Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of Experimental and Computational Particle Trajectories in a Stirred Vessel

Identifieur interne : 001151 ( Istex/Corpus ); précédent : 001150; suivant : 001152

Comparison of Experimental and Computational Particle Trajectories in a Stirred Vessel

Auteurs : Hélène Barrue ; Catherine Xuereb ; Pascal Pitiot ; Laurent Falk ; Joël Bertrand

Source :

RBID : ISTEX:235A02C63D2C6B757CE3118827A345C14258D5F2

English descriptors

Abstract

A particle trajectory in a turbulent flow is measured by a 3‐dimensional tracking technique and compared with the pattern calculated by a Lagrangian model. The geometry chosen is a standard vessel provided with a Rushton turbine. First, the flow field is simulated using the commercial Fluent package. The impeller global performance is determined. The dimensionless numbers are calculated: tc, NQP, NP. These results are validated by LDV data. The numerical particle trajectory is compared to the experimental trajectory, and the reliability of the numerical trajectory is proved. Finally, some news tools for analyzing the flow are presented. Useful information is included in the long particle trajectory, which enables one to compute a probability of presence. The fluid dynamic behavior is visualized by Poincaré sections.

Url:
DOI: 10.1002/(SICI)1521-4125(199906)22:6<511::AID-CEAT511>3.0.CO;2-X

Links to Exploration step

ISTEX:235A02C63D2C6B757CE3118827A345C14258D5F2

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparison of Experimental and Computational Particle Trajectories in a Stirred Vessel</title>
<author>
<name sortKey="Barrue, Helene" sort="Barrue, Helene" uniqKey="Barrue H" first="Hélène" last="Barrue">Hélène Barrue</name>
<affiliation>
<mods:affiliation>Laboratoire de Génie Chimique, UMR‐CNRS 5503, INP‐ENSIGC, 18, chemin de la Loge, 31078 Toulouse Cedex 4, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xuereb, Catherine" sort="Xuereb, Catherine" uniqKey="Xuereb C" first="Catherine" last="Xuereb">Catherine Xuereb</name>
<affiliation>
<mods:affiliation>E-mail: Catherine.Xuereb@ensigct.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Catherine.Xuereb@ensigct.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pitiot, Pascal" sort="Pitiot, Pascal" uniqKey="Pitiot P" first="Pascal" last="Pitiot">Pascal Pitiot</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, INPL‐ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Falk, Laurent" sort="Falk, Laurent" uniqKey="Falk L" first="Laurent" last="Falk">Laurent Falk</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, INPL‐ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bertrand, Joel" sort="Bertrand, Joel" uniqKey="Bertrand J" first="Joël" last="Bertrand">Joël Bertrand</name>
<affiliation>
<mods:affiliation>Laboratoire de Génie Chimique, UMR‐CNRS 5503, INP‐ENSIGC, 18, chemin de la Loge, 31078 Toulouse Cedex 4, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:235A02C63D2C6B757CE3118827A345C14258D5F2</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1002/(SICI)1521-4125(199906)22:6<511::AID-CEAT511>3.0.CO;2-X</idno>
<idno type="url">https://api.istex.fr/document/235A02C63D2C6B757CE3118827A345C14258D5F2/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001151</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001151</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Comparison of Experimental and Computational Particle Trajectories in a Stirred Vessel</title>
<author>
<name sortKey="Barrue, Helene" sort="Barrue, Helene" uniqKey="Barrue H" first="Hélène" last="Barrue">Hélène Barrue</name>
<affiliation>
<mods:affiliation>Laboratoire de Génie Chimique, UMR‐CNRS 5503, INP‐ENSIGC, 18, chemin de la Loge, 31078 Toulouse Cedex 4, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xuereb, Catherine" sort="Xuereb, Catherine" uniqKey="Xuereb C" first="Catherine" last="Xuereb">Catherine Xuereb</name>
<affiliation>
<mods:affiliation>E-mail: Catherine.Xuereb@ensigct.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Catherine.Xuereb@ensigct.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pitiot, Pascal" sort="Pitiot, Pascal" uniqKey="Pitiot P" first="Pascal" last="Pitiot">Pascal Pitiot</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, INPL‐ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Falk, Laurent" sort="Falk, Laurent" uniqKey="Falk L" first="Laurent" last="Falk">Laurent Falk</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, INPL‐ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bertrand, Joel" sort="Bertrand, Joel" uniqKey="Bertrand J" first="Joël" last="Bertrand">Joël Bertrand</name>
