Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Directed differentiation of embryonic P19 cells and neural stem cells into neural lineage on conducting PEDOT-PEG and ITO glass substrates.

Identifieur interne : 000E90 ( Main/Exploration ); précédent : 000E89; suivant : 000E91

Directed differentiation of embryonic P19 cells and neural stem cells into neural lineage on conducting PEDOT-PEG and ITO glass substrates.

Auteurs : RBID : pubmed:22944870

English descriptors

Abstract

Differentiation of pluripotent and lineage restricted stem cells such as neural stem cells (NSCs) was studied on conducting substrates of various nature without perturbation of the genome with exogenous genetic material or chemical stimuli. Primary mouse adult neural stem cells (NSCs) and P19 pluripotent embryonal (P19 EC) carcinoma cells were used. Expression levels of neuronal markers β-III-tubulin and neurofilament were evaluated by immunochemistry and flow cytometry. It was shown that the ability of the substrate to induce differentiation directly correlated with its conductivity. Conducting substrates (conducting oxides or doped π-conjugated organic polymers) with different morphology, structure, and conductivity mechanisms all promoted differentiation of NSC and P19 cells into neuronal lineage to a similar degree without use of additional factors such as poly-L-ornithine coating or retinoic acid, as verified by their morphology and upregulation of the neuronal markers but not astrocyte marker GFAP. However, substrates with low conductance below ca. 10(-4) S cm(-2) did not show this ability. Morphology of differentiating cells was visualized by atomic force microscopy. NSCs cells increased β-III-tubulin expression by 95% and P19 cells by over 30%. Our results suggest that the substrate conductivity is a key factor governing the cell fate. Differentiation of P19 cells into neuronal lineage on conducting substrates was attributed to downregualtion of Akt signaling pathway and increase in expression of dual oxidase 1 (DUOX 1).

