Biomol. Chem + Perkin Trans. + Contemp. Org Synth.</title>
<sercode>P2</sercode>
<publisher>
<orgname>
<nameelt>The Royal Society of Chemistry</nameelt>
</orgname>
</publisher>
<issn type="print">0300-9580</issn>
<issn type="online">1364-5471</issn>
<coden>JCPKBH</coden>
<cpyrt>This journal is © The Royal Society of Chemistry</cpyrt>
</journalref>
<pubfront>
<fpage></fpage>
<lpage></lpage>
<no-of-pages></no-of-pages>
<date>
<year>1994</year>
</date>
</pubfront>
</published>
<art-front>
<titlegrp>
<title>NMR study on a SRYD-containing fibronectin-like sequence (250–257) of Leishmania gp63: contribution of residual water in the dimethyl sulfoxide solution structure</title>
</titlegrp>
<authgrp>
<author>
<person>
<persname>
<fname>Vassilias</fname>
<surname>Tsikaris</surname>
</persname>
</person>
</author>
<author>
<person>
<persname>
<fname>Mahn Thong</fname>
<surname>Cung</surname>
</persname>
</person>
</author>
<author>
<person>
<persname>
<fname>Constantinos</fname>
<surname>Sakarellos</surname>
</persname>
</person>
</author>
<author>
<person>
<persname>
<fname>Athina K.</fname>
<surname>Tzinia</surname>
</persname>
</person>
</author>
<author>
<person>
<persname>
<fname>Ketty P.</fname>
<surname>Soterladou</surname>
</persname>
</person>
</author>
<author>
<person>
<persname>
<fname>Maria</fname>
<surname>Sakarellos-Daitsiotis</surname>
</persname>
</person>
</author>
</authgrp>
<abstract>
<p>The conformational characteristics of the I
<sup>250</sup>
ASRYDQL
<sup>257</sup>
synthetic octapeptide, which incorporates the SRYD adhesion site (252–255) of Leishmania gp63, have been investigated at pH 2 and 5, by means of 1 D and 2D
<sup>1</sup>
H NMR spectroscopy (temperature coefficient values, chemical shifts, vicinal coupling constants and NOE effects). It was found that elimination of residual water from the dimethyl sulfoxide (DMSO) solution at pH 2 provides exchange peaks in the ROESY and HOHAHA spectra similar to those obtained for the DMSO peptide solution at pH 5. This common structure is stabilized (i) by the formation of a type I β-turn involving the QNH→RCO interaction and (ii) by a possible interaction between the guanidinium and the D-β-carboxylate groups. After treatment with molecular sieves, the remaining residual water is redistributed between the peptide functional groups and participates in the rigidification of the new conformational state.</p>
</abstract>
</art-front>
<art-body>
<section type="PDFExtract">
<title></title>
<p> J. CHEM. SOC. PERKIN TRANS. 2 1994 821 NMR Study on a SRYD-containing Fibronectin-like Sequence (250-257) of Leishmania gp63: Contribution of Residual Water in the Dimethyl Sulfoxide Solution Structure Vassilias Tsikaris,a Mahn Thong Cung/ Constantinos Sakarellos,a Athina K. Tzinia/Ketty P. Soterladou and Maria Sakarellos-Daitsiotis *va a Department of Chemistry, University of loannina, Box 1186,451 10 loannina, Greece LCPNI, CNRS-URA 494, ENSIC-INPL. Nancy, France Department of Biochemistry, Hellenic Pasteur Institute, 1152I Athens, Greece The conformational characteristics of the 1250ASRYDQL257 synthetic octapeptide, which incorporates the SRYD adhesion site (252-255) of Leishmania gp63, have been investigated at pH 2 and 5. by means of 1 D and 2D 'H NMR spectroscopy (temperature coefficient values, chemical shifts, vicinal coupling constants and NOE effects). </p>
<p>It was found that elimination of residual water from the dimethyl sulfoxide (DMSO) solution at pH 2 provides exchange peaks in the ROESY and HOHAHA spectra similar to those obtained for the DMSO peptide solution at pH 5. This common structure is stabilized (i) by the formation of a type I p-turn involving the QNH-RCO interaction and (ii) by a possible interaction between the guanidinium and the D-P-carboxylate groups. After treatment with molecular sieves, the remaining residual water is redistributed between the peptide functional groups and participates in the rigidification of the new conformational state. Recent studies on cell adhesion have revealed that the arginyl- This study describes the conformational properties of the glycylaspartate (RGD) sequence is the principal recognition 1250ASRYDQL257synthetic octapeptide of Leishmania gp63, segment in adhesive proteins that interact with a family of which is a relatively large peptide sequence with various structurally related receptors (integrins). </p>
<p>Conformational possible secondary structures, in DMSO solution at pH 5 and studies on small linear inhibitor peptides containing the RGD 2, and also after elimination of residual water as determined by sequence showed that they adopt a well defined conformation 'H NMR spectroscopy. DMSO was chosen as the solvent for and that the receptor-inhibitor specificity may reside in the our NMR experiments because it provides an amphiphilic conformation of the RGD tri~eptide.~.~ environment and mimics physiological conditions. </p>
