Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode

Identifieur interne : 000B32 ( Russie/Analysis ); précédent : 000B31; suivant : 000B33

Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode

Auteurs : RBID : Pascal:00-0301206

Descripteurs français

English descriptors

Abstract

Emission spectra are investigated of a low-threshold InAs quantum-dot laser of the "dots-in-a-well" (DWELL) type operating near 1230 nm. An external dispersion cavity with a diffraction grating is coupled to the laser diode to suppress the subsidiary modes and to tune the central wavelength. A wavelength-dependent competition between the grating-coupled mode and the internal Fabry-Perot modes of the laser suggests that a hole burning in the spectral density of a DWELL laser occurs with a characteristic spectral half width of ∼13 nm (10.5 meV). Simple models of spectral "flattening" and spectral hole burning are presented to explain the broad free-running and grating-coupled lasing spectra of the DWELL device.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0301206

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode</title>
<author>
<name sortKey="Eliseev, P" uniqKey="Eliseev P">P. Eliseev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>P.N. Lebedev Physics Institute, Russian Academy of Sciences</s1>
<s2>Moscow 117924</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stintz, A" uniqKey="Stintz A">A. Stintz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, G T" uniqKey="Liu G">G. T. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Newell, T C" uniqKey="Newell T">T. C. Newell</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Malloy, K J" uniqKey="Malloy K">K. J. Malloy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lester, L F" uniqKey="Lester L">L. F. Lester</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0301206</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 00-0301206 INIST</idno>
<idno type="RBID">Pascal:00-0301206</idno>
<idno type="wicri:Area/Main/Corpus">012C90</idno>
<idno type="wicri:Area/Main/Repository">012593</idno>
<idno type="wicri:Area/Russie/Extraction">000B32</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0018-9197</idno>
<title level="j" type="abbreviated">IEEE j. quantum electron.</title>
<title level="j" type="main">IEEE journal of quantum electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Diffraction gratings</term>
<term>Experimental study</term>
<term>External cavity</term>
<term>Gallium arsenides</term>
<term>Hole burning</term>
<term>Indium arsenides</term>
<term>Infrared laser</term>
<term>Laser diodes</term>
<term>Quantum dots</term>
<term>Semiconductor lasers</term>
<term>Ternary compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Laser semiconducteur</term>
<term>Diode laser</term>
<term>Point quantique</term>
<term>Laser IR</term>
<term>Cavité externe</term>
<term>Réseau diffraction</term>
<term>Hole burning</term>
<term>Composé binaire</term>
<term>Composé ternaire</term>
<term>Indium arséniure</term>
<term>Gallium arséniure</term>
<term>InAs</term>
<term>As In</term>
<term>InGaAs</term>
<term>As Ga In</term>
<term>4255P</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Emission spectra are investigated of a low-threshold InAs quantum-dot laser of the "dots-in-a-well" (DWELL) type operating near 1230 nm. An external dispersion cavity with a diffraction grating is coupled to the laser diode to suppress the subsidiary modes and to tune the central wavelength. A wavelength-dependent competition between the grating-coupled mode and the internal Fabry-Perot modes of the laser suggests that a hole burning in the spectral density of a DWELL laser occurs with a characteristic spectral half width of ∼13 nm (10.5 meV). Simple models of spectral "flattening" and spectral hole burning are presented to explain the broad free-running and grating-coupled lasing spectra of the DWELL device.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9197</s0>
</fA01>
<fA02 i1="01">
<s0>IEJQA7</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE j. quantum electron.</s0>
</fA03>
<fA05>
<s2>36</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ELISEEV (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LI (H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>STINTZ (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LIU (G. T.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>NEWELL (T. C.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MALLOY (K. J.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LESTER (L. F.)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>P.N. Lebedev Physics Institute, Russian Academy of Sciences</s1>
<s2>Moscow 117924</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>479-485</s1>
</fA20>
<fA21>
<s1>2000</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222K</s2>
<s5>354000082155020100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2000 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>00-0301206</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE journal of quantum electronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Emission spectra are investigated of a low-threshold InAs quantum-dot laser of the "dots-in-a-well" (DWELL) type operating near 1230 nm. An external dispersion cavity with a diffraction grating is coupled to the laser diode to suppress the subsidiary modes and to tune the central wavelength. A wavelength-dependent competition between the grating-coupled mode and the internal Fabry-Perot modes of the laser suggests that a hole burning in the spectral density of a DWELL laser occurs with a characteristic spectral half width of ∼13 nm (10.5 meV). Simple models of spectral "flattening" and spectral hole burning are presented to explain the broad free-running and grating-coupled lasing spectra of the DWELL device.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Diode laser</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Laser diodes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Laser IR</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Infrared laser</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Laser IR</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cavité externe</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>External cavity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Cavidad externa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Réseau diffraction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Diffraction gratings</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Hole burning</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Hole burning</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>78</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>4255P</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>206</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000B32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:00-0301206
   |texte=   Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024