Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Energy efficiency of oxygen enriched air production technologies: Cryogeny vs membranes

Identifieur interne : 000424 ( Hal/Corpus ); précédent : 000423; suivant : 000425

Energy efficiency of oxygen enriched air production technologies: Cryogeny vs membranes

Auteurs : Bouchra Belaissaoui ; Yann Le Moullec ; Hayato Hagi ; Eric Favre

Source :

RBID : Hal:hal-01275611

Abstract

Oxygen Enriched Air (OEA) is already used for numerous chemical, medical and industrial applications (e.g. combustion enhancement for natural gas furnaces, coal gasification) and more recently attracted attention for hybrid carbon capture processes. Membrane separation has shown growing interest for OEA production, providing an alternative to conventional air separation processes such as cryogenic distillation and pressure swing adsorption. Nevertheless, based on the current polymeric materials performances, membranes are usually considered to be competitive only for medium O-2 purity (25-40%) and small scale plants (10-25 tons/day). Improvement in membrane materials permeability and permselectivity (O-2 over N-2) is often reported to be a critical issue in order to increase the attainable O-2 purity and to make the process more energy efficient. Recently, several membrane materials have been reported to show performances far above the permeability/selectivity trade-off of dense polymers. In this study, the potential of current and prospective membrane materials to achieve OEA production thanks to a single stage process is analysed through a rigorous simulation approach. The two processes (membrane and cryogenic distillation) are finally critically compared in terms of energy efficiency (kW h/ton O-2), depending on O-2 purity and on membrane material selectivity levels.