<p>Charac-In a previous study it has been demonstrated that the major terization of the local conformation of the SRYD moiety in surface glycoprotein of Leishmania, gp63, a fibronectin-like relation to residual water could prove critical for an under- molecule, plays a key role in parasite-macrophage intera~tion.~ standing of the receptor-mediated events of intracellular Binding of gp63 to macrophage receptors is inhibited by parasitism as well as the design of good vaccine candidates RGDS-containing synthetic peptides of fibronectin and by against leishmaniasis. antibodies to these peptides, although gp63 lacks an RGDS sequence. A small peptide sequence SRYD (252-255) of gp63 has been identified as the minimum antibody-binding segment Experimental and the 1250ASRYDQL257 synthetic octapeptide, incorpor- Materials and Methods.-The synthesis and the biological ating the SRYD tetrapeptide, efficiently inhibits parasite properties of the 1250ASRYDQL257 octapeptide have been attachment to the macrophage receptors. It has been concluded reported previ~usly.~ The NMR samples were prepared by that the SRYD sequence of gp63, which is conserved between dissolving the solid material in H,O and adjusting the pH to different species, mimics antigenically and functionally the the desired value with HCI or NaOH. </p>
<p>The obtained aqueous RGDS segment of fibronectin and represents the putative gp63 solutions were lyophilized and then dried for 24 h at 40°C. </p>
<p>adhesion site.s Weighed amounts of the peptide were dissolved in C2H,]DMS0 On the other hand, there is an on-going interest in the factors at concentrations ca. 7 x mol dm-3. At this concentration favouring the stabilization of secondary structures in peptides intermolecular associations were excluded, as was proved by and proteins, for instance electrostatic ion-pair interactions or dilution studies. For each experiment at pH 2, two DMSO bound water molecules which may be found either within the peptide solutions were prepared and molecular sieves were interior or on the surface of the protein bridging hydrogen- added to one of these, while the second one was used without bonding interaction^.^.' addition of molecular sieves. </p>
<p>The significant role of residual water in biomolecules has The NMR spectra were recorded on a Bruker AC 200 been reported in a number of documents including the solution spectrometer at 23 OC, by using the standard COSY, structure of interleukin I p, bovine pancreatic trypsin inhibitor, HOHAHA and ROESY microprograms. Spectral width in and small peptide segments, which may act for the nucleation of F, and F2 was 3000 Hz; 512 experiments in 2K data points ~helices.~.~Moreover, the native catalytically active conform- in the F, dimension were performed; sinebell squared and ation of enzymes is maintained by its bound water in organic shifted (n/4) apodization was used in both dimensions. </p>
<p>solvents conferring upon the enzymes remarkable properties Several ROESY experiments were performed by changing which are advantageous for many biotechnological applic- the frequency offset of the carrier.13 A spin-locking mixing ations." In a previous study we have also demonstrated the time of 350 ms was used for ROESY experiments and of 100 relevance of residual water in the DMSO solution structure ms for the MLEV 17 HOHAHA experiment^.'^ of small peptide hydrates. It was found that residual water The NOESY spectra were recorded on a Bruker AM 400 remains tightly bound to the peptides, contributes to their spectrometer using two mixing times (150 and 350 ms). The rigidification and is not expelled by DMSO. spectral width in F, and F2 was 5000 Hz; 512 experiments in J. </p>
<p>CHEM. SOC. PERKIN TRANS. 2 1994 Table 1 Proton magnetic resonance data of 1250ASRYDQL257 hydrate (0.7 x mol dm-3) in [*H,]DMSO, pH 2, at 296 K, referenced to tetramethylsilane Temperature coefficient Residue +NH3 NH NEH NnH C"H CBH CYH C6H Others JNH-CmH ( ppm K-') I 8.22 3.65 1.81 1.51 0.90 1.20 A 8.65 4.45 1.27 7.3 -2.5 S 8.15 4.31 3.58 OH 5.23 7.8 -5.0 R 8.08 7.68 7.15 4.23 1.65 1.43 3.05 6.8 -2.9 Y 7.99 4.35 2.91 2.67 Ar(o) 7.03 (m)6.65 OH 9.22 7.8 -3.4 D 8.30 4.51 2.78 7.7 -7.1 2.59 Q 7.77 4.27 1.91 1.75 2.11 7.25 6.79 8.2 -4.1 Lb 8.1 1 4.20 1.64 1.55 0.83 7.9 -5.1 a Solutions without molecular sieves. C02H at 12.42 ppm. </p>
