Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vacuum ultraviolet spectroscopic properties of rare earth (RE) (RE = Eu, Tb, Dy, Sm, Tm)-doped K2GdZr(PO4)3 phosphate

Identifieur interne : 000C65 ( Chine/Analysis ); précédent : 000C64; suivant : 000C66

Vacuum ultraviolet spectroscopic properties of rare earth (RE) (RE = Eu, Tb, Dy, Sm, Tm)-doped K2GdZr(PO4)3 phosphate

Auteurs : RBID : Pascal:09-0134149

Descripteurs français

English descriptors

Abstract

The luminescent characteristics of RE (RE3+ = Eu, Tb, Dy, Sm and Tm)-doped K2GdZr(PO4)3 have been investigated. The band in the range of 130-157 nm in the VUV excitation spectra of these compounds is attributed to the host lattice or PO3-4 group absorption and the band from 157 nm to 215 nm with the maximum at 188 nm is due to the O-Zr charge transfer transition. For Eu3+-doped sample, the relatively weak band of O2--Eu3+ charge transfer (CTB) at 222 nm is observed and for Tb3+-doped sample, the band at 223 nm is related to the 4f-5d spin-allowed transition of Tb3+. For Dy3+- and Sm3+-doped samples, the O2--Dy3+ and O2--Sm3+ CTBs have not been observed, probably due to the 2p electrons of oxygen tightly bound to the zirconium ion in the host lattice. In Tm3+-doped sample, the weak O2 --Tm3+ CTB is located at 170 nm. It is observed that there is energy transfer between the host and the luminescent activators (e.g. Eu3+, Tb3+ and Sm3+) except for Tm3+.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0134149