Url:
DOI: 10.1016/j.seppur.2014.01.043

Links to Exploration step

Hal:hal-01275611

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Energy efficiency of oxygen enriched air production technologies: Cryogeny vs membranes</title>
<author>
<name sortKey="Belaissaoui, Bouchra" sort="Belaissaoui, Bouchra" uniqKey="Belaissaoui B" first="Bouchra" last="Belaissaoui">Bouchra Belaissaoui</name>
<affiliation>
<hal:affiliation type="laboratory" xml:id="struct-211875" status="VALID">
<idno type="IdRef">153068876</idno>
<idno type="RNSR">201320573K</idno>
<idno type="IdUnivLorraine">[UL]RQC--</idno>
<orgName>Laboratoire Réactions et Génie des Procédés</orgName>
<orgName type="acronym">LRGP</orgName>
<date type="start">2013-01-01</date>
<desc>
<address>
<addrLine>Université de Lorraine - ENSIC, 1 rue de Grandville BP 20451, 54001 Nancy Cedex</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://lrgp.univ-lorraine.fr/</ref>
</desc>
<listRelation>
<relation active="#struct-413289" type="direct"></relation>
<relation name="UMR7274" active="#struct-441569" type="direct"></relation>
</listRelation>
<tutelles>
<tutelle active="#struct-413289" type="direct">
<org type="institution" xml:id="struct-413289" status="VALID">
<idno type="IdRef">157040569</idno>
<idno type="IdUnivLorraine">[UL]100--</idno>
<orgName>Université de Lorraine</orgName>
<orgName type="acronym">UL</orgName>
<date type="start">2012-01-01</date>
<desc>
<address>
<addrLine>34 cours Léopold - CS 25233 - 54052 Nancy cedex</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.univ-lorraine.fr/</ref>
</desc>
</org>
</tutelle>
<tutelle name="UMR7274" active="#struct-441569" type="direct">
<org type="institution" xml:id="struct-441569" status="VALID">
<idno type="ISNI">0000000122597504</idno>
<idno type="IdRef">02636817X</idno>
<orgName>Centre National de la Recherche Scientifique</orgName>
<orgName type="acronym">CNRS</orgName>
<date type="start">1939-10-19</date>
<desc>
<address>
<country key="FR"></country>
</address>
<ref type="url">http://www.cnrs.fr/</ref>
</desc>
</org>
</tutelle>
</tutelles>
</hal:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Le Moullec, Yann" sort="Le Moullec, Yann" uniqKey="Le Moullec Y" first="Yann" last="Le Moullec">Yann Le Moullec</name>
<affiliation>
<hal:affiliation type="institution" xml:id="struct-418773" status="VALID">
<orgName>EDF Recherche et Développement</orgName>
<orgName type="acronym">EDF R&D</orgName>
<desc>
<address>
<country key="FR"></country>
</address>
</desc>
</hal:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hagi, Hayato" sort="Hagi, Hayato" uniqKey="Hagi H" first="Hayato" last="Hagi">Hayato Hagi</name>
</author>
<author>
<name sortKey="Favre, Eric" sort="Favre, Eric" uniqKey="Favre E" first="Eric" last="Favre">Eric Favre</name>
<affiliation>
<hal:affiliation type="laboratory" xml:id="struct-211875" status="VALID">
<idno type="IdRef">153068876</idno>
<idno type="RNSR">201320573K</idno>
<idno type="IdUnivLorraine">[UL]RQC--</idno>
<orgName>Laboratoire Réactions et Génie des Procédés</orgName>
<orgName type="acronym">LRGP</orgName>
<date type="start">2013-01-01</date>
<desc>
<address>
<addrLine>Université de Lorraine - ENSIC, 1 rue de Grandville BP 20451, 54001 Nancy Cedex</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://lrgp.univ-lorraine.fr/</ref>
</desc>
<listRelation>
<relation active="#struct-413289" type="direct"></relation>
<relation name="UMR7274" active="#struct-441569" type="direct"></relation>
</listRelation>
<tutelles>
<tutelle active="#struct-413289" type="direct">
<org type="institution" xml:id="struct-413289" status="VALID">
<idno type="IdRef">157040569</idno>
<idno type="IdUnivLorraine">[UL]100--</idno>
<orgName>Université de Lorraine</orgName>
<orgName type="acronym">UL</orgName>
<date type="start">2012-01-01</date>
<desc>
<address>
<addrLine>34 cours Léopold - CS 25233 - 54052 Nancy cedex</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.univ-lorraine.fr/</ref>
</desc>
</org>
</tutelle>
<tutelle name="UMR7274" active="#struct-441569" type="direct">
<org type="institution" xml:id="struct-441569" status="VALID">
<idno type="ISNI">0000000122597504</idno>
<idno type="IdRef">02636817X</idno>
<orgName>Centre National de la Recherche Scientifique</orgName>