<p> (0.7 x mol dm-3) in [12H6] DMSO, pH 2, at 295 K, reference to Table 2 Proton magnetic resonance data of 1250ASRYDQL257 tetramethylsilance" Temperature coefficient Residue NH NEH NnH C"H CBH CYH C6H Others 3JNH&pH (10-3ppm K ')~ 3.51 1.76 1.47 0.86 1.12 A 8.57 4.42 1.25 6.9 -6.3 S 8.21 4.28 3.58 7.7 -4.7 R 7.74 10.03 7.10 4.39 2.03 3.19 8.0 -1.6 1.44 2.94 Y 8.63 4.25 3.00 Ar(o) 7.02 6.9 -4.0 2.72 (m)6.65 OH 9.24 D 8.37 4.27 2.65 8.0 -1.3 2.25 Q 1.22 4.20 1.77 2.10 7.26 8.8 +0.0 1.91 6.79 L 7.22 4.12 1.62 1.52 0.83 7.8 -4.0 a Solutions 7 days after addition of molecular sieves. 2K data points in the F, dimension were performed; data points are listed in Tables 1 and 2, respectively. Table 3 summarizes t, were zero-filled to give a (1K x 1K) data matrix and sinebell the proton assignments of the octapeptide at pH 5. </p>
<p>squared and shifted (44) apodization was used in both dimensions. Conformational Changes of the 1250ASRYDQL257Octapep-tide in [2H,]DMS0 Solution.-The conformational perturb- ations of the peptide at pH 5 in comparison with the peptide Results and Discussion hydrate at pH 2 can be appreciated by plotting the difference H Resonance Assignments.-The combined use of COSY, between the backbone chemical shifts.I6 It appeared that almost HOHAHA and ROESY experiments allowed the complete all the resonances were more or less affected [Fig. l(a)]. Thus, assignment of all proton resonances of the octapeptide, which is the chemical shift differences of the CaH and NH protons of in agreement with previously reported 'H NMR ~tudies.'~.'~ leucine probably reflect the deprotonation of the C-terminal All the proton chemical shift data, for the peptide at pH 2 group upon raising of the pH, while the ICaH shift denotes without molecular sieves and after addition of molecular sieves changes in the equilibrium between the ammonium and the J. </p>
<p>CHEM. SOC. PERKIN TRANS. z 1994 823 Table 3 Proton magnetic resonance data of T250ASRYDQL257 (0.7 x mol dm3) in [2H,]DMS0, pH 5, at 296 K referenced to tetramethylsilane Temperature coefficient Residue NH NEH NnH C"H CBH CYH C6H Others 3JNH C'H ppm K-') I 3.15 1.69 1.40 0.85 1.08 0.82 A 8.48 4.38 1.22 8.1 -6.3 S 8.22 4.28 3.60 7.7 -4.3 3.55 R 7.73 10.18 7.05 4.38 2.05 1.45 3.20 8.0 -1.7 1.46 1.56 2.96 Y 8.63 4.26 2.99 2.74 8.37 4.25 2.66 2.24 7.23 4.17 1.80 2.10 1.95 7.66 4.02 1.63 1.48 :::1 0.2 ctP PP-4 0.6 -. </p>
<p> 0.4 0.2 0 -_ I:F 'y U' I 4.2 -0.4 .. - -0.6 -0.6 1250 ~251 $252 R253 y254 ~255 ~256 ~257 Fig. 1 Perturbations of the backbone proton resonances for (a) the IASRYDQL octapeptide at pH 5 with reference to the octapeptide hydrate at pH 2: (h)the octapeptide after removal of residual water at pH 2 with reference to the octapeptide hydrate at pH 2; (c') the octapeptide at pH 5 with reference to the octapeptide after removal of residual water at pH 2; the open and filled boxes refer to the C'H and NH resonances, respectively amino state of the N-terminal group.l7 Additionally, the observed differences in the remaining signals (YNH, QNH, Ar(o) 7.03 6.9 -3.8 (m)6.65 OH 9.22 7.8 +0.5 6.74 8.4 +0.2 7.30 0.87 7.7 -2.4 RNH and DCaH) suggest considerable conformational modi- fications of the peptide backbone. </p>
<p>The temperature coefficient values (below -3 x 10 ppmK ') of almost all the NHs of the octapeptide hydrate indicate that they are exposed to the solvent (Table 1). In particular. the small absolute M/AT value of ANH (-2.5 x ppm K-') can be attributed either to the presence of the adjacent charged ammonium group or to solvent-shielding. Moreover, the temperature coefficient values of RNH (-2.9 x ppm K ') denote that this amide proton is not entirely exposed to the solvent and is probably involved in an intramolecular inter- action stabilizing the peptide structure. </p>
<p>The ROESY spectrum of the peptide hydrate at pH 2 [Fig. 2(a)] showed few and weak ROE connectivities between successive amide protons compared with that at pH 5 [Fig. 2(b)]. For instance the YNH/DNH cross peak, which in combination with a low absolute temperature coefficient value for the QNH could be a diagnostic for the presence of a type IS-turn in the sequence -R-Y-D-Q-, is absent at pH 2 [Fig. 2(a)],in contrast with pH 5 [Fig. 2(b),Table 3). Additionally, the weak DNHIQNH connectivity [Fig. 2(a)]lends support to a flexible conformation at pH 2. Addition of molecular sieves to the DMSO peptide solution at pH 2 resulted in the progressive elimination of the water signals (resonance peak at 3.3 ppm) and a variety of spectral modifications were observed (Fig. </p>
