Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reaction kinetics of multiphase polymer systems under flow

Identifieur interne : 000B29 ( Istex/Corpus ); précédent : 000B28; suivant : 000B30

Reaction kinetics of multiphase polymer systems under flow

Auteurs : Lian-Fang Feng ; Guo-Hua Hu

Source :

RBID : ISTEX:191B1D28B31CEC1FF77643C4C3376344A392DC1D

English descriptors

Abstract

For given nominal molar concentrations in complementary functional groups, the common wisdom is that the reaction rate of those attached to large molecules does not exceed that of small molecule analogues. They are at best equal. The difference in reaction kinetics is more pronounced if reactive molecules are so large that they phase‐separate, which is often so for polymers. In such cases, complementary functional groups from the two phases can meet and react only at the interfaces. Thus, reaction kinetics of functional groups attached to small molecules has always been taken as the upper bound for those attached to polymers. Here we show that under sufficient mixing, reaction kinetics of two immiscible reactive polymers can be significantly higher than that of small molecule analogues. This phenomenon is attributed to the combined effects of increasing collision probability originated from mixing‐induced interfacial area generation, longer relaxation time of reactive polymer chains, and eventually interfacial slip. © 2004 American Institute of Chemical Engineers AIChE J, 50:2604–2612, 2004

Url:
DOI: 10.1002/aic.10253

Links to Exploration step

ISTEX:191B1D28B31CEC1FF77643C4C3376344A392DC1D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reaction kinetics of multiphase polymer systems under flow</title>
<author>
<name sortKey="Feng, Lian Ang" sort="Feng, Lian Ang" uniqKey="Feng L" first="Lian-Fang" last="Feng">Lian-Fang Feng</name>
<affiliation>
<mods:affiliation>State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou, China</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Guo Ua" sort="Hu, Guo Ua" uniqKey="Hu G" first="Guo-Hua" last="Hu">Guo-Hua Hu</name>
<affiliation>
<mods:affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, BP 451, 54001 Nancy, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: hu@ensic.inpl‐nancy.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, BP 451, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:191B1D28B31CEC1FF77643C4C3376344A392DC1D</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1002/aic.10253</idno>
<idno type="url">https://api.istex.fr/document/191B1D28B31CEC1FF77643C4C3376344A392DC1D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B29</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Reaction kinetics of multiphase polymer systems under flow</title>
<author>
<name sortKey="Feng, Lian Ang" sort="Feng, Lian Ang" uniqKey="Feng L" first="Lian-Fang" last="Feng">Lian-Fang Feng</name>
<affiliation>
<mods:affiliation>State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou, China</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Guo Ua" sort="Hu, Guo Ua" uniqKey="Hu G" first="Guo-Hua" last="Hu">Guo-Hua Hu</name>
<affiliation>
<mods:affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, BP 451, 54001 Nancy, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: hu@ensic.inpl‐nancy.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, BP 451, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">AIChE Journal</title>
<title level="j" type="alt">AICHE JOURNAL</title>
<idno type="ISSN">0001-1541</idno>
<idno type="eISSN">1547-5905</idno>
<imprint>
<biblScope unit="vol">50</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="2604">2604</biblScope>
<biblScope unit="page" to="2612">2612</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>American Institute of Chemical Engineers</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2004-10">2004-10</date>
</imprint>
<idno type="ISSN">0001-1541</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0001-1541</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aiche</term>
<term>Aiche journal october</term>
<term>Alcohol system</term>
<term>Analogue</term>
<term>Carboxylic acids</term>
<term>Collision frequency</term>
<term>Common wisdom</term>
<term>Complementary</term>
<term>Copolymer</term>
<term>Copolymer chains</term>
<term>Early stage</term>
<term>Functional groups</term>
<term>Graft</term>
<term>Graft copolymer</term>
<term>Graft copolymers</term>
<term>Heterogeneous</term>
<term>Immiscible</term>
<term>Immiscible polymers</term>
<term>Interaction parameter</term>
<term>Interface</term>
<term>Interfacial</term>
<term>Interfacial area</term>
<term>Interfacial area generation</term>
<term>Interfacial coverage</term>
<term>Interfacial regions</term>
<term>Inversed</term>
<term>Inversed graft copolymer</term>
<term>Isocyanate groups</term>
<term>Kinetics</term>
<term>Lamellar spacing</term>
<term>Miscible</term>
<term>Miscible system</term>
<term>Moiety</term>
<term>Molar</term>
<term>Molar mass</term>
<term>Molecular size</term>
<term>Molecule alcohol</term>
<term>Nominal molar concentrations</term>
<term>October</term>
<term>Open symbols</term>
<term>Overall reaction rate</term>
<term>Phys</term>
<term>Pmma</term>
<term>Pmma phase</term>
<term>Polymer</term>
<term>Polymer blends</term>
<term>Polymer chains</term>
<term>Reaction kinetics</term>