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Vacuum ultraviolet spectroscopic properties of rare earth (RE) (RE = Eu, Tb, Dy, Sm, Tm)-doped K
<sub>2</sub>
GdZr(PO
<sub>4</sub>
)
<sub>3</sub>
phosphate</title>
<author>
<name sortKey="Zhang, Zhi Jun" uniqKey="Zhang Z">Zhi-Jun Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Chinese Academy of Science</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Jun Lin" uniqKey="Yuan J">Jun-Lin Yuan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Chinese Academy of Science</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hao Hong" uniqKey="Chen H">Hao-Hong Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Chinese Academy of Science</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xin Xin" uniqKey="Yang X">Xin-Xin Yang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Chinese Academy of Science</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jing Tai" uniqKey="Zhao J">Jing-Tai Zhao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Guo Bin" uniqKey="Zhang G">Guo-Bin Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>National Synchrotron Radiation Laboratory, University of Science and Technology of China</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230026</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Chao Shu" uniqKey="Shi C">Chao-Shu Shi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>National Synchrotron Radiation Laboratory, University of Science and Technology of China</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230026</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0134149</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0134149 INIST</idno>
<idno type="RBID">Pascal:09-0134149</idno>
<idno type="wicri:Area/Main/Corpus">005A00</idno>
<idno type="wicri:Area/Main/Repository">004859</idno>
<idno type="wicri:Area/Chine/Extraction">000C65</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1293-2558</idno>
<title level="j" type="abbreviated">Solid state sci.</title>
<title level="j" type="main">Solid state sciences</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption band</term>
<term>Allowed transition</term>
<term>Charge transfer</term>
<term>Doping</term>
<term>Dysprosium additions</term>
<term>Energy transfer</term>
<term>Europium</term>
<term>Europium additions</term>
<term>Excitation spectrum</term>
<term>Extreme ultraviolet radiation</term>
<term>Indium additions</term>
<term>Luminescence</term>
<term>Optical properties</term>
<term>Phosphates</term>
<term>Samarium additions</term>
<term>Spin crossover</term>
<term>Thulium additions</term>
<term>Ultraviolet radiation</term>
<term>Zirconium</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rayonnement UV extrême</term>
<term>Addition europium</term>
<term>Addition dysprosium</term>
<term>Addition samarium</term>
<term>Addition thulium</term>
<term>Phosphate</term>
<term>Europium</term>
<term>Spectre excitation</term>
<term>Bande absorption</term>
<term>Transfert charge</term>
<term>Dopage</term>
<term>Transition spin</term>
<term>Transition permise</term>
<term>Addition indium</term>
<term>Zirconium</term>
<term>Transfert énergie</term>
<term>Luminescence</term>
<term>Propriété optique</term>
<term>Rayonnement UV</term>
<term>Zr</term>
<term>7820</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Phosphate</term>
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The luminescent characteristics of RE (RE
<sup>3+</sup>
= Eu, Tb, Dy, Sm and Tm)-doped K
<sub>2</sub>
GdZr(PO
<sub>4</sub>
)
<sub>3</sub>
have been investigated. The band in the range of 130-157 nm in the VUV excitation spectra of these compounds is attributed to the host lattice or PO
<sup>3-</sup>
<sub>4</sub>
group absorption and the band from 157 nm to 215 nm with the maximum at 188 nm is due to the O-Zr charge transfer transition. For Eu
<sup>3+</sup>
-doped sample, the relatively weak band of O
<sup>2-</sup>
-Eu
<sup>3+</sup>
charge transfer (CTB) at 222 nm is observed and for Tb
<sup>3+</sup>
-doped sample, the band at 223 nm is related to the 4f-5d spin-allowed transition of Tb
<sup>3+</sup>
. For Dy
<sup>3+</sup>
- and Sm
<sup>3+</sup>
-doped samples, the O
<sup>2-</sup>
-Dy
<sup>3+</sup>
and O
<sup>2-</sup>
-Sm
<sup>3+</sup>
CTBs have not been observed, probably due to the 2p electrons of oxygen tightly bound to the zirconium ion in the host lattice. In Tm
<sup>3+</sup>
-doped sample, the weak O
<sup>2</sup>
<sup>-</sup>
-Tm
<sup>3+</sup>
CTB is located at 170 nm. It is observed that there is energy transfer between the host and the luminescent activators (e.g. Eu
<sup>3+</sup>
, Tb
<sup>3+</sup>
and Sm
<sup>3+</sup>
) except for Tm
<sup>3</sup>
+.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1293-2558</s0>
</fA01>
<fA03 i2="1">
<s0>Solid state sci.</s0>
</fA03>
<fA05>
<s2>11</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Vacuum ultraviolet spectroscopic properties of rare earth (RE) (RE = Eu, Tb, Dy, Sm, Tm)-doped K
<sub>2</sub>
GdZr(PO
<sub>4</sub>
)
<sub>3</sub>
phosphate</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZHANG (Zhi-Jun)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YUAN (Jun-Lin)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHEN (Hao-Hong)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YANG (Xin-Xin)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZHAO (Jing-Tai)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ZHANG (Guo-Bin)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SHI (Chao-Shu)</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Graduate School of Chinese Academy of Science</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>National Synchrotron Radiation Laboratory, University of Science and Technology of China</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>549-555</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>11118</s2>
<s5>354000185485530450</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0134149</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid state sciences</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The luminescent characteristics of RE (RE
<sup>3+</sup>
= Eu, Tb, Dy, Sm and Tm)-doped K
<sub>2</sub>
GdZr(PO
<sub>4</sub>
)
<sub>3</sub>
have been investigated. The band in the range of 130-157 nm in the VUV excitation spectra of these compounds is attributed to the host lattice or PO
<sup>3-</sup>
<sub>4</sub>
group absorption and the band from 157 nm to 215 nm with the maximum at 188 nm is due to the O-Zr charge transfer transition. For Eu
<sup>3+</sup>
-doped sample, the relatively weak band of O
<sup>2-</sup>
-Eu
<sup>3+</sup>
charge transfer (CTB) at 222 nm is observed and for Tb
<sup>3+</sup>
-doped sample, the band at 223 nm is related to the 4f-5d spin-allowed transition of Tb
<sup>3+</sup>
. For Dy
<sup>3+</sup>
- and Sm
<sup>3+</sup>
-doped samples, the O
<sup>2-</sup>
-Dy
<sup>3+</sup>
and O
<sup>2-</sup>
-Sm
<sup>3+</sup>
CTBs have not been observed, probably due to the 2p electrons of oxygen tightly bound to the zirconium ion in the host lattice. In Tm
<sup>3+</sup>
-doped sample, the weak O
<sup>2</sup>
<sup>-</sup>
-Tm
<sup>3+</sup>
CTB is located at 170 nm. It is observed that there is energy transfer between the host and the luminescent activators (e.g. Eu
<sup>3+</sup>
, Tb
<sup>3+</sup>
and Sm
<sup>3+</sup>
) except for Tm
<sup>3</sup>
+.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H20</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Rayonnement UV extrême</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Extreme ultraviolet radiation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Addition europium</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Europium additions</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Addition dysprosium</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Dysprosium additions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition samarium</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Samarium additions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Phosphate</s0>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Phosphates</s0>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Europium</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Europium</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Spectre excitation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Excitation spectrum</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Espectro excitación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Bande absorption</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Absorption band</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Banda absorción</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Transfert charge</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Charge transfer</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Transferencia carga</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Doping</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Doping</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Transition spin</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Spin crossover</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Transition permise</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Allowed transition</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Transición permitida</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Zirconium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Zirconium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Transfert énergie</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Energy transfer</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Luminescence</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Luminescence</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Rayonnement UV</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Ultraviolet radiation</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Zr</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>7820</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>096</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C65 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000C65 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:09-0134149
   |texte=   Vacuum ultraviolet spectroscopic properties of rare earth (RE) (RE = Eu, Tb, Dy, Sm, Tm)-doped K2GdZr(PO4)3 phosphate
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024