<p>3, Tables 1 and 2). The backbone chemical shift differences between the peptide after removing a substantial amount of trace water and the peptide hydrate at pH 2 are shown in Fig. l(b),and the NH and C"H chemical shift changes of the central sequence (RYDQ) indicate significant conformational perturbation after eliminating most of the water. Emphasis should also be placed on the low absolute temperature coefficient values of the RNH, DNH and QNH amide protons obtained after addition of molecular sieves to the DMSO peptide solution (Table 2). </p>
<p>These indicate that these NH groups are not entirely exposed to the solvent and they are probably involved in intramolecular interactions. The previ- ously cited variations of the temperature coefficient values (Tables 1 and 2) suggest that the environment of almost all the 824 J. CHEM. SOC. PERKIN TRANS. 2 1994 conformational similarities of the molecule in both cases (Tables 2 and 3).I"1 Rather intense ROE connectivities were observed between SIR o R/R @ UL the successive amide protons YNH/DNH and DNHiQNH at pH 5 and 2 after treatment with molecular sieves. The absence of a strong YC"H/DNH connectivity was confirmed byAIS CD 'Is 8 DID recording a NOESY spectrum at 400 MHz, of which selected RN @? YN rows are shown in Fig. </p>
<p>4. These findings, as well as the low O absolute temperature coefficient value of QNH (Tables 2 and 3) argue in favour of a type Ip-turn * at the -R-Y-D-Q C-terminal part of the octapeptide involving the QNH +RCO interaction. Intense ROE connectivities were also found between successive C"H,/NH,+ and NH,/NH,+ , protons (AC"H/SNH and SNH/RNH, respectively), as well as between SC"H/RNH [Fig. R/R @ SIR 2(b)and (c)]. These qualitative ROE data and the low absolute temperature coefficient values of RNH (Tables 2 and 3) amide proton denote a non-random structure at the N-terminal part of the octapeptide. The considerably downfield shift ''T'-~ of the JI RNEH signal (ca. 10.1 ppm) and the unusually large chemical shift difference of the magnetically non-equivalent DCDH2 protons (Ad = 0.4) may possibly indicate an interaction between the quanidinium and the D-P-carboxylate groups at DIQ Q/Q pH 5 and 2 after removal of trace water. </p>
<p>We conclude that the peptide structure at pH 5 and 2 after removal of the trace water is stabilized (i) by the formation of a type I p-turn involving the QNH-RCO interaction and (ii) by x loa possible interaction between the guanidinium and the D-P-I'"'I""'I"" 8.0 4.0 PPm Fig. 2 The NHINH and C"HiNH portions of the 200 MHz ROESY spectra of IASRYDQL octapeptide in [2H,]DMS0 without molecular sieves at pH 2 (a), at pH 5 (b), and seven days after addition of molecular sieves at pH 2 (c) NH protons was affected. Interestingly, low absolute M/AT values were also measured for the same amide protons of the octapeptide solution at pH 5, in which traces of water remained bound to the peptide even after vigorous treatment with molecular sieves (Table 3). </p>
<p>Comparison of the ROE connectivities of the initial peptide solution at pH 2 and after treatment with molecular sieves, showed that the residual water contributes to the stabilization of the peptide conformation [Figs. 2(a) and (c)]. In addition, the density of the ROE connectivities between NH,,,/NH,,+ ,) protons after addition of molecular sieves, is comparable to that of the ROE cross peaks between consecutive amide protons of the peptide at pH 5 [Figs. 2(h)and (c)]. Taking into account the similarities of the temperature coefficient values (Tables 2 and 3) (a unique exception is the temperature coefficient value of LNH, which probably reflects the different ionization states of the C-terminal carboxylic group at the two pH values) and the NH,,,/NH(,+,, connec- tivities of the peptide after removal of water, as well as at pH 5 [Figs. </p>
<p>2(h)and (c)], we can assume that the octapeptide adopts similar conformations in both cases. Additional confirmation for this assumption is obtained from the backbone chemical- shift differences of the DMSO octapeptide solution [Fig. l(c)]. It appears that the unique resonance differences are those of the C"H protons corresponding to the N-and C-terminal residues (I and L, respectively), probably due to changes of charge, In contrast, the very small perturbation of the proton chemical shifts of residues S, R, Y, D and Q indicates that the magnetic environment of the peptide backbone is preserved. </p>