<term>Reaction rate</term>
<term>Reactive</term>
<term>Reactive blend</term>
<term>Reactive polymer</term>
<term>Reactive polymer chains</term>
<term>Reactive polymers</term>
<term>Rotation speed</term>
<term>Sebacoyl chloride</term>
<term>Small molecule analogues</term>
<term>Time dependency</term>
<term>Trunk chain</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Aiche</term>
<term>Aiche journal october</term>
<term>Alcohol system</term>
<term>Analogue</term>
<term>Carboxylic acids</term>
<term>Collision frequency</term>
<term>Common wisdom</term>
<term>Complementary</term>
<term>Copolymer</term>
<term>Copolymer chains</term>
<term>Early stage</term>
<term>Functional groups</term>
<term>Graft</term>
<term>Graft copolymer</term>
<term>Graft copolymers</term>
<term>Heterogeneous</term>
<term>Immiscible</term>
<term>Immiscible polymers</term>
<term>Interaction parameter</term>
<term>Interface</term>
<term>Interfacial</term>
<term>Interfacial area</term>
<term>Interfacial area generation</term>
<term>Interfacial coverage</term>
<term>Interfacial regions</term>
<term>Inversed</term>
<term>Inversed graft copolymer</term>
<term>Isocyanate groups</term>
<term>Kinetics</term>
<term>Lamellar spacing</term>
<term>Miscible</term>
<term>Miscible system</term>
<term>Moiety</term>
<term>Molar</term>
<term>Molar mass</term>
<term>Molecular size</term>
<term>Molecule alcohol</term>
<term>Nominal molar concentrations</term>
<term>October</term>
<term>Open symbols</term>
<term>Overall reaction rate</term>
<term>Phys</term>
<term>Pmma</term>
<term>Pmma phase</term>
<term>Polymer</term>
<term>Polymer blends</term>
<term>Polymer chains</term>
<term>Reaction kinetics</term>
<term>Reaction rate</term>
<term>Reactive</term>
<term>Reactive blend</term>
<term>Reactive polymer</term>
<term>Reactive polymer chains</term>
<term>Reactive polymers</term>
<term>Rotation speed</term>
<term>Sebacoyl chloride</term>
<term>Small molecule analogues</term>
<term>Time dependency</term>
<term>Trunk chain</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">For given nominal molar concentrations in complementary functional groups, the common wisdom is that the reaction rate of those attached to large molecules does not exceed that of small molecule analogues. They are at best equal. The difference in reaction kinetics is more pronounced if reactive molecules are so large that they phase‐separate, which is often so for polymers. In such cases, complementary functional groups from the two phases can meet and react only at the interfaces. Thus, reaction kinetics of functional groups attached to small molecules has always been taken as the upper bound for those attached to polymers. Here we show that under sufficient mixing, reaction kinetics of two immiscible reactive polymers can be significantly higher than that of small molecule analogues. This phenomenon is attributed to the combined effects of increasing collision probability originated from mixing‐induced interfacial area generation, longer relaxation time of reactive polymer chains, and eventually interfacial slip. © 2004 American Institute of Chemical Engineers AIChE J, 50:2604–2612, 2004</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>copolymer</json:string>
<json:string>polymer</json:string>
<json:string>pmma</json:string>
<json:string>reactive</json:string>
<json:string>functional groups</json:string>
<json:string>immiscible</json:string>
<json:string>reaction rate</json:string>
<json:string>graft</json:string>
<json:string>kinetics</json:string>
<json:string>graft copolymer</json:string>
<json:string>molar</json:string>
<json:string>interfacial area</json:string>
<json:string>october</json:string>
<json:string>inversed</json:string>
<json:string>moiety</json:string>
<json:string>miscible</json:string>
<json:string>small molecule analogues</json:string>
<json:string>phys</json:string>
<json:string>reaction kinetics</json:string>
<json:string>graft copolymers</json:string>
<json:string>interfacial regions</json:string>
<json:string>molar mass</json:string>
<json:string>interface</json:string>
<json:string>interfacial coverage</json:string>
<json:string>rotation speed</json:string>
<json:string>nominal molar concentrations</json:string>
<json:string>inversed graft copolymer</json:string>
<json:string>reactive blend</json:string>
<json:string>polymer chains</json:string>
<json:string>analogue</json:string>
<json:string>aiche</json:string>
<json:string>immiscible polymers</json:string>
<json:string>interaction parameter</json:string>
<json:string>time dependency</json:string>
<json:string>common wisdom</json:string>
<json:string>lamellar spacing</json:string>
<json:string>isocyanate groups</json:string>
<json:string>alcohol system</json:string>
<json:string>trunk chain</json:string>
<json:string>overall reaction rate</json:string>
<json:string>aiche journal october</json:string>
<json:string>collision frequency</json:string>
<json:string>interfacial</json:string>
<json:string>reactive polymer</json:string>
<json:string>open symbols</json:string>
<json:string>molecule alcohol</json:string>
<json:string>reactive polymers</json:string>
<json:string>sebacoyl chloride</json:string>
<json:string>carboxylic acids</json:string>
<json:string>molecular size</json:string>
<json:string>early stage</json:string>
<json:string>copolymer chains</json:string>