<affiliation>
<mods:affiliation>Laboratoire de Génie Chimique, UMR‐CNRS 5503, INP‐ENSIGC, 18, chemin de la Loge, 31078 Toulouse Cedex 4, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Chemical Engineering & Technology</title>
<title level="j" type="alt">CHEMICAL ENGINEERING TECHNOLOGY CET</title>
<idno type="ISSN">0930-7516</idno>
<idno type="eISSN">1521-4125</idno>
<imprint>
<biblScope unit="vol">22</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="511">511</biblScope>
<biblScope unit="page" to="521">521</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="1999-06">1999-06</date>
</imprint>
<idno type="ISSN">0930-7516</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0930-7516</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Axial</term>
<term>Axial flow</term>
<term>Axial velocity</term>
<term>Baffle</term>
<term>Boundary conditions</term>
<term>Center region</term>
<term>Chem</term>
<term>Circulation loop center</term>
<term>Circulation loops</term>
<term>Circulation time</term>
<term>Cylindrical section</term>
<term>Cylindrical vessel</term>
<term>Dissipation</term>
<term>Downward motion</term>
<term>Drag coefficient</term>
<term>Drag force</term>
<term>Eddy</term>
<term>Eddy dissipation</term>
<term>Effective circulation time</term>
<term>Energy dissipation rate</term>
<term>Energy profile</term>
<term>Energy profiles</term>
<term>Experimental apparatus</term>
<term>Experimental case</term>
<term>Experimental data</term>
<term>Experimental section</term>
<term>Experimental sections</term>
<term>Experimental trajectory</term>
<term>Flow pattern</term>
<term>Flow rate</term>
<term>Fluid element</term>
<term>Fluid mech</term>
<term>Fluid velocity</term>
<term>Free surface</term>
<term>Full paper</term>
<term>Full paper figure</term>
<term>Gmbh</term>
<term>Great number</term>
<term>Horizontal planes</term>
<term>Horizontal poincar</term>
<term>Horizontal sections</term>
<term>Image processing</term>
<term>Impeller</term>
<term>Impeller plane</term>
<term>Impeller region</term>
<term>Impeller volume</term>
<term>Integral time</term>
<term>Joshi</term>
<term>Kolmogorov microscale</term>
<term>Kresta</term>
<term>Lagrangian</term>
<term>Lagrangian model</term>
<term>Long particle trajectory</term>
<term>Long trajectory</term>
<term>Macroscale length</term>
<term>Mathematical model</term>
<term>Neutral buoyancy</term>
<term>Nonisotropic viscosity turbulence model</term>
<term>Numerical model</term>
<term>Numerical predictions</term>
<term>Numerical result</term>
<term>Numerical results</term>
<term>Numerical section</term>
<term>Numerical trajectory</term>
<term>Numerical value</term>
<term>Numerous authors</term>
<term>Opposite direction</term>
<term>Other forces</term>
<term>Particle</term>
<term>Particle trajectory</term>
<term>Particle velocity</term>
<term>Particles trajectories</term>
<term>Plastic ball</term>
<term>Poincar</term>
<term>Power number</term>
<term>Power rate dissipation</term>
<term>Radial poincar</term>
<term>Ranade</term>
<term>Recirculation loop</term>
<term>Residence time</term>
<term>Reynolds number</term>
<term>Rotational speed direction</term>
<term>Rushton</term>
<term>Rushton turbine</term>
<term>Same method</term>
<term>Same order</term>
<term>Simulation</term>
<term>Small particle</term>
<term>Small particles</term>
<term>Source terms</term>
<term>Space coordinates</term>
<term>Spherical particle</term>
<term>Standard geometry</term>
<term>Tangential velocity</term>
<term>Technol</term>
<term>Theoretical circulation time</term>
<term>Time step</term>
<term>Total trajectory time</term>
<term>Tracer</term>
<term>Trajectory</term>
<term>Trajectory time</term>
<term>Turbine</term>
<term>Turbine plane</term>
<term>Turbulence</term>
<term>Turbulence model</term>
<term>Turbulent</term>
<term>Turbulent flow</term>
<term>Turbulent flows</term>
<term>Useful information</term>
<term>Velocity components</term>
<term>Velocity field</term>
<term>Velocity profile</term>
<term>Velocity profiles</term>
<term>Velocity vectors</term>
