Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effects of injector doping densities on lasing properties of InP-based quantum cascade lasers at 4.3 μm

Identifieur interne : 000078 ( Chine/Analysis ); précédent : 000077; suivant : 000079

The effects of injector doping densities on lasing properties of InP-based quantum cascade lasers at 4.3 μm

Auteurs : RBID : Pascal:13-0288355

Descripteurs français

English descriptors

Abstract

Effects of the injector doping densities on lasing properties of mid-infrared InAlAs-InGaAs-InP quantum cascade lasers at 4.3 μm have been studied. Lasers with different average injector doping between 1.29E17 cm-3 and 2.07E17 cm-3 have been grown by gas source molecular beam epitaxy (GSMBE), and their lasing characteristics were investigated. Lasers with low doped injectors (1.68E17 cm-3) exhibited lower threshold current density, longer emission wavelength and lower characteristic temperature T0. The lower injector doping density decreases waveguide loss. On the other hand, the high doping of the injector increases heat transfer through phonon in QCL active region, and thus results in high characteristic temperature T0.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0288355

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The effects of injector doping densities on lasing properties of InP-based quantum cascade lasers at 4.3 μm</title>
<author>
<name sortKey="Li, Y Y" uniqKey="Li Y">Y. Y. Li</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, A Z" uniqKey="Li A">A. Z. Li</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y. Gu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Y G" uniqKey="Zhang Y">Y. G. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, H S B Y" uniqKey="Li H">H. S. B. Y. Li</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fang, X" uniqKey="Fang X">X. Fang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0288355</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0288355 INIST</idno>
<idno type="RBID">Pascal:13-0288355</idno>
<idno type="wicri:Area/Main/Corpus">000795</idno>
<idno type="wicri:Area/Main/Repository">000354</idno>
<idno type="wicri:Area/Chine/Extraction">000078</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Current density</term>
<term>Doping</term>
<term>GSMBE method</term>
<term>Gallium arsenides</term>
<term>Heat transfer</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Indium phosphide</term>
<term>Molecular beam epitaxy</term>
<term>Phonons</term>
<term>Quantum cascade laser</term>
<term>Semiconductor lasers</term>
<term>Threshold current</term>
<term>Waveguides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dopage</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Laser cascade quantique</term>
<term>Laser semiconducteur</term>
<term>Méthode GSMBE</term>
<term>Epitaxie jet moléculaire</term>
<term>Courant seuil</term>
<term>Densité courant</term>
<term>Guide onde</term>
<term>Transfert chaleur</term>
<term>Phonon</term>
<term>Phosphure d'indium</term>
<term>Arséniure d'indium</term>
<term>Arséniure de gallium</term>
<term>InP</term>
<term>InAlAs</term>
<term>InGaAs</term>
<term>8115H</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Effects of the injector doping densities on lasing properties of mid-infrared InAlAs-InGaAs-InP quantum cascade lasers at 4.3 μm have been studied. Lasers with different average injector doping between 1.29E17 cm
<sup>-3</sup>
and 2.07E17 cm
<sup>-3</sup>
have been grown by gas source molecular beam epitaxy (GSMBE), and their lasing characteristics were investigated. Lasers with low doped injectors (1.68E17 cm
<sup>-3</sup>
) exhibited lower threshold current density, longer emission wavelength and lower characteristic temperature T
<sub>0</sub>
. The lower injector doping density decreases waveguide loss. On the other hand, the high doping of the injector increases heat transfer through phonon in QCL active region, and thus results in high characteristic temperature T
<sub>0</sub>
.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>378</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>The effects of injector doping densities on lasing properties of InP-based quantum cascade lasers at 4.3 μm</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The 17th International Conference on Molecular Beam Epitaxy</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>LI (Y. Y.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LI (A. Z.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GU (Y.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZHANG (Y. G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LI (H. S. B. Y.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>WANG (K.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>FANG (X.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>AKIMOTO (Katzuhiro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SUEMASU (Takashi)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>OKUMURA (Hajime)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>University of Tsukuba</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>587-590</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000506550351430</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0288355</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Effects of the injector doping densities on lasing properties of mid-infrared InAlAs-InGaAs-InP quantum cascade lasers at 4.3 μm have been studied. Lasers with different average injector doping between 1.29E17 cm
<sup>-3</sup>
and 2.07E17 cm
<sup>-3</sup>
have been grown by gas source molecular beam epitaxy (GSMBE), and their lasing characteristics were investigated. Lasers with low doped injectors (1.68E17 cm
<sup>-3</sup>
) exhibited lower threshold current density, longer emission wavelength and lower characteristic temperature T
<sub>0</sub>
. The lower injector doping density decreases waveguide loss. On the other hand, the high doping of the injector increases heat transfer through phonon in QCL active region, and thus results in high characteristic temperature T
<sub>0</sub>
.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Doping</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Doping</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Laser cascade quantique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Quantum cascade laser</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthode GSMBE</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>GSMBE method</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Método GSMBE</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Courant seuil</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Threshold current</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Densité courant</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Current density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Guide onde</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Waveguides</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Transfert chaleur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Heat transfer</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Phonon</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Phonons</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>InAlAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>273</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>MBE2012 International Conference on Molecular Beam Epitaxy</s1>
<s2>17</s2>
<s3>Nara JPN</s3>
<s4>2012-09-23</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000078 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000078 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0288355
   |texte=   The effects of injector doping densities on lasing properties of InP-based quantum cascade lasers at 4.3 μm
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024