<p>Furthermore, comparison of the coupling constant values of the peptide after elimination of water and at pH 5 highlights the carboxylate groups. Location of Residual Water in the 1250ASRYDQL2s7 +Octupeptide Structure.-Cross-peaks between IN H,, SOH, YOH and LCOOH protons and those of water molecules were observed in a HOHAHA experiment of the octapeptide in DMSO solution at pH 2 without molecular sieves. Although cross peaks due to chemical exchange can be obtained in a HOHAHA spectrum for easily exchangeable protons, only the exchange cross-peaks between IN'H,, SOH, YOH, LCOOH and residual water were noted, whereas exchange cross-peaks of the above mentioned functional groups between each other were absent. </p>
<p>This fact provides evidence for the occurrence of residual water in the vicinity of the above-mentioned residues and that water participates in the exchange process.' Further information on the position of the peptide-bound water was obtained from the exchange cross-peaks found in a ROESY spectrum (cross-peaks of the same sign as the diagonal peaks) similar to those detected in the HOHAHA experiment. Additionally, ROE connectivities between the aromatic YC"'H and YC2g6H protons and H20 molecules (cross-peaks of opposite sign to the diagonal peaks) were detected in the ROESY spectrum (Fig. 5). </p>
<p>The intense ROE cross-peak between YC3,'H and water could possibly arise from a two-step interaction whereby magnetization is transferred uia exchange from water to YOH followed by through-space NOE transfer to YC3vSH. In addition, the less intense ROE connectivity between YC2g6H and water could occur via a similar mechanism followed by an additional HOHAHA transfer step between YC3,'H and YC2,6H. A similar mechanism for the magnetization transfer was reported for the indole ring protons of W, where the ROESY cross peaks arising from this mechanism have the same sign as the cross-peaks resulting from a direct ROE tran~fer.'~,~'The weak ROE connectivity identified between SC"H and residual water should also derive from a similar magnetization-transfer pathway. </p>
<p>The above-mentioned findings provide evidence for the presence of residual water in close proximity to the IN'H, (proton donor) and the SOH, YOH and LCOOH groups (operating either as proton donors or proton acceptors). When molecular sieves were added to the DMSO peptide J. CHEM. SOC. PERKIN TRANS. 2 1994 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 PPm Fig. 3 The 200 MHz 'H NMR spectra of IASRYDQL octapeptide in ['HJDMSO without molecular sieves (a),and three days (/I) and seven days (c) after addition of molecular sieves 3 Y-Nti RN Ill It 111111' I '8.4 8.0 7!6 7f2 ' 6:s ' 614 6.0 ' 5.6 ' 5.2 4.8 ' 4.4 4.0 4.5 4.4 4.3 4.2 4.1 4.0 PPm PPm Fig. 4 Selected rows from the 400 MHz NOESY spectrum of IASRYDQL in ['HJDMSO at pH 5 and their expansion in the C'H region solution additional exchange cross-peaks were observed in a exchange cross-peak, RNnH,/H,O and ANH/H,O connect-HOHAHA experiment using the same previously defined ivities were also observed, while N+H,/H,O, COOH/H,O and spectral conditions. </p>
<p>In particular, besides the YOH/H,O SOH/H,O exchange cross-peaks were not detected. It is also -1.o 12.0 -3.0 -4.0 L5.0 0 i 4 .Q-6.0 -7.0 -8.0 a 0' -9.0 2 .o 0 I i'~~.~...~l~~~~~~,.*i~~~~l.. 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 PP"' Fig. 5 The 200 MHz ROESY spectrum of IASRYDQL in ['HJ DMSO without molecular sieves at pH 2; interactions with water giving cross-peaks of the same sign (0)and of opposite sign (V) to the diagonal peaks noteworthy that the ROESY cross-peaks between YC3+5H/H,0 and YC2,6/H,0were not noted after the elimination of the bulk water, probably due to variations in the exchange rate between the hydroxy groups and the residual water. Evidence for this change in the chemical exchange rate also comes from the alteration of the SOH and YOH resonance peak widths. </p>
<p>Conclusions The most prominent results obtained from our NMR study is that elimination of trace water from a DMSO solution of the 1250ASRYDQL257synthetic octapeptide (250-257) of Leish- mania gp63 at pH 2, induces conformational changes in the molecule and the rearrangement of the remaining residual water J. CHEM. SOC. PERKIN TRANS. 2 1994 contributes to its rigidification, resulting in a new structure similar to that at pH 5. </p>
<p>This structure is stabilized (i)by the formation of a type I p-turn involving the QNH-RCO interaction and (ii) by a possible interaction between the guanidinium and the D-P-carboxylate groups. The present study also contributes to the understanding of the catalytically active conformation of enzymes in organic solvents'' and shows the importance of the initially used solvent in the conformational properties of the final peptide solution.21 Acknowledgements This work was supported by EMBO (V. T.) and by the Greek Secretariat for Research and Technology. References 1 E. Ruoslahti and M. D. Pierschbacher, Science, 1987,238, 491. 2 M. D. Pierschbacker and E. Ruoslahti, J. Biol. </p>
