Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling and simulation of polypropylene particle size distribution in industrial horizontal stirred bed reactors

Identifieur interne : 000040 ( Istex/Checkpoint ); précédent : 000039; suivant : 000041

Modeling and simulation of polypropylene particle size distribution in industrial horizontal stirred bed reactors

Auteurs : Zhou Tian [République populaire de Chine] ; Xue-Ping Gu [République populaire de Chine, France] ; Lian-Fang Feng [République populaire de Chine] ; Jean-Pierre Corriou [France] ; Guo-Hua Hu [France]

Source :

RBID : ISTEX:D483D0DDABA8EE0733217B254E909BCCE24099C6

Descripteurs français

English descriptors

Abstract

This work aims at developing a steady‐state particle size distribution (PSD) model for predicting the size distribution of polypropylene particles in the outflow streams of propylene gas‐phase horizontal stirred bed reactors (HSBR), on the one hand and investigating the effect of the catalyst residence time distribution (RTD) on the polymer PSD, on the other hand. The polymer multilayer model (PMLM) is used to describe the growth of a single particle. Knowing the PSD and RTD of a Ziegler–Natta type of catalyst and polymerization kinetics, this model allows calculating the polymer PSD of propylene polymerization in the HSBRs. The calculated polypropylene PSDs agree well with those obtained from the industrial reactors. The results reveal that both the PSD and the RTD of the catalyst affect the polymer PSD but in different manners. The effect of RTD on the PSD is less significant in the case of a nonuniform size catalyst feed. This model also allows investigating the effects of other process parameters on the polymer PSD under steady‐state conditions, including intraparticle mass‐ and heat‐transfer limitations, initial catalyst size, and polymer crystallinity. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Url:
DOI: 10.1002/app.36473


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:D483D0DDABA8EE0733217B254E909BCCE24099C6

