Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.

Identifieur interne : 000836 ( Main/Exploration ); précédent : 000835; suivant : 000837

Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.

Auteurs : RBID : pubmed:23194174

English descriptors

Abstract

Electron emission from individual Au nanorods deposited on indium-tin-oxide (ITO) following excitation with femtosecond laser pulses near the rod longitudinal plasmon resonance is studied via scanning photoionization microscopy. The measured electron signal is observed to strongly depend on the excitation laser polarization and wavelength. Correlated secondary electron microscopy (SEM) and dark-field microscopy (DFM) studies of the same nanorods unambiguously confirm that maximum electron emission results from (i) laser polarization aligned with the rod long axis and (ii) laser wavelength resonant with the localized surface plasmon resonance. The experimental results are in good agreement with quantitative predictions for a coherent multiphoton photoelectric effect, which is identified as the predominant electron emission mechanism for metal nanoparticles under employed excitation conditions. According to this mechanism, the multiphoton photoemission rate is increased by over 10 orders of magnitude in the vicinity of a localized surface plasmon resonance, due to enhancement of the incident electromagnetic field in the particle near-field. These findings identify multiphoton photoemission as an extremely sensitive metric of local electric fields (i.e., "hot spots") in plasmonic nanoparticles/structures that can potentially be exploited for direct quantitation of local electric field enhancement factors.

DOI: 10.1021/nn305194n
PubMed: 23194174

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.</title>
<author>
<name sortKey="Grubisic, Andrej" uniqKey="Grubisic A">Andrej Grubisic</name>
<affiliation wicri:level="1">
<nlm:affiliation>JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schweikhard, Volker" uniqKey="Schweikhard V">Volker Schweikhard</name>
</author>
<author>
<name sortKey="Baker, Thomas A" uniqKey="Baker T">Thomas A Baker</name>
</author>
<author>
<name sortKey="Nesbitt, David J" uniqKey="Nesbitt D">David J Nesbitt</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2013">2013</date>
<idno type="doi">10.1021/nn305194n</idno>
<idno type="RBID">pubmed:23194174</idno>
<idno type="pmid">23194174</idno>
<idno type="wicri:Area/Main/Corpus">000918</idno>
<idno type="wicri:Area/Main/Curation">000918</idno>
<idno type="wicri:Area/Main/Exploration">000836</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electromagnetic Fields</term>
<term>Electrons</term>
<term>Gold (chemistry)</term>
<term>Gold (radiation effects)</term>
<term>Materials Testing</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Metal Nanoparticles (radiation effects)</term>
<term>Metal Nanoparticles (ultrastructure)</term>
<term>Molecular Conformation</term>
<term>Particle Size</term>
<term>Photons</term>
<term>Scattering, Radiation</term>
<term>Surface Plasmon Resonance (methods)</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Gold</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="radiation effects" xml:lang="en">
<term>Gold</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Surface Plasmon Resonance</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electromagnetic Fields</term>
<term>Electrons</term>
<term>Materials Testing</term>
<term>Molecular Conformation</term>
<term>Particle Size</term>
<term>Photons</term>
<term>Scattering, Radiation</term>
<term>Surface Properties</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Electron emission from individual Au nanorods deposited on indium-tin-oxide (ITO) following excitation with femtosecond laser pulses near the rod longitudinal plasmon resonance is studied via scanning photoionization microscopy. The measured electron signal is observed to strongly depend on the excitation laser polarization and wavelength. Correlated secondary electron microscopy (SEM) and dark-field microscopy (DFM) studies of the same nanorods unambiguously confirm that maximum electron emission results from (i) laser polarization aligned with the rod long axis and (ii) laser wavelength resonant with the localized surface plasmon resonance. The experimental results are in good agreement with quantitative predictions for a coherent multiphoton photoelectric effect, which is identified as the predominant electron emission mechanism for metal nanoparticles under employed excitation conditions. According to this mechanism, the multiphoton photoemission rate is increased by over 10 orders of magnitude in the vicinity of a localized surface plasmon resonance, due to enhancement of the incident electromagnetic field in the particle near-field. These findings identify multiphoton photoemission as an extremely sensitive metric of local electric fields (i.e., "hot spots") in plasmonic nanoparticles/structures that can potentially be exploited for direct quantitation of local electric field enhancement factors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23194174</PMID>
<DateCreated>
<Year>2013</Year>
<Month>01</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>27</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1936-086X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jan</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>ACS nano</Title>
<ISOAbbreviation>ACS Nano</ISOAbbreviation>
</Journal>
<ArticleTitle>Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.</ArticleTitle>
<Pagination>
<MedlinePgn>87-99</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/nn305194n</ELocationID>
<Abstract>
<AbstractText>Electron emission from individual Au nanorods deposited on indium-tin-oxide (ITO) following excitation with femtosecond laser pulses near the rod longitudinal plasmon resonance is studied via scanning photoionization microscopy. The measured electron signal is observed to strongly depend on the excitation laser polarization and wavelength. Correlated secondary electron microscopy (SEM) and dark-field microscopy (DFM) studies of the same nanorods unambiguously confirm that maximum electron emission results from (i) laser polarization aligned with the rod long axis and (ii) laser wavelength resonant with the localized surface plasmon resonance. The experimental results are in good agreement with quantitative predictions for a coherent multiphoton photoelectric effect, which is identified as the predominant electron emission mechanism for metal nanoparticles under employed excitation conditions. According to this mechanism, the multiphoton photoemission rate is increased by over 10 orders of magnitude in the vicinity of a localized surface plasmon resonance, due to enhancement of the incident electromagnetic field in the particle near-field. These findings identify multiphoton photoemission as an extremely sensitive metric of local electric fields (i.e., "hot spots") in plasmonic nanoparticles/structures that can potentially be exploited for direct quantitation of local electric field enhancement factors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Grubisic</LastName>
<ForeName>Andrej</ForeName>
<Initials>A</Initials>
<Affiliation>JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Schweikhard</LastName>
<ForeName>Volker</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Thomas A</ForeName>
<Initials>TA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nesbitt</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Nano</MedlineTA>
<NlmUniqueID>101313589</NlmUniqueID>
<ISSNLinking>1936-0851</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>7440-57-5</RegistryNumber>
<NameOfSubstance>Gold</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Electromagnetic Fields</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Electrons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Gold</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName MajorTopicYN="N">radiation effects</QualifierName>
<QualifierName MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Particle Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Photons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Scattering, Radiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Surface Plasmon Resonance</DescriptorName>
<QualifierName MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/nn305194n</ArticleId>
<ArticleId IdType="pubmed">23194174</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000836 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000836 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23194174
   |texte=   Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23194174" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024