<orgName type="acronym">CNRS</orgName>
<date type="start">1939-10-19</date>
<desc>
<address>
<country key="FR"></country>
</address>
<ref type="url">http://www.cnrs.fr/</ref>
</desc>
</org>
</tutelle>
</tutelles>
</hal:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">HAL</idno>
<idno type="RBID">Hal:hal-01275611</idno>
<idno type="halId">hal-01275611</idno>
<idno type="halUri">https://hal.univ-lorraine.fr/hal-01275611</idno>
<idno type="url">https://hal.univ-lorraine.fr/hal-01275611</idno>
<idno type="doi">10.1016/j.seppur.2014.01.043</idno>
<date when="2014-04">2014-04</date>
<idno type="wicri:Area/Hal/Corpus">000424</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Energy efficiency of oxygen enriched air production technologies: Cryogeny vs membranes</title>
<author>
<name sortKey="Belaissaoui, Bouchra" sort="Belaissaoui, Bouchra" uniqKey="Belaissaoui B" first="Bouchra" last="Belaissaoui">Bouchra Belaissaoui</name>
<affiliation>
<hal:affiliation type="laboratory" xml:id="struct-211875" status="VALID">
<idno type="IdRef">153068876</idno>
<idno type="RNSR">201320573K</idno>
<idno type="IdUnivLorraine">[UL]RQC--</idno>
<orgName>Laboratoire Réactions et Génie des Procédés</orgName>
<orgName type="acronym">LRGP</orgName>
<date type="start">2013-01-01</date>
<desc>
<address>
<addrLine>Université de Lorraine - ENSIC, 1 rue de Grandville BP 20451, 54001 Nancy Cedex</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://lrgp.univ-lorraine.fr/</ref>
</desc>
<listRelation>
<relation active="#struct-413289" type="direct"></relation>
<relation name="UMR7274" active="#struct-441569" type="direct"></relation>
</listRelation>
<tutelles>
<tutelle active="#struct-413289" type="direct">
<org type="institution" xml:id="struct-413289" status="VALID">
<idno type="IdRef">157040569</idno>
<idno type="IdUnivLorraine">[UL]100--</idno>
<orgName>Université de Lorraine</orgName>
<orgName type="acronym">UL</orgName>
<date type="start">2012-01-01</date>
<desc>
<address>
<addrLine>34 cours Léopold - CS 25233 - 54052 Nancy cedex</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.univ-lorraine.fr/</ref>
</desc>
</org>
</tutelle>
<tutelle name="UMR7274" active="#struct-441569" type="direct">
<org type="institution" xml:id="struct-441569" status="VALID">
<idno type="ISNI">0000000122597504</idno>
<idno type="IdRef">02636817X</idno>
<orgName>Centre National de la Recherche Scientifique</orgName>
<orgName type="acronym">CNRS</orgName>
<date type="start">1939-10-19</date>
<desc>
<address>
<country key="FR"></country>
</address>
<ref type="url">http://www.cnrs.fr/</ref>
</desc>
</org>
</tutelle>
</tutelles>
</hal:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Le Moullec, Yann" sort="Le Moullec, Yann" uniqKey="Le Moullec Y" first="Yann" last="Le Moullec">Yann Le Moullec</name>
<affiliation>
<hal:affiliation type="institution" xml:id="struct-418773" status="VALID">
<orgName>EDF Recherche et Développement</orgName>
<orgName type="acronym">EDF R&D</orgName>
<desc>
<address>
<country key="FR"></country>
</address>
</desc>
</hal:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hagi, Hayato" sort="Hagi, Hayato" uniqKey="Hagi H" first="Hayato" last="Hagi">Hayato Hagi</name>
</author>
<author>
<name sortKey="Favre, Eric" sort="Favre, Eric" uniqKey="Favre E" first="Eric" last="Favre">Eric Favre</name>
<affiliation>
<hal:affiliation type="laboratory" xml:id="struct-211875" status="VALID">
<idno type="IdRef">153068876</idno>
<idno type="RNSR">201320573K</idno>
<idno type="IdUnivLorraine">[UL]RQC--</idno>
<orgName>Laboratoire Réactions et Génie des Procédés</orgName>
<orgName type="acronym">LRGP</orgName>
<date type="start">2013-01-01</date>
<desc>
<address>
<addrLine>Université de Lorraine - ENSIC, 1 rue de Grandville BP 20451, 54001 Nancy Cedex</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://lrgp.univ-lorraine.fr/</ref>
</desc>
<listRelation>
<relation active="#struct-413289" type="direct"></relation>
<relation name="UMR7274" active="#struct-441569" type="direct"></relation>
</listRelation>
<tutelles>
<tutelle active="#struct-413289" type="direct">
<org type="institution" xml:id="struct-413289" status="VALID">
<idno type="IdRef">157040569</idno>
<idno type="IdUnivLorraine">[UL]100--</idno>
