Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantum dot lasers grown by gas source molecular-beam epitaxy

Identifieur interne : 000730 ( Chine/Analysis ); précédent : 000729; suivant : 000731

Quantum dot lasers grown by gas source molecular-beam epitaxy

Auteurs : RBID : Pascal:11-0330701

Descripteurs français

English descriptors

Abstract

We report on the InAs quantum dot lasers grown by gas source molecular-beam epitaxy, respectively, on GaAs and InP substrates. Room temperature continuous-wave operation was achieved for both InAs/GaAs and InAs/InP quantum dot lasers, respectively, at 1.10 μm and 1.54-1.70 μm wavelength region. More than 50 mW optical power was collected from one facet of the InAs/GaAs quantum dot lasers at 20 °C, while for InAs/InP quantum dot lasers the maximum output power was measured as 30 mW. For InAs/InP material system, by increasing the layer thickness of deposited InAs from 3.0 to 3.5 monolayers, the lasing wavelength can be extended from 1.5-1.6 μm to 1.6-1.7 μm. Moreover, a tunable quantum dot external cavity laser was demonstrated, utilizing the broad gain profile of InAs quantum dots.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0330701

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Quantum dot lasers grown by gas source molecular-beam epitaxy</title>
<author>
<name sortKey="Gong, Q" uniqKey="Gong Q">Q. Gong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, P" uniqKey="Chen P">P. Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, S G" uniqKey="Li S">S. G. Li</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lao, Y F" uniqKey="Lao Y">Y. F. Lao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cao, C F" uniqKey="Cao C">C. F. Cao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, C F" uniqKey="Xu C">C. F. Xu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Y G" uniqKey="Zhang Y">Y. G. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feng, S L" uniqKey="Feng S">S. L. Feng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, C H" uniqKey="Ma C">C. H. Ma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>College of Physics and Engineering, Qufu Normal University</s1>
<s2>Qufu 273165</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Qufu 273165</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, H L" uniqKey="Wang H">H. L. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>College of Physics and Engineering, Qufu Normal University</s1>
<s2>Qufu 273165</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Qufu 273165</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0330701</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0330701 INIST</idno>
<idno type="RBID">Pascal:11-0330701</idno>
<idno type="wicri:Area/Main/Corpus">002D42</idno>
<idno type="wicri:Area/Main/Repository">002661</idno>
<idno type="wicri:Area/Chine/Extraction">000730</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Continuous wave</term>
<term>GSMBE method</term>
<term>Gallium arsenides</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Indium phosphide</term>
<term>Layer thickness</term>
<term>Molecular beam epitaxy</term>
<term>Monolayers</term>
<term>Nanostructured materials</term>
<term>Output power</term>
<term>Quantum dot lasers</term>
<term>Quantum dots</term>
<term>Semiconductor lasers</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Laser point quantique</term>
<term>Méthode GSMBE</term>
<term>Epitaxie jet moléculaire</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Onde entretenue</term>
<term>Arséniure de gallium</term>
<term>Puissance sortie</term>
<term>Epaisseur couche</term>
<term>Couche monomoléculaire</term>
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Laser semiconducteur</term>
<term>Phosphure d'indium</term>
<term>InAs</term>
<term>Substrat indium phosphure</term>
<term>Substrat InP</term>
<term>Substrat GaAs</term>
<term>GaAs</term>
<term>8115H</term>
<term>8105E</term>
<term>6855J</term>
<term>8107T</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on the InAs quantum dot lasers grown by gas source molecular-beam epitaxy, respectively, on GaAs and InP substrates. Room temperature continuous-wave operation was achieved for both InAs/GaAs and InAs/InP quantum dot lasers, respectively, at 1.10 μm and 1.54-1.70 μm wavelength region. More than 50 mW optical power was collected from one facet of the InAs/GaAs quantum dot lasers at 20 °C, while for InAs/InP quantum dot lasers the maximum output power was measured as 30 mW. For InAs/InP material system, by increasing the layer thickness of deposited InAs from 3.0 to 3.5 monolayers, the lasing wavelength can be extended from 1.5-1.6 μm to 1.6-1.7 μm. Moreover, a tunable quantum dot external cavity laser was demonstrated, utilizing the broad gain profile of InAs quantum dots.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>323</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Quantum dot lasers grown by gas source molecular-beam epitaxy</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the 16th International Conference on Molecular Beam Epitaxy (MBE 2010), Berlin, Germany, 22-27 August, 2010</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>GONG (Q.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHEN (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LI (S. G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LAO (Y. F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CAO (C. F.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>XU (C. F.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ZHANG (Y. G.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>FENG (S. L.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>MA (C. H.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>WANG (H. L.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>GEELHAAR (Lutz)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>HEYN (Christian)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>WIECK (Andreas D.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>College of Physics and Engineering, Qufu Normal University</s1>
<s2>Qufu 273165</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Paul-Drude-Institut für Festkörperelektronik</s1>
<s2>Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>University of Hambourg</s1>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>University of Bochum</s1>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>450-453</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000190370281120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0330701</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report on the InAs quantum dot lasers grown by gas source molecular-beam epitaxy, respectively, on GaAs and InP substrates. Room temperature continuous-wave operation was achieved for both InAs/GaAs and InAs/InP quantum dot lasers, respectively, at 1.10 μm and 1.54-1.70 μm wavelength region. More than 50 mW optical power was collected from one facet of the InAs/GaAs quantum dot lasers at 20 °C, while for InAs/InP quantum dot lasers the maximum output power was measured as 30 mW. For InAs/InP material system, by increasing the layer thickness of deposited InAs from 3.0 to 3.5 monolayers, the lasing wavelength can be extended from 1.5-1.6 μm to 1.6-1.7 μm. Moreover, a tunable quantum dot external cavity laser was demonstrated, utilizing the broad gain profile of InAs quantum dots.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Laser point quantique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Quantum dot lasers</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Méthode GSMBE</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>GSMBE method</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Método GSMBE</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Onde entretenue</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Continuous wave</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Onda continua</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Puissance sortie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Output power</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Potencia salida</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Couche monomoléculaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Monolayers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Substrat indium phosphure</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Substrat InP</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Substrat GaAs</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8105E</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>227</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>MBE 2010 International Conference on Molecular Beam Epitaxy</s1>
<s2>16</s2>
<s3>Berlin DEU</s3>
<s4>2010-08-22</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000730 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000730 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0330701
   |texte=   Quantum dot lasers grown by gas source molecular-beam epitaxy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024