<json:string>polymer blends</json:string>
<json:string>pmma phase</json:string>
<json:string>reactive polymer chains</json:string>
<json:string>interfacial area generation</json:string>
<json:string>miscible system</json:string>
<json:string>heterogeneous</json:string>
<json:string>complementary</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Lian‐Fang Feng</name>
<affiliations>
<json:string>State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou, China</json:string>
<json:string>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Guo‐Hua Hu</name>
<affiliations>
<json:string>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, BP 451, 54001 Nancy, France</json:string>
<json:string>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, BP 451, 54001 Nancy, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>polymer blends</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>interfaces</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>flow</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mixing</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>kinetics</value>
</json:item>
</subject>
<articleId>
<json:string>AIC10253</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>For given nominal molar concentrations in complementary functional groups, the common wisdom is that the reaction rate of those attached to large molecules does not exceed that of small molecule analogues. They are at best equal. The difference in reaction kinetics is more pronounced if reactive molecules are so large that they phase‐separate, which is often so for polymers. In such cases, complementary functional groups from the two phases can meet and react only at the interfaces. Thus, reaction kinetics of functional groups attached to small molecules has always been taken as the upper bound for those attached to polymers. Here we show that under sufficient mixing, reaction kinetics of two immiscible reactive polymers can be significantly higher than that of small molecule analogues. This phenomenon is attributed to the combined effects of increasing collision probability originated from mixing‐induced interfacial area generation, longer relaxation time of reactive polymer chains, and eventually interfacial slip. © 2004 American Institute of Chemical Engineers AIChE J, 50:2604–2612, 2004</abstract>
<qualityIndicators>
<score>6.968</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1107</abstractCharCount>
<pdfWordCount>5829</pdfWordCount>
<pdfCharCount>34741</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>164</abstractWordCount>
</qualityIndicators>
<title>Reaction kinetics of multiphase polymer systems under flow</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>AIChE Journal</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1547-5905</json:string>
</doi>
<issn>
<json:string>0001-1541</json:string>
</issn>
<eissn>
<json:string>1547-5905</json:string>
</eissn>
<publisherId>
<json:string>AIC</json:string>
</publisherId>
<volume>50</volume>
<issue>10</issue>
<pages>
<first>2604</first>
<last>2612</last>
<total>9</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>engineering, chemical</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>chemical engineering</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>vertebres: systeme nerveux et organes des sens</json:string>
</inist>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1002/aic.10253</json:string>
</doi>
<id>191B1D28B31CEC1FF77643C4C3376344A392DC1D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/191B1D28B31CEC1FF77643C4C3376344A392DC1D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/191B1D28B31CEC1FF77643C4C3376344A392DC1D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/191B1D28B31CEC1FF77643C4C3376344A392DC1D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Reaction kinetics of multiphase polymer systems under flow</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Institute of Chemical Engineers</publisher>
<pubPlace>New York</pubPlace>
<availability>
<licence>Copyright © 2004 American Institute of Chemical Engineers (AIChE)</licence>
</availability>
<date type="published" when="2004-10"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Reaction kinetics of multiphase polymer systems under flow</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Lian‐Fang</forename>
<surname>Feng</surname>
</persName>
<affiliation>State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou, China
<address>
<country key="CN"></country>
</address>
</affiliation>
<affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001" role="corresp">
<persName>
<forename type="first">Guo‐Hua</forename>
<surname>Hu</surname>
</persName>
<email>hu@ensic.inpl‐nancy.fr</email>
<affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, BP 451, 54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, BP 451, 54001 Nancy, France</affiliation>
</author>
<idno type="istex">191B1D28B31CEC1FF77643C4C3376344A392DC1D</idno>
<idno type="ark">ark:/67375/WNG-T71TS608-6</idno>
<idno type="DOI">10.1002/aic.10253</idno>
<idno type="unit">AIC10253</idno>
<idno type="toTypesetVersion">file:AIC.AIC10253.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">AIChE Journal</title>
<title level="j" type="alt">AICHE JOURNAL</title>
<idno type="pISSN">0001-1541</idno>
<idno type="eISSN">1547-5905</idno>
<idno type="book-DOI">10.1002/(ISSN)1547-5905</idno>