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling and simulation of polypropylene particle size distribution in industrial horizontal stirred bed reactors</title>
<author>
<name sortKey="Tian, Zhou" sort="Tian, Zhou" uniqKey="Tian Z" first="Zhou" last="Tian">Zhou Tian</name>
</author>
<author>
<name sortKey="Gu, Xue Ing" sort="Gu, Xue Ing" uniqKey="Gu X" first="Xue-Ping" last="Gu">Xue-Ping Gu</name>
</author>
<author>
<name sortKey="Feng, Lian Ang" sort="Feng, Lian Ang" uniqKey="Feng L" first="Lian-Fang" last="Feng">Lian-Fang Feng</name>
</author>
<author>
<name sortKey="Corriou, Jean Ierre" sort="Corriou, Jean Ierre" uniqKey="Corriou J" first="Jean-Pierre" last="Corriou">Jean-Pierre Corriou</name>
</author>
<author>
<name sortKey="Hu, Guo Ua" sort="Hu, Guo Ua" uniqKey="Hu G" first="Guo-Hua" last="Hu">Guo-Hua Hu</name>
<affiliation>
<country>France</country>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D483D0DDABA8EE0733217B254E909BCCE24099C6</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/app.36473</idno>
<idno type="url">https://api.istex.fr/document/D483D0DDABA8EE0733217B254E909BCCE24099C6/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000C06</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000C06</idno>
<idno type="wicri:Area/Istex/Curation">000C06</idno>
<idno type="wicri:Area/Istex/Checkpoint">000040</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000040</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Modeling and simulation of polypropylene particle size distribution in industrial horizontal stirred bed reactors</title>
<author>
<name sortKey="Tian, Zhou" sort="Tian, Zhou" uniqKey="Tian Z" first="Zhou" last="Tian">Zhou Tian</name>
<affiliation wicri:level="4">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gu, Xue Ing" sort="Gu, Xue Ing" uniqKey="Gu X" first="Xue-Ping" last="Gu">Xue-Ping Gu</name>
<affiliation wicri:level="4">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr" wicri:curation="lc">France</country>
<wicri:regionArea>Xue‐Ping Gu, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China===Guo‐Hua Hu, Laboratory of Reactions and Process Engineering, CNRS‐Nancy University, ENSIC‐INPL, 1 rue Grandville, BP 20451, Nancy 54001</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Feng, Lian Ang" sort="Feng, Lian Ang" uniqKey="Feng L" first="Lian-Fang" last="Feng">Lian-Fang Feng</name>
<affiliation wicri:level="4">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Corriou, Jean Ierre" sort="Corriou, Jean Ierre" uniqKey="Corriou J" first="Jean-Pierre" last="Corriou">Jean-Pierre Corriou</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratory of Reactions and Process Engineering, CNRS‐Nancy University, ENSIC‐INPL, 1 rue Grandville, BP 20451, Nancy 54001</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hu, Guo Ua" sort="Hu, Guo Ua" uniqKey="Hu G" first="Guo-Hua" last="Hu">Guo-Hua Hu</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratory of Reactions and Process Engineering, CNRS‐Nancy University, ENSIC‐INPL, 1 rue Grandville, BP 20451, Nancy 54001</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr" wicri:curation="lc">France</country>
<wicri:regionArea>Xue‐Ping Gu, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China===Guo‐Hua Hu, Laboratory of Reactions and Process Engineering, CNRS‐Nancy University, ENSIC‐INPL, 1 rue Grandville, BP 20451, Nancy 54001</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Applied Polymer Science</title>
<title level="j" type="alt">JOURNAL OF APPLIED POLYMER SCIENCE</title>
<idno type="ISSN">0021-8995</idno>
<idno type="eISSN">1097-4628</idno>
<imprint>
<biblScope unit="vol">125</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="2668">2668</biblScope>
<biblScope unit="page" to="2679">2679</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-08-15">2012-08-15</date>
</imprint>
<idno type="ISSN">0021-8995</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-8995</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activation energy</term>
<term>Activation reaction</term>
<term>Active sites</term>
<term>Actual concentration</term>
<term>Actual monomer concentration</term>
<term>Amorphous polymer phase</term>
<term>Appl polym</term>
<term>Boundary conditions</term>
<term>Bulk phase</term>
<term>Catalyst</term>
<term>Catalyst concentration</term>
<term>Catalyst mass fraction</term>
<term>Catalyst number fraction</term>
<term>Catalyst particle</term>
<term>Catalyst particles</term>
<term>Catalyst residence time</term>
<term>Catalyst size</term>
<term>Chain activation</term>
<term>Chem</term>
<term>Chemical engineering</term>
<term>Coefficient</term>
<term>Concentration gradients</term>
<term>Contract grant number</term>
<term>Contract grant sponsor</term>