<term>Velocity vtip</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Vertical plane</term>
<term>Vessel center</term>
<term>Wall function</term>
<term>Weinheim</term>
<term>Whole volume</term>
<term>Zannoud</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Axial</term>
<term>Axial flow</term>
<term>Axial velocity</term>
<term>Baffle</term>
<term>Boundary conditions</term>
<term>Center region</term>
<term>Chem</term>
<term>Circulation loop center</term>
<term>Circulation loops</term>
<term>Circulation time</term>
<term>Cylindrical section</term>
<term>Cylindrical vessel</term>
<term>Dissipation</term>
<term>Downward motion</term>
<term>Drag coefficient</term>
<term>Drag force</term>
<term>Eddy</term>
<term>Eddy dissipation</term>
<term>Effective circulation time</term>
<term>Energy dissipation rate</term>
<term>Energy profile</term>
<term>Energy profiles</term>
<term>Experimental apparatus</term>
<term>Experimental case</term>
<term>Experimental data</term>
<term>Experimental section</term>
<term>Experimental sections</term>
<term>Experimental trajectory</term>
<term>Flow pattern</term>
<term>Flow rate</term>
<term>Fluid element</term>
<term>Fluid mech</term>
<term>Fluid velocity</term>
<term>Free surface</term>
<term>Full paper</term>
<term>Full paper figure</term>
<term>Gmbh</term>
<term>Great number</term>
<term>Horizontal planes</term>
<term>Horizontal poincar</term>
<term>Horizontal sections</term>
<term>Image processing</term>
<term>Impeller</term>
<term>Impeller plane</term>
<term>Impeller region</term>
<term>Impeller volume</term>
<term>Integral time</term>
<term>Joshi</term>
<term>Kolmogorov microscale</term>
<term>Kresta</term>
<term>Lagrangian</term>
<term>Lagrangian model</term>
<term>Long particle trajectory</term>
<term>Long trajectory</term>
<term>Macroscale length</term>
<term>Mathematical model</term>
<term>Neutral buoyancy</term>
<term>Nonisotropic viscosity turbulence model</term>
<term>Numerical model</term>
<term>Numerical predictions</term>
<term>Numerical result</term>
<term>Numerical results</term>
<term>Numerical section</term>
<term>Numerical trajectory</term>
<term>Numerical value</term>
<term>Numerous authors</term>
<term>Opposite direction</term>
<term>Other forces</term>
<term>Particle</term>
<term>Particle trajectory</term>
<term>Particle velocity</term>
<term>Particles trajectories</term>
<term>Plastic ball</term>
<term>Poincar</term>
<term>Power number</term>
<term>Power rate dissipation</term>
<term>Radial poincar</term>
<term>Ranade</term>
<term>Recirculation loop</term>
<term>Residence time</term>
<term>Reynolds number</term>
<term>Rotational speed direction</term>
<term>Rushton</term>
<term>Rushton turbine</term>
<term>Same method</term>
<term>Same order</term>
<term>Simulation</term>
<term>Small particle</term>
<term>Small particles</term>
<term>Source terms</term>
<term>Space coordinates</term>
<term>Spherical particle</term>
<term>Standard geometry</term>
<term>Tangential velocity</term>
<term>Technol</term>
<term>Theoretical circulation time</term>
<term>Time step</term>
<term>Total trajectory time</term>
<term>Tracer</term>
<term>Trajectory</term>
<term>Trajectory time</term>
<term>Turbine</term>
<term>Turbine plane</term>
<term>Turbulence</term>
<term>Turbulence model</term>
<term>Turbulent</term>
<term>Turbulent flow</term>
<term>Turbulent flows</term>
<term>Useful information</term>
<term>Velocity components</term>
<term>Velocity field</term>
<term>Velocity profile</term>
<term>Velocity profiles</term>
<term>Velocity vectors</term>
<term>Velocity vtip</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Vertical plane</term>
<term>Vessel center</term>
<term>Wall function</term>
<term>Weinheim</term>
<term>Whole volume</term>
<term>Zannoud</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A particle trajectory in a turbulent flow is measured by a 3‐dimensional tracking technique and compared with the pattern calculated by a Lagrangian model. The geometry chosen is a standard vessel provided with a Rushton turbine. First, the flow field is simulated using the commercial Fluent package. The impeller global performance is determined. The dimensionless numbers are calculated: tc, NQP, NP. These results are validated by LDV data. The numerical particle trajectory is compared to the experimental trajectory, and the reliability of the numerical trajectory is proved. Finally, some news tools for analyzing the flow are presented. Useful information is included in the long particle trajectory, which enables one to compute a probability of presence. The fluid dynamic behavior is visualized by Poincaré sections.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>impeller</json:string>