<orgName>Université de Lorraine</orgName>
<orgName type="acronym">UL</orgName>
<date type="start">2012-01-01</date>
<desc>
<address>
<addrLine>34 cours Léopold - CS 25233 - 54052 Nancy cedex</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.univ-lorraine.fr/</ref>
</desc>
</org>
</tutelle>
<tutelle name="UMR7274" active="#struct-441569" type="direct">
<org type="institution" xml:id="struct-441569" status="VALID">
<idno type="ISNI">0000000122597504</idno>
<idno type="IdRef">02636817X</idno>
<orgName>Centre National de la Recherche Scientifique</orgName>
<orgName type="acronym">CNRS</orgName>
<date type="start">1939-10-19</date>
<desc>
<address>
<country key="FR"></country>
</address>
<ref type="url">http://www.cnrs.fr/</ref>
</desc>
</org>
</tutelle>
</tutelles>
</hal:affiliation>
</affiliation>
</author>
</analytic>
<idno type="DOI">10.1016/j.seppur.2014.01.043</idno>
<series>
<title level="j">Separation and Purification Technology</title>
<idno type="ISSN">1383-5866</idno>
<imprint>
<date type="datePub">2014-04</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oxygen Enriched Air (OEA) is already used for numerous chemical, medical and industrial applications (e.g. combustion enhancement for natural gas furnaces, coal gasification) and more recently attracted attention for hybrid carbon capture processes. Membrane separation has shown growing interest for OEA production, providing an alternative to conventional air separation processes such as cryogenic distillation and pressure swing adsorption. Nevertheless, based on the current polymeric materials performances, membranes are usually considered to be competitive only for medium O-2 purity (25-40%) and small scale plants (10-25 tons/day). Improvement in membrane materials permeability and permselectivity (O-2 over N-2) is often reported to be a critical issue in order to increase the attainable O-2 purity and to make the process more energy efficient. Recently, several membrane materials have been reported to show performances far above the permeability/selectivity trade-off of dense polymers. In this study, the potential of current and prospective membrane materials to achieve OEA production thanks to a single stage process is analysed through a rigorous simulation approach. The two processes (membrane and cryogenic distillation) are finally critically compared in terms of energy efficiency (kW h/ton O-2), depending on O-2 purity and on membrane material selectivity levels.</div>
</front>
</TEI>
<hal api="V3">
<titleStmt>
<title xml:lang="en">Energy efficiency of oxygen enriched air production technologies: Cryogeny vs membranes</title>
<author role="aut">
<persName>
<forename type="first">Bouchra</forename>
<surname>Belaissaoui</surname>
</persName>
<email></email>
<idno type="halauthor">475716</idno>
<affiliation ref="#struct-211875"></affiliation>
</author>
<author role="aut">
<persName>
<forename type="first">Yann</forename>
<surname>Le Moullec</surname>
</persName>
<email></email>
<idno type="halauthor">805898</idno>
<affiliation ref="#struct-418773"></affiliation>
</author>
<author role="aut">
<persName>
<forename type="first">Hayato</forename>
<surname>Hagi</surname>
</persName>
<email></email>
<idno type="halauthor">907393</idno>
</author>
<author role="aut">
<persName>
<forename type="first">Eric</forename>
<surname>Favre</surname>
</persName>
<email></email>
<idno type="halauthor">193762</idno>
<affiliation ref="#struct-211875"></affiliation>
</author>
<editor role="depositor">
<persName>
<forename>LRGP</forename>
<surname>UL</surname>
</persName>
<email>ddoc-appuirecherche-lrgp@univ-lorraine.fr</email>
</editor>
</titleStmt>
<editionStmt>
<edition n="v1" type="current">
<date type="whenSubmitted">2016-02-17 17:50:32</date>
<date type="whenModified">2016-05-10 16:53:26</date>
<date type="whenReleased">2016-02-17 17:50:32</date>
<date type="whenProduced">2014-04</date>
</edition>
<respStmt>
<resp>contributor</resp>
<name key="329568">
<persName>
<forename>LRGP</forename>
<surname>UL</surname>
</persName>
<email>ddoc-appuirecherche-lrgp@univ-lorraine.fr</email>
</name>
</respStmt>
</editionStmt>
<publicationStmt>
<distributor>CCSD</distributor>
<idno type="halId">hal-01275611</idno>
<idno type="halUri">https://hal.univ-lorraine.fr/hal-01275611</idno>