<p>Chem., 1987, 262, 17294. 3 R. S. McDowell andT. R. Gadek, J. Am. Chem. SOC., 1992,114,9245. 4 F. S. Rizvi, M. A. Ouaissi, B. Marty, F. Santoro and A. Capron, Eur. J. Immunol., 1988, 18, 473. 5 K. P. Soteriadou, M. S. Remoundos, M. C. Katsikas, A. K. Tzinia, V. Tsikaris, C. Sakarellos and S. J. Tzartos, J. Biol. Chem., 1992,267, 13980. 6 H. J. Dyson and P. E. Wright, Ann. Rev. Biophys. Chem., 1991,20,5 19. 7 D. Sahal and P. Balaram, Biochemistry, 1986,25, 6004. 8 G. M. Clore, A. Bax, P. T. Wingfield and A. M. Gronenborn, Biochemistry, 1990,29, 5671. 9 S. Chaturvedi, K. Go and R. Parthasarathy, Biopolymers, 1991,31, '.l~~..~....~..397. 10 A. M. Klibanov, Trends Biochem. Sci., 1989,14, 141. 1 1 V. Tsikaris, M. Sakarellos-Daitsiotis, N. Theophanidis, C. Sakarellos, M. T. Cung and M. Marraud, J. Chem. Sac., Perkin Trans. 2, 1991, 1353. 12 I. I. Vaisman and M. L. Berkowitz,J.Am. Chem. SOC., 1992,114,7889. 13 D. Neuhaus and J. Keeler, J. Magn. Reson., 1986,68, 568. 14 A. Bax and G. Davis, J. Magn. Reson., 1985,65, 355. 15 V. Tsikaris, M. Sakarellos-Daitsiotis, E. Panou-Pomonis, E. Detsikas, C. Sakarellos, M. T. Cung and M. Marraud, Peptide Rex, 1992,5, 110. 16 E. Detsikas, V. Tsikaris, M. Sakarellos-Daitsiotis, C. Sakarellos, M. T. Cung, M. Marraud, E. Vatzaki and S. J. Tzartos, Peptide Res., 1993,6, 17. 17 M. Sheinblatt, J. Am. Chem. SOC., 1966,8, 2845. 18 K. Wuthrich, NMR of Proteins and Nucleic Acids, Wiley, New York, 1986. 19 A. Bax, J. Magn. Reson., 1988, 77, 134. 20 B. T. Farmer, S. Macura and L. R. Brown, J. Mugn. Reson., 1987,72, 342. 21 J. A. Killian and D. W. Urry, Biochemistry, 1988,27, 7295. Paper 3/066021 Received 4th November 1993 Accepted 10th January 1994 </p>
</section>
</art-body>
<art-back>
<biblist>
<citgroup id="cit1">
<journalcit>
<citauth>
<fname>E.</fname>
<surname>Ruoslahti</surname>
</citauth>
<citauth>
<fname>M. D.</fname>
<surname>Pierschbacher</surname>
</citauth>
<title>Science</title>
<year>1987</year>
<volumeno>238</volumeno>
<pages>
<fpage>491</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit2">
<journalcit>
<citauth>
<fname>M. D.</fname>
<surname>Pierschbacker</surname>
</citauth>
<citauth>
<fname>E.</fname>
<surname>Ruoslahti</surname>
</citauth>
<title>J. Biol. Chem.</title>
<year>1987</year>
<volumeno>262</volumeno>
<pages>
<fpage>17294</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit3">
<journalcit>
<citauth>
<fname>R. S.</fname>
<surname>McDowell</surname>
</citauth>
<citauth>
<fname>T. R.</fname>
<surname>Gadek</surname>
</citauth>
<title>J. Am. Chem. Soc.</title>
<year>1992</year>
<volumeno>114</volumeno>
<pages>
<fpage>9245</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit4">
<journalcit>
<citauth>
<fname>F. S.</fname>
<surname>Rizvi</surname>
</citauth>
<citauth>
<fname>M. A.</fname>
<surname>Ouaissi</surname>
</citauth>
<citauth>
<fname>B.</fname>
<surname>Marty</surname>
</citauth>
<citauth>
<fname>F.</fname>
<surname>Santoro</surname>
</citauth>
<citauth>
<fname>A.</fname>
<surname>Capron</surname>
</citauth>
<title>Eur. J. Immunol.</title>
<year>1988</year>
<volumeno>18</volumeno>
<pages>
<fpage>473</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit5">
<journalcit>
<citauth>
<fname>K. P.</fname>
<surname>Soteriadou</surname>
</citauth>
<citauth>
<fname>M. S.</fname>
<surname>Remoundos</surname>
</citauth>
<citauth>
<fname>M. C.</fname>
<surname>Katsikas</surname>
</citauth>
<citauth>
<fname>A. K.</fname>
<surname>Tzinia</surname>
</citauth>
<citauth>
<fname>V.</fname>
<surname>Tsikaris</surname>
</citauth>
<citauth>
<fname>C.</fname>
<surname>Sakarellos</surname>
</citauth>
<citauth>
<fname>S. J.</fname>
<surname>Tzartos</surname>
</citauth>
<title>J. Biol. Chem.</title>
<year>1992</year>
<volumeno>267</volumeno>
<pages>
<fpage>13980</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit6">
<journalcit>
<citauth>
<fname>H. J.</fname>
<surname>Dyson</surname>
</citauth>
<citauth>
<fname>P. E.</fname>
<surname>Wright</surname>
</citauth>
<title>Ann. Rev. Biophys. Chem.</title>
<year>1991</year>
<volumeno>20</volumeno>
<pages>
<fpage>519</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit7">
<journalcit>
<citauth>
<fname>D.</fname>
<surname>Sahal</surname>
</citauth>
<citauth>
<fname>P.</fname>
<surname>Balaram</surname>
</citauth>
<title>Biochemistry</title>
<year>1986</year>
<volumeno>25</volumeno>
<pages>
<fpage>6004</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit8">
<journalcit>
<citauth>
<fname>G. M.</fname>
<surname>Clore</surname>
</citauth>
<citauth>
<fname>A.</fname>
<surname>Bax</surname>
</citauth>
<citauth>