<json:string>flow pattern</json:string>
<json:string>chem</json:string>
<json:string>poincar</json:string>
<json:string>dissipation</json:string>
<json:string>trajectory</json:string>
<json:string>verlag</json:string>
<json:string>gmbh</json:string>
<json:string>lagrangian</json:string>
<json:string>weinheim</json:string>
<json:string>technol</json:string>
<json:string>rushton</json:string>
<json:string>ranade</json:string>
<json:string>turbulent flow</json:string>
<json:string>rushton turbine</json:string>
<json:string>joshi</json:string>
<json:string>verlag gmbh</json:string>
<json:string>tracer</json:string>
<json:string>zannoud</json:string>
<json:string>boundary conditions</json:string>
<json:string>experimental data</json:string>
<json:string>kresta</json:string>
<json:string>fluid element</json:string>
<json:string>full paper</json:string>
<json:string>flow rate</json:string>
<json:string>baffle</json:string>
<json:string>particle trajectory</json:string>
<json:string>lagrangian model</json:string>
<json:string>free surface</json:string>
<json:string>experimental apparatus</json:string>
<json:string>impeller plane</json:string>
<json:string>spherical particle</json:string>
<json:string>drag force</json:string>
<json:string>impeller volume</json:string>
<json:string>circulation time</json:string>
<json:string>turbulent</json:string>
<json:string>experimental trajectory</json:string>
<json:string>numerical trajectory</json:string>
<json:string>theoretical circulation time</json:string>
<json:string>whole volume</json:string>
<json:string>power number</json:string>
<json:string>impeller region</json:string>
<json:string>numerical predictions</json:string>
<json:string>reynolds number</json:string>
<json:string>energy dissipation rate</json:string>
<json:string>horizontal sections</json:string>
<json:string>full paper figure</json:string>
<json:string>drag coefficient</json:string>
<json:string>particle velocity</json:string>
<json:string>effective circulation time</json:string>
<json:string>integral time</json:string>
<json:string>vertical plane</json:string>
<json:string>experimental case</json:string>
<json:string>velocity field</json:string>
<json:string>numerical results</json:string>
<json:string>same order</json:string>
<json:string>standard geometry</json:string>
<json:string>cylindrical vessel</json:string>
<json:string>kolmogorov microscale</json:string>
<json:string>time step</json:string>
<json:string>turbulence</json:string>
<json:string>simulation</json:string>
<json:string>turbine</json:string>
<json:string>particle</json:string>
<json:string>energy profile</json:string>
<json:string>small particle</json:string>
<json:string>macroscale length</json:string>
<json:string>axial velocity</json:string>
<json:string>power rate dissipation</json:string>
<json:string>space coordinates</json:string>
<json:string>source terms</json:string>
<json:string>velocity profile</json:string>
<json:string>wall function</json:string>
<json:string>nonisotropic viscosity turbulence model</json:string>
<json:string>other forces</json:string>
<json:string>numerous authors</json:string>
<json:string>velocity vectors</json:string>
<json:string>fluid mech</json:string>
<json:string>velocity vtip</json:string>
<json:string>long trajectory</json:string>
<json:string>velocity profiles</json:string>
<json:string>turbulence model</json:string>
<json:string>energy profiles</json:string>
<json:string>useful information</json:string>
<json:string>eddy dissipation</json:string>
<json:string>horizontal planes</json:string>
<json:string>tangential velocity</json:string>
<json:string>numerical model</json:string>
<json:string>recirculation loop</json:string>
<json:string>turbine plane</json:string>
<json:string>long particle trajectory</json:string>
<json:string>numerical value</json:string>
<json:string>circulation loops</json:string>
<json:string>numerical result</json:string>
<json:string>vessel center</json:string>
<json:string>axial flow</json:string>