DOI: 10.1016/j.abb.2012.08.006
PubMed: 22944870

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Directed differentiation of embryonic P19 cells and neural stem cells into neural lineage on conducting PEDOT-PEG and ITO glass substrates.</title>
<author>
<name sortKey="Ostrakhovitch, E A" uniqKey="Ostrakhovitch E">E A Ostrakhovitch</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. eostrakh@uwo.ca</nlm:affiliation>
<country wicri:rule="url">Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Byers, J C" uniqKey="Byers J">J C Byers</name>
</author>
<author>
<name sortKey="O Neil, K D" uniqKey="O Neil K">K D O'Neil</name>
</author>
<author>
<name sortKey="Semenikhin, O A" uniqKey="Semenikhin O">O A Semenikhin</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2012">2012</date>
<idno type="doi">10.1016/j.abb.2012.08.006</idno>
<idno type="RBID">pubmed:22944870</idno>
<idno type="pmid">22944870</idno>
<idno type="wicri:Area/Main/Corpus">000A90</idno>
<idno type="wicri:Area/Main/Curation">000A90</idno>
<idno type="wicri:Area/Main/Exploration">000E90</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Bicyclo Compounds, Heterocyclic (chemistry)</term>
<term>Bicyclo Compounds, Heterocyclic (metabolism)</term>
<term>Cells, Cultured</term>
<term>Electric Conductivity</term>
<term>Embryonal Carcinoma Stem Cells (cytology)</term>
<term>Embryonal Carcinoma Stem Cells (metabolism)</term>
<term>Gene Expression Regulation</term>
<term>Mice</term>
<term>NADPH Oxidase (genetics)</term>
<term>Neural Stem Cells (cytology)</term>
<term>Neural Stem Cells (metabolism)</term>
<term>Neurogenesis</term>
<term>Polyethylene Glycols (chemistry)</term>
<term>Polyethylene Glycols (metabolism)</term>
<term>Polymers (chemistry)</term>
<term>Polymers (metabolism)</term>
<term>Proto-Oncogene Proteins c-akt (genetics)</term>
<term>Tin Compounds (chemistry)</term>
<term>Tin Compounds (metabolism)</term>
<term>Tissue Scaffolds (chemistry)</term>
<term>Tretinoin (metabolism)</term>
<term>Tubulin (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bicyclo Compounds, Heterocyclic</term>
<term>Polyethylene Glycols</term>
<term>Polymers</term>
<term>Tin Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>NADPH Oxidase</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>Tubulin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bicyclo Compounds, Heterocyclic</term>
<term>Polyethylene Glycols</term>
<term>Polymers</term>
<term>Tin Compounds</term>
<term>Tretinoin</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Tissue Scaffolds</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Embryonal Carcinoma Stem Cells</term>
<term>Neural Stem Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Embryonal Carcinoma Stem Cells</term>
<term>Neural Stem Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Electric Conductivity</term>
<term>Gene Expression Regulation</term>
<term>Mice</term>
<term>Neurogenesis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Differentiation of pluripotent and lineage restricted stem cells such as neural stem cells (NSCs) was studied on conducting substrates of various nature without perturbation of the genome with exogenous genetic material or chemical stimuli. Primary mouse adult neural stem cells (NSCs) and P19 pluripotent embryonal (P19 EC) carcinoma cells were used. Expression levels of neuronal markers β-III-tubulin and neurofilament were evaluated by immunochemistry and flow cytometry. It was shown that the ability of the substrate to induce differentiation directly correlated with its conductivity. Conducting substrates (conducting oxides or doped π-conjugated organic polymers) with different morphology, structure, and conductivity mechanisms all promoted differentiation of NSC and P19 cells into neuronal lineage to a similar degree without use of additional factors such as poly-L-ornithine coating or retinoic acid, as verified by their morphology and upregulation of the neuronal markers but not astrocyte marker GFAP. However, substrates with low conductance below ca. 10(-4) S cm(-2) did not show this ability. Morphology of differentiating cells was visualized by atomic force microscopy. NSCs cells increased β-III-tubulin expression by 95% and P19 cells by over 30%. Our results suggest that the substrate conductivity is a key factor governing the cell fate. Differentiation of P19 cells into neuronal lineage on conducting substrates was attributed to downregualtion of Akt signaling pathway and increase in expression of dual oxidase 1 (DUOX 1).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22944870</PMID>
<DateCreated>
<Year>2012</Year>
<Month>10</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>01</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-0384</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>528</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
<Day>1</Day>
</PubDate>
</JournalIssue>
<Title>Archives of biochemistry and biophysics</Title>
<ISOAbbreviation>Arch. Biochem. Biophys.</ISOAbbreviation>
</Journal>
<ArticleTitle>Directed differentiation of embryonic P19 cells and neural stem cells into neural lineage on conducting PEDOT-PEG and ITO glass substrates.</ArticleTitle>
<Pagination>
<MedlinePgn>21-31</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.abb.2012.08.006</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0003-9861(12)00305-0</ELocationID>
<Abstract>
<AbstractText>Differentiation of pluripotent and lineage restricted stem cells such as neural stem cells (NSCs) was studied on conducting substrates of various nature without perturbation of the genome with exogenous genetic material or chemical stimuli. Primary mouse adult neural stem cells (NSCs) and P19 pluripotent embryonal (P19 EC) carcinoma cells were used. Expression levels of neuronal markers β-III-tubulin and neurofilament were evaluated by immunochemistry and flow cytometry. It was shown that the ability of the substrate to induce differentiation directly correlated with its conductivity. Conducting substrates (conducting oxides or doped π-conjugated organic polymers) with different morphology, structure, and conductivity mechanisms all promoted differentiation of NSC and P19 cells into neuronal lineage to a similar degree without use of additional factors such as poly-L-ornithine coating or retinoic acid, as verified by their morphology and upregulation of the neuronal markers but not astrocyte marker GFAP. However, substrates with low conductance below ca. 10(-4) S cm(-2) did not show this ability. Morphology of differentiating cells was visualized by atomic force microscopy. NSCs cells increased β-III-tubulin expression by 95% and P19 cells by over 30%. Our results suggest that the substrate conductivity is a key factor governing the cell fate. Differentiation of P19 cells into neuronal lineage on conducting substrates was attributed to downregualtion of Akt signaling pathway and increase in expression of dual oxidase 1 (DUOX 1).</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ostrakhovitch</LastName>
<ForeName>E A</ForeName>
<Initials>EA</Initials>
<Affiliation>Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. eostrakh@uwo.ca</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Byers</LastName>
<ForeName>J C</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>O'Neil</LastName>
<ForeName>K D</ForeName>
<Initials>KD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Semenikhin</LastName>
<ForeName>O A</ForeName>
<Initials>OA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Arch Biochem Biophys</MedlineTA>
<NlmUniqueID>0372430</NlmUniqueID>
<ISSNLinking>0003-9861</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Bicyclo Compounds, Heterocyclic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Polyethylene Glycols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Polymers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Tin Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Tubulin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>beta3 tubulin, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>poly(3,4-ethylene dioxythiophene)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5688UTC01R</RegistryNumber>
<NameOfSubstance>Tretinoin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>71243-84-0</RegistryNumber>
<NameOfSubstance>indium tin oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.1</RegistryNumber>
<NameOfSubstance>Duox1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.1</RegistryNumber>
<NameOfSubstance>NADPH Oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance>Proto-Oncogene Proteins c-akt</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Bicyclo Compounds, Heterocyclic</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
<QualifierName MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Electric Conductivity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Embryonal Carcinoma Stem Cells</DescriptorName>
<QualifierName MajorTopicYN="Y">cytology</QualifierName>
<QualifierName MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">NADPH Oxidase</DescriptorName>
<QualifierName MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Neural Stem Cells</DescriptorName>
<QualifierName MajorTopicYN="Y">cytology</QualifierName>
<QualifierName MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Neurogenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Polyethylene Glycols</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
<QualifierName MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Polymers</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
<QualifierName MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Proto-Oncogene Proteins c-akt</DescriptorName>
<QualifierName MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tin Compounds</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
<QualifierName MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tissue Scaffolds</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tretinoin</DescriptorName>
<QualifierName MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tubulin</DescriptorName>
<QualifierName MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>4</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>7</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>8</Month>
<Day>3</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>8</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S0003-9861(12)00305-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.abb.2012.08.006</ArticleId>
<ArticleId IdType="pubmed">22944870</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E90 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E90 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22944870
   |texte=   Directed differentiation of embryonic P19 cells and neural stem cells into neural lineage on conducting PEDOT-PEG and ITO glass substrates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22944870" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024