<fname>P. T.</fname>
<surname>Wingfield</surname>
</citauth>
<citauth>
<fname>A. M.</fname>
<surname>Gronenborn</surname>
</citauth>
<title>Biochemistry</title>
<year>1990</year>
<volumeno>29</volumeno>
<pages>
<fpage>5671</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit9">
<journalcit>
<citauth>
<fname>S.</fname>
<surname>Chaturvedi</surname>
</citauth>
<citauth>
<fname>K.</fname>
<surname>Go</surname>
</citauth>
<citauth>
<fname>R.</fname>
<surname>Parthasarathy</surname>
</citauth>
<title>Biopolymers</title>
<year>1991</year>
<volumeno>31</volumeno>
<pages>
<fpage>397</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit10">
<journalcit>
<citauth>
<fname>A. M.</fname>
<surname>Klibanov</surname>
</citauth>
<title>Trends Biochem. Sci.</title>
<year>1989</year>
<volumeno>14</volumeno>
<pages>
<fpage>141</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit11">
<journalcit>
<citauth>
<fname>V.</fname>
<surname>Tsikaris</surname>
</citauth>
<citauth>
<fname>M.</fname>
<surname>Sakarellos-Daitsiotis</surname>
</citauth>
<citauth>
<fname>N.</fname>
<surname>Theophanidis</surname>
</citauth>
<citauth>
<fname>C.</fname>
<surname>Sakarellos</surname>
</citauth>
<citauth>
<fname>M. T.</fname>
<surname>Cung</surname>
</citauth>
<citauth>
<fname>M.</fname>
<surname>Marraud</surname>
</citauth>
<title>J. Chem. Soc., Perkin Trans. 2</title>
<year>1991</year>
<pages>
<fpage>1353</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit12">
<journalcit>
<citauth>
<fname>I. I.</fname>
<surname>Vaisman</surname>
</citauth>
<citauth>
<fname>M. L.</fname>
<surname>Berkowitz</surname>
</citauth>
<title>J. Am. Chem. Soc.</title>
<year>1992</year>
<volumeno>114</volumeno>
<pages>
<fpage>7889</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit13">
<journalcit>
<citauth>
<fname>D.</fname>
<surname>Neuhaus</surname>
</citauth>
<citauth>
<fname>J.</fname>
<surname>Keeler</surname>
</citauth>
<title>J. Magn. Reson.</title>
<year>1986</year>
<volumeno>68</volumeno>
<pages>
<fpage>568</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit14">
<journalcit>
<citauth>
<fname>A.</fname>
<surname>Bax</surname>
</citauth>
<citauth>
<fname>G.</fname>
<surname>Davis</surname>
</citauth>
<title>J. Magn. Reson.</title>
<year>1985</year>
<volumeno>65</volumeno>
<pages>
<fpage>355</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit15">
<journalcit>
<citauth>
<fname>V.</fname>
<surname>Tsikaris</surname>
</citauth>
<citauth>
<fname>M.</fname>
<surname>Sakarellos-Daitsiotis</surname>
</citauth>
<citauth>
<fname>E.</fname>
<surname>Panou-Pomonis</surname>
</citauth>
<citauth>
<fname>E.</fname>
<surname>Detsikas</surname>
</citauth>
<citauth>
<fname>C.</fname>
<surname>Sakarellos</surname>
</citauth>
<citauth>
<fname>M. T.</fname>
<surname>Cung</surname>
</citauth>
<citauth>
<fname>M.</fname>
<surname>Marraud</surname>
</citauth>
<title>Peptide Res.</title>
<year>1992</year>
<volumeno>5</volumeno>
<pages>
<fpage>110</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit16">
<journalcit>
<citauth>
<fname>E.</fname>
<surname>Detsikas</surname>
</citauth>
<citauth>
<fname>V.</fname>
<surname>Tsikaris</surname>
</citauth>
<citauth>
<fname>M.</fname>
<surname>Sakarellos-Daitsiotis</surname>
</citauth>
<citauth>
<fname>C.</fname>
<surname>Sakarellos</surname>
</citauth>
<citauth>
<fname>M. T.</fname>
<surname>Cung</surname>
</citauth>
<citauth>
<fname>M.</fname>
<surname>Marraud</surname>
</citauth>
<citauth>
<fname>E.</fname>
<surname>Vatzaki</surname>
</citauth>
<citauth>
<fname>S. J.</fname>
<surname>Tzartos</surname>
</citauth>
<title>Peptide Res.</title>
<year>1993</year>
<volumeno>6</volumeno>
<pages>
<fpage>17</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit17">
<journalcit>
<citauth>
<fname>M.</fname>
<surname>Sheinblatt</surname>
</citauth>
<title>J. Am. Chem. Soc.</title>
<year>1966</year>
<volumeno>8</volumeno>
<pages>
<fpage>2845</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit18">
<citation type="book">
<citauth>
<fname>K.</fname>
<surname>Wüthrich</surname>
</citauth>
,
<title>NMR of Proteins and Nucleic Acids</title>
,
<citpub>Wiley</citpub>
,
<pubplace>New York</pubplace>
,
<year>1986</year>
.</citation>
</citgroup>
<citgroup id="cit19">
<journalcit>
<citauth>
<fname>A.</fname>
<surname>Bax</surname>
</citauth>
<title>J. Magn. Reson.</title>
<year>1988</year>
<volumeno>77</volumeno>
<pages>
<fpage>134</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit20">
<journalcit>
<citauth>
<fname>B. T.</fname>
<surname>Farmer</surname>
</citauth>
<citauth>
<fname>S.</fname>
<surname>Macura</surname>
</citauth>
<citauth>
<fname>L. R.</fname>
<surname>Brown</surname>
</citauth>