<json:string>fluid velocity</json:string>
<json:string>same method</json:string>
<json:string>residence time</json:string>
<json:string>total trajectory time</json:string>
<json:string>image processing</json:string>
<json:string>great number</json:string>
<json:string>trajectory time</json:string>
<json:string>small particles</json:string>
<json:string>plastic ball</json:string>
<json:string>velocity components</json:string>
<json:string>center region</json:string>
<json:string>downward motion</json:string>
<json:string>experimental sections</json:string>
<json:string>radial poincar</json:string>
<json:string>rotational speed direction</json:string>
<json:string>opposite direction</json:string>
<json:string>circulation loop center</json:string>
<json:string>horizontal poincar</json:string>
<json:string>numerical section</json:string>
<json:string>experimental section</json:string>
<json:string>neutral buoyancy</json:string>
<json:string>cylindrical section</json:string>
<json:string>mathematical model</json:string>
<json:string>turbulent flows</json:string>
<json:string>particles trajectories</json:string>
<json:string>axial</json:string>
<json:string>eddy</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Hélène Barrue</name>
<affiliations>
<json:string>Laboratoire de Génie Chimique, UMR‐CNRS 5503, INP‐ENSIGC, 18, chemin de la Loge, 31078 Toulouse Cedex 4, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Catherine Xuereb</name>
<affiliations>
<json:string>E-mail: Catherine.Xuereb@ensigct.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>Pascal Pitiot</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, INPL‐ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Laurent Falk</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, INPL‐ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Joël Bertrand</name>
<affiliations>
<json:string>Laboratoire de Génie Chimique, UMR‐CNRS 5503, INP‐ENSIGC, 18, chemin de la Loge, 31078 Toulouse Cedex 4, France</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>CEAT511</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>A particle trajectory in a turbulent flow is measured by a 3‐dimensional tracking technique and compared with the pattern calculated by a Lagrangian model. The geometry chosen is a standard vessel provided with a Rushton turbine. First, the flow field is simulated using the commercial Fluent package. The impeller global performance is determined. The dimensionless numbers are calculated: tc, NQP, NP. These results are validated by LDV data. The numerical particle trajectory is compared to the experimental trajectory, and the reliability of the numerical trajectory is proved. Finally, some news tools for analyzing the flow are presented. Useful information is included in the long particle trajectory, which enables one to compute a probability of presence. The fluid dynamic behavior is visualized by Poincaré sections.</abstract>
<qualityIndicators>
<score>6.488</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>595 x 794 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>827</abstractCharCount>
<pdfWordCount>6212</pdfWordCount>
<pdfCharCount>36402</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>124</abstractWordCount>
</qualityIndicators>
<title>Comparison of Experimental and Computational Particle Trajectories in a Stirred Vessel</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Chemical Engineering & Technology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1521-4125</json:string>
</doi>
<issn>
<json:string>0930-7516</json:string>
</issn>
<eissn>
<json:string>1521-4125</json:string>
</eissn>
<publisherId>
<json:string>CEAT</json:string>
</publisherId>
<volume>22</volume>
<issue>6</issue>
<pages>
<first>511</first>
<last>521</last>
<total>11</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Full Paper</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>engineering, chemical</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>chemical engineering</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>terre, ocean, espace</json:string>
<json:string>geophysique externe</json:string>
</inist>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1002/(SICI)1521-4125(199906)22:6>511::AID-CEAT511>3.0.CO;2-X</json:string>
</doi>