<term>Critical temperature</term>
<term>Crystallinity</term>
<term>Cstr</term>
<term>Deactivation</term>
<term>Deff</term>
<term>Different catalyst sizes</term>
<term>Different flow models</term>
<term>Different times</term>
<term>Early stages</term>
<term>Effective monomer diffusion coefficient</term>
<term>Equivolume cstrs</term>
<term>Exit stream</term>
<term>Flow models</term>
<term>Frequency factor</term>
<term>Growth rate</term>
<term>Heat capacity</term>
<term>Hsbr</term>
<term>Hsbrs</term>
<term>Industrial data</term>
<term>Initial catalyst size</term>
<term>Initial catalyst size increases</term>
<term>Internal mass transfer resistance</term>
<term>Intraparticle</term>
<term>Intraparticle mass</term>
<term>Intraparticle massand resistances</term>
<term>Kcal activation energy</term>
<term>Kinetic scheme</term>
<term>Larger particles</term>
<term>Liquid phase</term>
<term>Mass density function</term>
<term>Mechanical agitation</term>
<term>Modeling</term>
<term>Monomer</term>
<term>Monomer concentration</term>
<term>Monomer pressure</term>
<term>Monomer sorption</term>
<term>Nonuniform</term>
<term>Nonuniform catalyst feed</term>
<term>Nonuniform size catalyst feed</term>
<term>Olefin polymerization reactors</term>
<term>Other hand</term>
<term>Outflow streams</term>
<term>Particle</term>
<term>Particle agglomeration</term>
<term>Particle attrition</term>
<term>Particle breakage</term>
<term>Particle growth</term>
<term>Particle growth rate</term>
<term>Particle segregation</term>
<term>Particle size distribution</term>
<term>Pmlm</term>
<term>Polym</term>
<term>Polymer</term>
<term>Polymer chains</term>
<term>Polymer crystallinity</term>
<term>Polymer particle</term>
<term>Polymer particle size</term>
<term>Polymer particles</term>
<term>Polymer psds</term>
<term>Polymer science</term>
<term>Polymerization rate</term>
<term>Polypropylene</term>
<term>Polypropylene particles</term>
<term>Polypropylene process</term>
<term>Population balance equation</term>
<term>Potential catalyst</term>
<term>Probability density function</term>
<term>Propylene</term>
<term>Propylene concentration</term>
<term>Propylene concentration profiles</term>
<term>Propylene polymerization</term>
<term>Radial position</term>
<term>Reactor</term>
<term>Residence time</term>
<term>Residence time distribution</term>
<term>Schematic representation</term>
<term>Simulation</term>
<term>Single cstr</term>
<term>Single particle</term>
<term>Single particle growth</term>
<term>Size distribution</term>
<term>Size range</term>
<term>Standard deviation</term>
<term>Steady state</term>
<term>Temperature profiles</term>
<term>Thermal conductivity</term>
<term>Time interval</term>
<term>Uniform size catalyst feed</term>
<term>Unit volume</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Activation energy</term>
<term>Activation reaction</term>
<term>Active sites</term>
<term>Actual concentration</term>
<term>Actual monomer concentration</term>
<term>Amorphous polymer phase</term>
<term>Appl polym</term>
<term>Boundary conditions</term>
<term>Bulk phase</term>
<term>Catalyst</term>
<term>Catalyst concentration</term>
<term>Catalyst mass fraction</term>
<term>Catalyst number fraction</term>
<term>Catalyst particle</term>
<term>Catalyst particles</term>
<term>Catalyst residence time</term>
<term>Catalyst size</term>
<term>Chain activation</term>
<term>Chem</term>
<term>Chemical engineering</term>
<term>Coefficient</term>
<term>Concentration gradients</term>
<term>Contract grant number</term>
<term>Contract grant sponsor</term>
<term>Critical temperature</term>
<term>Crystallinity</term>
<term>Cstr</term>
<term>Deactivation</term>
<term>Deff</term>
<term>Different catalyst sizes</term>
<term>Different flow models</term>
<term>Different times</term>
<term>Early stages</term>
<term>Effective monomer diffusion coefficient</term>
<term>Equivolume cstrs</term>
<term>Exit stream</term>
<term>Flow models</term>
<term>Frequency factor</term>
<term>Growth rate</term>
<term>Heat capacity</term>
<term>Hsbr</term>
<term>Hsbrs</term>
<term>Industrial data</term>
<term>Initial catalyst size</term>
<term>Initial catalyst size increases</term>
<term>Internal mass transfer resistance</term>
<term>Intraparticle</term>
<term>Intraparticle mass</term>
<term>Intraparticle massand resistances</term>
<term>Kcal activation energy</term>
<term>Kinetic scheme</term>
<term>Larger particles</term>
<term>Liquid phase</term>
<term>Mass density function</term>
<term>Mechanical agitation</term>
<term>Modeling</term>
<term>Monomer</term>
<term>Monomer concentration</term>
<term>Monomer pressure</term>
<term>Monomer sorption</term>
<term>Nonuniform</term>
<term>Nonuniform catalyst feed</term>
<term>Nonuniform size catalyst feed</term>