<title>J. Magn. Reson.</title>
<year>1987</year>
<volumeno>72</volumeno>
<pages>
<fpage>342</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit21">
<journalcit>
<citauth>
<fname>J. A.</fname>
<surname>Killian</surname>
</citauth>
<citauth>
<fname>D. W.</fname>
<surname>Urry</surname>
</citauth>
<title>Biochemistry</title>
<year>1988</year>
<volumeno>27</volumeno>
<pages>
<fpage>7295</fpage>
</pages>
</journalcit>
</citgroup>
</biblist>
<compoundgrp></compoundgrp>
<annotationgrp></annotationgrp>
<datagrp></datagrp>
<resourcegrp></resourcegrp>
</art-back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>NMR study on a SRYD-containing fibronectin-like sequence (250–257) of Leishmania gp63: contribution of residual water in the dimethyl sulfoxide solution structure</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>NMR study on a SRYD-containing fibronectin-like sequence (250–257) of Leishmania gp63: contribution of residual water in the dimethyl sulfoxide solution structure</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vassilias</namePart>
<namePart type="family">Tsikaris</namePart>
</name>
<name type="personal">
<namePart type="given">Mahn Thong</namePart>
<namePart type="family">Cung</namePart>
</name>
<name type="personal">
<namePart type="given">Constantinos</namePart>
<namePart type="family">Sakarellos</namePart>
</name>
<name type="personal">
<namePart type="given">Athina K.</namePart>
<namePart type="family">Tzinia</namePart>
</name>
<name type="personal">
<namePart type="given">Ketty P.</namePart>
<namePart type="family">Soterladou</namePart>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Sakarellos-Daitsiotis</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="ART" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D"></genre>
<originInfo>
<publisher>The Royal Society of Chemistry.</publisher>
<dateIssued encoding="w3cdtf">1994</dateIssued>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>The conformational characteristics of the I250ASRYDQL257 synthetic octapeptide, which incorporates the SRYD adhesion site (252–255) of Leishmania gp63, have been investigated at pH 2 and 5, by means of 1 D and 2D 1H NMR spectroscopy (temperature coefficient values, chemical shifts, vicinal coupling constants and NOE effects). It was found that elimination of residual water from the dimethyl sulfoxide (DMSO) solution at pH 2 provides exchange peaks in the ROESY and HOHAHA spectra similar to those obtained for the DMSO peptide solution at pH 5. This common structure is stabilized (i) by the formation of a type I β-turn involving the QNH→RCO interaction and (ii) by a possible interaction between the guanidinium and the D-β-carboxylate groups. After treatment with molecular sieves, the remaining residual water is redistributed between the peptide functional groups and participates in the rigidification of the new conformational state.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of the Chemical Society, Perkin Transactions 2</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Chem. Soc., Perkin Trans. 2</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>The Royal Society of Chemistry.</publisher>
<dateIssued encoding="w3cdtf">1994</dateIssued>
</originInfo>
<identifier type="ISSN">0300-9580</identifier>
<identifier type="eISSN">1364-5471</identifier>
<identifier type="coden">JCPKBH</identifier>
<identifier type="RSC-sercode">P2</identifier>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>0</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>821</start>
<end>826</end>
<total>6</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">C65D4067551148C7555E7DE99EB1B955AAA96923</identifier>
<identifier type="ark">ark:/67375/QHD-L5BJQFF7-S</identifier>
<identifier type="DOI">10.1039/P29940000821</identifier>
<identifier type="ms-id">P29940000821</identifier>
<accessCondition type="use and reproduction" contentType="copyright">This journal is © The Royal Society of Chemistry</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-Z6ZBG4DQ-N">rsc-journals</recordContentSource>
<recordOrigin>The Royal Society of Chemistry</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/C65D4067551148C7555E7DE99EB1B955AAA96923/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001833 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001833 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C65D4067551148C7555E7DE99EB1B955AAA96923
   |texte=   NMR study on a SRYD-containing fibronectin-like sequence (250–257) of Leishmania gp63: contribution of residual water in the dimethyl sulfoxide solution structure
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024