<id>235A02C63D2C6B757CE3118827A345C14258D5F2</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/235A02C63D2C6B757CE3118827A345C14258D5F2/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/235A02C63D2C6B757CE3118827A345C14258D5F2/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/235A02C63D2C6B757CE3118827A345C14258D5F2/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Comparison of Experimental and Computational Particle Trajectories in a Stirred Vessel</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<availability>
<licence>© 1999 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</licence>
</availability>
<date type="published" when="1999-06"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Comparison of Experimental and Computational Particle Trajectories in a Stirred Vessel</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Hélène</forename>
<surname>Barrue</surname>
</persName>
<affiliation>Laboratoire de Génie Chimique, UMR‐CNRS 5503, INP‐ENSIGC, 18, chemin de la Loge, 31078 Toulouse Cedex 4, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Catherine</forename>
<surname>Xuereb</surname>
</persName>
<email>Catherine.Xuereb@ensigct.fr</email>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Pascal</forename>
<surname>Pitiot</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, INPL‐ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Laurent</forename>
<surname>Falk</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, INPL‐ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Joël</forename>
<surname>Bertrand</surname>
</persName>
<affiliation>Laboratoire de Génie Chimique, UMR‐CNRS 5503, INP‐ENSIGC, 18, chemin de la Loge, 31078 Toulouse Cedex 4, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<idno type="istex">235A02C63D2C6B757CE3118827A345C14258D5F2</idno>
<idno type="ark">ark:/67375/WNG-G7476797-F</idno>
<idno type="DOI">10.1002/(SICI)1521-4125(199906)22:6<511::AID-CEAT511>3.0.CO;2-X</idno>
<idno type="unit">CEAT511</idno>
<idno type="toTypesetVersion">file:CEAT.CEAT511.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Chemical Engineering & Technology</title>
<title level="j" type="alt">CHEMICAL ENGINEERING TECHNOLOGY CET</title>
<idno type="pISSN">0930-7516</idno>
<idno type="eISSN">1521-4125</idno>
<idno type="book-DOI">10.1002/(ISSN)1521-4125</idno>
<idno type="book-part-DOI">10.1002/(SICI)1521-4125(199906)22:6<>1.0.CO;2-#</idno>
<idno type="product">CEAT</idno>
<imprint>
<biblScope unit="vol">22</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="511">511</biblScope>
<biblScope unit="page" to="521">521</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="1999-06"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>A particle trajectory in a turbulent flow is measured by a 3‐dimensional tracking technique and compared with the pattern calculated by a Lagrangian model. The geometry chosen is a standard vessel provided with a Rushton turbine. First, the flow field is simulated using the commercial Fluent package. The impeller global performance is determined. The dimensionless numbers are calculated: t
<hi rend="subscript">c</hi>
, N
<hi rend="subscript">QP</hi>
, N
<hi rend="subscript">P</hi>
. These results are validated by LDV data. The numerical particle trajectory is compared to the experimental trajectory, and the reliability of the numerical trajectory is proved. Finally, some news tools for analyzing the flow are presented. Useful information is included in the long particle trajectory, which enables one to compute a probability of presence. The fluid dynamic behavior is visualized by Poincaré sections.</p>
</abstract>
<abstract xml:lang="en" style="short">
<p>Using a 3‐dimensional tracking technique and comparing the pattern calculated by a Lagrangian model, the authors have measured particle trajectory. The flow field was simulated using the commercial Fluent package and the results obtained were validated by LDV data. The reliability of the numerical trajectory is discussed, and new tools for analyzing the flow are presented.</p>
</abstract>
<textClass>
<keywords rend="articleCategory">
<term>Full Paper</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/235A02C63D2C6B757CE3118827A345C14258D5F2/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>WILEY‐VCH Verlag</publisherName>
<publisherLoc>Weinheim</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1521-4125</doi>