<idno type="book-part-DOI">10.1002/aic.v50:10</idno>
<idno type="product">AIC</idno>
<imprint>
<biblScope unit="vol">50</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="2604">2604</biblScope>
<biblScope unit="page" to="2612">2612</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>American Institute of Chemical Engineers</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2004-10"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>For given nominal molar concentrations in complementary functional groups, the common wisdom is that the reaction rate of those attached to large molecules does not exceed that of small molecule analogues. They are at best equal. The difference in reaction kinetics is more pronounced if reactive molecules are so large that they phase‐separate, which is often so for polymers. In such cases, complementary functional groups from the two phases can meet and react only at the interfaces. Thus, reaction kinetics of functional groups attached to small molecules has always been taken as the upper bound for those attached to polymers. Here we show that under sufficient mixing, reaction kinetics of two immiscible reactive polymers can be significantly higher than that of small molecule analogues. This phenomenon is attributed to the combined effects of increasing collision probability originated from mixing‐induced interfacial area generation, longer relaxation time of reactive polymer chains, and eventually interfacial slip. © 2004 American Institute of Chemical Engineers AIChE J, 50:2604–2612, 2004</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">polymer blends</term>
<term xml:id="kwd2">interfaces</term>
<term xml:id="kwd3">flow</term>
<term xml:id="kwd4">mixing</term>
<term xml:id="kwd5">kinetics</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/191B1D28B31CEC1FF77643C4C3376344A392DC1D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>American Institute of Chemical Engineers</publisherName>
<publisherLoc>New York</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1547-5905</doi>
<issn type="print">0001-1541</issn>
<issn type="electronic">1547-5905</issn>
<idGroup>
<id type="product" value="AIC"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="AICHE JOURNAL">AIChE Journal</title>
<title type="short">AIChE J.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="100">
<doi origin="wiley" registered="yes">10.1002/aic.v50:10</doi>
<numberingGroup>
<numbering type="journalVolume" number="50">50</numbering>
<numbering type="journalIssue">10</numbering>
</numberingGroup>
<coverDate startDate="2004-10">October 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="240" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/aic.10253</doi>
<idGroup>
<id type="unit" value="AIC10253"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright © 2004 American Institute of Chemical Engineers (AIChE)</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2003-07-28"></event>
<event type="manuscriptRevised" date="2004-01-21"></event>
<event type="firstOnline" date="2004-09-14"></event>
<event type="publishedOnlineFinalForm" date="2004-09-14"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.18.1 mode:FullText source:FullText result:FullText mathml2tex" date="2010-09-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-01"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-14"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">2604</numbering>
<numbering type="pageLast">2612</numbering>
</numberingGroup>
<correspondenceTo>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, BP 451, 54001 Nancy, France</correspondenceTo>
<objectNameGroup>
<objectName elementName="appendix">Appendix</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:AIC.AIC10253.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="9"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="30"></count>
<count type="wordTotal" number="6801"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Reaction kinetics of multiphase polymer systems under flow</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Lian‐Fang</givenNames>
<familyName>Feng</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af3" corresponding="yes">
<personName>
<givenNames>Guo‐Hua</givenNames>
<familyName>Hu</familyName>
</personName>
<contactDetails>
<email normalForm="hu@ensic.inpl-nancy.fr">hu@ensic.inpl‐nancy.fr</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="CN" type="organization">
<unparsedAffiliation>State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou, China</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, Nancy, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, BP 451, 54001 Nancy, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">polymer blends</keyword>
<keyword xml:id="kwd2">interfaces</keyword>
<keyword xml:id="kwd3">flow</keyword>
<keyword xml:id="kwd4">mixing</keyword>
<keyword xml:id="kwd5">kinetics</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Association Franco‐Chinoise de la Recherche Scientifique et Technique (AFCRST)</fundingAgency>
<fundingNumber>PRA Mx02‐07</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Embassy of the Republic of France in China</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>National Natural Science Foundation of China (NSFC)</fundingAgency>