<term>Olefin polymerization reactors</term>
<term>Other hand</term>
<term>Outflow streams</term>
<term>Particle</term>
<term>Particle agglomeration</term>
<term>Particle attrition</term>
<term>Particle breakage</term>
<term>Particle growth</term>
<term>Particle growth rate</term>
<term>Particle segregation</term>
<term>Particle size distribution</term>
<term>Pmlm</term>
<term>Polym</term>
<term>Polymer</term>
<term>Polymer chains</term>
<term>Polymer crystallinity</term>
<term>Polymer particle</term>
<term>Polymer particle size</term>
<term>Polymer particles</term>
<term>Polymer psds</term>
<term>Polymer science</term>
<term>Polymerization rate</term>
<term>Polypropylene</term>
<term>Polypropylene particles</term>
<term>Polypropylene process</term>
<term>Population balance equation</term>
<term>Potential catalyst</term>
<term>Probability density function</term>
<term>Propylene</term>
<term>Propylene concentration</term>
<term>Propylene concentration profiles</term>
<term>Propylene polymerization</term>
<term>Radial position</term>
<term>Reactor</term>
<term>Residence time</term>
<term>Residence time distribution</term>
<term>Schematic representation</term>
<term>Simulation</term>
<term>Single cstr</term>
<term>Single particle</term>
<term>Single particle growth</term>
<term>Size distribution</term>
<term>Size range</term>
<term>Standard deviation</term>
<term>Steady state</term>
<term>Temperature profiles</term>
<term>Thermal conductivity</term>
<term>Time interval</term>
<term>Uniform size catalyst feed</term>
<term>Unit volume</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Polymère</term>
<term>Simulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This work aims at developing a steady‐state particle size distribution (PSD) model for predicting the size distribution of polypropylene particles in the outflow streams of propylene gas‐phase horizontal stirred bed reactors (HSBR), on the one hand and investigating the effect of the catalyst residence time distribution (RTD) on the polymer PSD, on the other hand. The polymer multilayer model (PMLM) is used to describe the growth of a single particle. Knowing the PSD and RTD of a Ziegler–Natta type of catalyst and polymerization kinetics, this model allows calculating the polymer PSD of propylene polymerization in the HSBRs. The calculated polypropylene PSDs agree well with those obtained from the industrial reactors. The results reveal that both the PSD and the RTD of the catalyst affect the polymer PSD but in different manners. The effect of RTD on the PSD is less significant in the case of a nonuniform size catalyst feed. This model also allows investigating the effects of other process parameters on the polymer PSD under steady‐state conditions, including intraparticle mass‐ and heat‐transfer limitations, initial catalyst size, and polymer crystallinity. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
<li>Zhejiang</li>
</region>
<settlement>
<li>Hangzhou</li>
<li>Nancy</li>
</settlement>
<orgName>
<li>Centre national de la recherche scientifique</li>
<li>Laboratoire réactions et génie des procédés</li>
<li>Université de Lorraine</li>
<li>Université de Zhejiang</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<region name="Zhejiang">
<name sortKey="Tian, Zhou" sort="Tian, Zhou" uniqKey="Tian Z" first="Zhou" last="Tian">Zhou Tian</name>
</region>
<name sortKey="Feng, Lian Ang" sort="Feng, Lian Ang" uniqKey="Feng L" first="Lian-Fang" last="Feng">Lian-Fang Feng</name>
<name sortKey="Gu, Xue Ing" sort="Gu, Xue Ing" uniqKey="Gu X" first="Xue-Ping" last="Gu">Xue-Ping Gu</name>
<name sortKey="Gu, Xue Ing" sort="Gu, Xue Ing" uniqKey="Gu X" first="Xue-Ping" last="Gu">Xue-Ping Gu</name>
</country>
<country name="France">
<region name="Grand Est">
<name sortKey="Gu, Xue Ing" sort="Gu, Xue Ing" uniqKey="Gu X" first="Xue-Ping" last="Gu">Xue-Ping Gu</name>
</region>
<name sortKey="Corriou, Jean Ierre" sort="Corriou, Jean Ierre" uniqKey="Corriou J" first="Jean-Pierre" last="Corriou">Jean-Pierre Corriou</name>
<name sortKey="Hu, Guo Ua" sort="Hu, Guo Ua" uniqKey="Hu G" first="Guo-Hua" last="Hu">Guo-Hua Hu</name>
<name sortKey="Hu, Guo Ua" sort="Hu, Guo Ua" uniqKey="Hu G" first="Guo-Hua" last="Hu">Guo-Hua Hu</name>
<name sortKey="Hu, Guo Ua" sort="Hu, Guo Ua" uniqKey="Hu G" first="Guo-Hua" last="Hu">Guo-Hua Hu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000040 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 000040 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:D483D0DDABA8EE0733217B254E909BCCE24099C6
   |texte=   Modeling and simulation of polypropylene particle size distribution in industrial horizontal stirred bed reactors
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024