<issn type="print">0930-7516</issn>
<issn type="electronic">1521-4125</issn>
<idGroup>
<id type="product" value="CEAT"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="CHEMICAL ENGINEERING TECHNOLOGY CET">Chemical Engineering & Technology</title>
<title type="tocForm">Chemical Engineering & Technology ‐ CET</title>
<title type="subtitle">Industrial Chemistry ‐ Plant Equipment ‐ Process Engineering ‐ Biotechnology</title>
<title type="short">Chem. Eng. Technol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="60">
<doi origin="wiley" registered="yes">10.1002/(SICI)1521-4125(199906)22:6<>1.0.CO;2-#</doi>
<numberingGroup>
<numbering type="journalVolume" number="22">22</numbering>
<numbering type="journalIssue">6</numbering>
</numberingGroup>
<coverDate startDate="1999-06">June 1999</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="9" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/(SICI)1521-4125(199906)22:6<511::AID-CEAT511>3.0.CO;2-X</doi>
<idGroup>
<id type="unit" value="CEAT511"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="11"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Full Paper</title>
</titleGroup>
<copyright ownership="publisher">© 1999 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1998-08-12"></event>
<event type="firstOnline" date="1999-06-08"></event>
<event type="publishedOnlineFinalForm" date="1999-06-08"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-09"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-15"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">511</numbering>
<numbering type="pageLast">521</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:CEAT.CEAT511.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="16"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="17"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Comparison of Experimental and Computational Particle Trajectories in a Stirred Vessel</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#a1">
<personName>
<givenNames>Hélène</givenNames>
<familyName>Barrue</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author">
<personName>
<givenNames>Catherine</givenNames>
<familyName>Xuereb</familyName>
</personName>
<contactDetails>
<email>Catherine.Xuereb@ensigct.fr</email>
</contactDetails>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#a2">
<personName>
<givenNames>Pascal</givenNames>
<familyName>Pitiot</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#a2">
<personName>
<givenNames>Laurent</givenNames>
<familyName>Falk</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#a1">
<personName>
<givenNames>Joël</givenNames>
<familyName>Bertrand</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratoire de Génie Chimique, UMR‐CNRS 5503, INP‐ENSIGC, 18, chemin de la Loge, 31078 Toulouse Cedex 4, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratoire des Sciences du Génie Chimique, INPL‐ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>A particle trajectory in a turbulent flow is measured by a 3‐dimensional tracking technique and compared with the pattern calculated by a Lagrangian model. The geometry chosen is a standard vessel provided with a Rushton turbine. First, the flow field is simulated using the commercial Fluent package. The impeller global performance is determined. The dimensionless numbers are calculated: t
<sub>c</sub>
, N
<sub>QP</sub>
, N
<sub>P</sub>
. These results are validated by LDV data. The numerical particle trajectory is compared to the experimental trajectory, and the reliability of the numerical trajectory is proved. Finally, some news tools for analyzing the flow are presented. Useful information is included in the long particle trajectory, which enables one to compute a probability of presence. The fluid dynamic behavior is visualized by Poincaré sections.</p>
</abstract>
<abstract type="short" xml:lang="en">
<p>Using a 3‐dimensional tracking technique and comparing the pattern calculated by a Lagrangian model, the authors have measured particle trajectory. The flow field was simulated using the commercial Fluent package and the results obtained were validated by LDV data. The reliability of the numerical trajectory is discussed, and new tools for analyzing the flow are presented.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Comparison of Experimental and Computational Particle Trajectories in a Stirred Vessel</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Comparison of Experimental and Computational Particle Trajectories in a Stirred Vessel</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Barrue</namePart>