<idno type="halBibtex">belaissaoui:hal-01275611</idno>
<idno type="halRefHtml">Separation and Purification Technology, Elsevier, 2014, 125, pp.142-150. <10.1016/j.seppur.2014.01.043></idno>
<idno type="halRef">Separation and Purification Technology, Elsevier, 2014, 125, pp.142-150. <10.1016/j.seppur.2014.01.043></idno>
</publicationStmt>
<seriesStmt>
<idno type="stamp" n="UNIV-LORRAINE">Université de Lorraine</idno>
<idno type="stamp" n="CNRS">CNRS - Centre national de la recherche scientifique</idno>
<idno type="stamp" n="LRGP-UL">LRGP</idno>
</seriesStmt>
<notesStmt>
<note type="audience" n="2">International</note>
<note type="popular" n="0">No</note>
<note type="peer" n="1">Yes</note>
</notesStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Energy efficiency of oxygen enriched air production technologies: Cryogeny vs membranes</title>
<author role="aut">
<persName>
<forename type="first">Bouchra</forename>
<surname>Belaissaoui</surname>
</persName>
<idno type="halAuthorId">475716</idno>
<affiliation ref="#struct-211875"></affiliation>
</author>
<author role="aut">
<persName>
<forename type="first">Yann</forename>
<surname>Le Moullec</surname>
</persName>
<idno type="halAuthorId">805898</idno>
<affiliation ref="#struct-418773"></affiliation>
</author>
<author role="aut">
<persName>
<forename type="first">Hayato</forename>
<surname>Hagi</surname>
</persName>
<idno type="halAuthorId">907393</idno>
</author>
<author role="aut">
<persName>
<forename type="first">Eric</forename>
<surname>Favre</surname>
</persName>
<idno type="halAuthorId">193762</idno>
<affiliation ref="#struct-211875"></affiliation>
</author>
</analytic>
<monogr>
<idno type="halJournalId" status="VALID">18912</idno>
<idno type="issn">1383-5866</idno>
<title level="j">Separation and Purification Technology</title>
<imprint>
<publisher>Elsevier</publisher>
<biblScope unit="volume">125</biblScope>
<biblScope unit="pp">142-150</biblScope>
<date type="datePub">2014-04</date>
</imprint>
</monogr>
<idno type="doi">10.1016/j.seppur.2014.01.043</idno>
</biblStruct>
</sourceDesc>
<profileDesc>
<langUsage>
<language ident="en">English</language>
</langUsage>
<textClass>
<classCode scheme="halDomain" n="chim">Chemical Sciences</classCode>
<classCode scheme="halTypology" n="ART">Journal articles</classCode>
</textClass>
<abstract xml:lang="en">Oxygen Enriched Air (OEA) is already used for numerous chemical, medical and industrial applications (e.g. combustion enhancement for natural gas furnaces, coal gasification) and more recently attracted attention for hybrid carbon capture processes. Membrane separation has shown growing interest for OEA production, providing an alternative to conventional air separation processes such as cryogenic distillation and pressure swing adsorption. Nevertheless, based on the current polymeric materials performances, membranes are usually considered to be competitive only for medium O-2 purity (25-40%) and small scale plants (10-25 tons/day). Improvement in membrane materials permeability and permselectivity (O-2 over N-2) is often reported to be a critical issue in order to increase the attainable O-2 purity and to make the process more energy efficient. Recently, several membrane materials have been reported to show performances far above the permeability/selectivity trade-off of dense polymers. In this study, the potential of current and prospective membrane materials to achieve OEA production thanks to a single stage process is analysed through a rigorous simulation approach. The two processes (membrane and cryogenic distillation) are finally critically compared in terms of energy efficiency (kW h/ton O-2), depending on O-2 purity and on membrane material selectivity levels.</abstract>
</profileDesc>
</hal>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Hal/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000424 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Hal/Corpus/biblio.hfd -nk 000424 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Hal
   |étape=   Corpus
   |type=    RBID
   |clé=     Hal:hal-01275611
   |texte=   Energy efficiency of oxygen enriched air production technologies: Cryogeny vs membranes
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024