<fundingNumber>Project 50290097</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>For given nominal molar concentrations in complementary functional groups, the common wisdom is that the reaction rate of those attached to large molecules does not exceed that of small molecule analogues. They are at best equal. The difference in reaction kinetics is more pronounced if reactive molecules are so large that they phase‐separate, which is often so for polymers. In such cases, complementary functional groups from the two phases can meet and react only at the interfaces. Thus, reaction kinetics of functional groups attached to small molecules has always been taken as the upper bound for those attached to polymers. Here we show that under sufficient mixing, reaction kinetics of two immiscible reactive polymers can be significantly higher than that of small molecule analogues. This phenomenon is attributed to the combined effects of increasing collision probability originated from mixing‐induced interfacial area generation, longer relaxation time of reactive polymer chains, and eventually interfacial slip. © 2004 American Institute of Chemical Engineers AIChE J, 50:2604–2612, 2004</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Reaction kinetics of multiphase polymer systems under flow</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Reaction kinetics of multiphase polymer systems under flow</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lian‐Fang</namePart>
<namePart type="family">Feng</namePart>
<affiliation>State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou, China</affiliation>
<affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guo‐Hua</namePart>
<namePart type="family">Hu</namePart>
<affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, BP 451, 54001 Nancy, France</affiliation>
<affiliation>E-mail: hu@ensic.inpl‐nancy.fr</affiliation>
<affiliation>Correspondence address: Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, BP 451, 54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>American Institute of Chemical Engineers</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2004-10</dateIssued>
<dateCaptured encoding="w3cdtf">2003-07-28</dateCaptured>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">9</extent>
<extent unit="tables">0</extent>
<extent unit="references">30</extent>
<extent unit="words">6801</extent>
</physicalDescription>
<abstract lang="en">For given nominal molar concentrations in complementary functional groups, the common wisdom is that the reaction rate of those attached to large molecules does not exceed that of small molecule analogues. They are at best equal. The difference in reaction kinetics is more pronounced if reactive molecules are so large that they phase‐separate, which is often so for polymers. In such cases, complementary functional groups from the two phases can meet and react only at the interfaces. Thus, reaction kinetics of functional groups attached to small molecules has always been taken as the upper bound for those attached to polymers. Here we show that under sufficient mixing, reaction kinetics of two immiscible reactive polymers can be significantly higher than that of small molecule analogues. This phenomenon is attributed to the combined effects of increasing collision probability originated from mixing‐induced interfacial area generation, longer relaxation time of reactive polymer chains, and eventually interfacial slip. © 2004 American Institute of Chemical Engineers AIChE J, 50:2604–2612, 2004</abstract>
<note type="funding">Association Franco‐Chinoise de la Recherche Scientifique et Technique (AFCRST) - No. PRA Mx02‐07; </note>
<note type="funding">Embassy of the Republic of France in China</note>
<note type="funding">National Natural Science Foundation of China (NSFC) - No. Project 50290097; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>polymer blends</topic>
<topic>interfaces</topic>
<topic>flow</topic>
<topic>mixing</topic>
<topic>kinetics</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>AIChE Journal</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>AIChE J.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0001-1541</identifier>
<identifier type="eISSN">1547-5905</identifier>
<identifier type="DOI">10.1002/(ISSN)1547-5905</identifier>
<identifier type="PublisherID">AIC</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>50</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>2604</start>
<end>2612</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">191B1D28B31CEC1FF77643C4C3376344A392DC1D</identifier>
<identifier type="ark">ark:/67375/WNG-T71TS608-6</identifier>
<identifier type="DOI">10.1002/aic.10253</identifier>
<identifier type="ArticleID">AIC10253</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2004 American Institute of Chemical Engineers (AIChE)</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>American Institute of Chemical Engineers</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/191B1D28B31CEC1FF77643C4C3376344A392DC1D/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B29 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000B29 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:191B1D28B31CEC1FF77643C4C3376344A392DC1D
   |texte=   Reaction kinetics of multiphase polymer systems under flow
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024