<affiliation>Laboratoire de Génie Chimique, UMR‐CNRS 5503, INP‐ENSIGC, 18, chemin de la Loge, 31078 Toulouse Cedex 4, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Catherine</namePart>
<namePart type="family">Xuereb</namePart>
<affiliation>E-mail: Catherine.Xuereb@ensigct.fr</affiliation>
<affiliation>E-mail: Catherine.Xuereb@ensigct.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pascal</namePart>
<namePart type="family">Pitiot</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, INPL‐ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Falk</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, INPL‐ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joël</namePart>
<namePart type="family">Bertrand</namePart>
<affiliation>Laboratoire de Génie Chimique, UMR‐CNRS 5503, INP‐ENSIGC, 18, chemin de la Loge, 31078 Toulouse Cedex 4, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>WILEY‐VCH Verlag</publisher>
<place>
<placeTerm type="text">Weinheim</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1999-06</dateIssued>
<dateCaptured encoding="w3cdtf">1998-08-12</dateCaptured>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">16</extent>
<extent unit="tables">2</extent>
<extent unit="references">17</extent>
</physicalDescription>
<abstract lang="en">A particle trajectory in a turbulent flow is measured by a 3‐dimensional tracking technique and compared with the pattern calculated by a Lagrangian model. The geometry chosen is a standard vessel provided with a Rushton turbine. First, the flow field is simulated using the commercial Fluent package. The impeller global performance is determined. The dimensionless numbers are calculated: tc, NQP, NP. These results are validated by LDV data. The numerical particle trajectory is compared to the experimental trajectory, and the reliability of the numerical trajectory is proved. Finally, some news tools for analyzing the flow are presented. Useful information is included in the long particle trajectory, which enables one to compute a probability of presence. The fluid dynamic behavior is visualized by Poincaré sections.</abstract>
<abstract type="short" lang="en">Using a 3‐dimensional tracking technique and comparing the pattern calculated by a Lagrangian model, the authors have measured particle trajectory. The flow field was simulated using the commercial Fluent package and the results obtained were validated by LDV data. The reliability of the numerical trajectory is discussed, and new tools for analyzing the flow are presented.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Chemical Engineering & Technology</title>
<subTitle>Industrial Chemistry ‐ Plant Equipment ‐ Process Engineering ‐ Biotechnology</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Chem. Eng. Technol.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Full Paper</topic>
</subject>
<identifier type="ISSN">0930-7516</identifier>
<identifier type="eISSN">1521-4125</identifier>
<identifier type="DOI">10.1002/(ISSN)1521-4125</identifier>
<identifier type="PublisherID">CEAT</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>511</start>
<end>521</end>
<total>11</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">235A02C63D2C6B757CE3118827A345C14258D5F2</identifier>
<identifier type="ark">ark:/67375/WNG-G7476797-F</identifier>
<identifier type="DOI">10.1002/(SICI)1521-4125(199906)22:6<511::AID-CEAT511>3.0.CO;2-X</identifier>
<identifier type="ArticleID">CEAT511</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 1999 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>WILEY‐VCH Verlag</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/235A02C63D2C6B757CE3118827A345C14258D5F2/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001151 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001151 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:235A02C63D2C6B757CE3118827A345C14258D5F2
   |texte=   Comparison of Experimental and Computational Particle Trajectories in a Stirred Vessel
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024