Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires.

Identifieur interne : 000378 ( Main/Exploration ); précédent : 000377; suivant : 000379

Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires.

Auteurs : RBID : pubmed:23644899

English descriptors

Abstract

The effect of stoichiometry of single crystalline In2O3 nanowires on electrical transport and gas sensing was investigated. The nanowires were synthesized by vapor phase transport and had diameters ranging from 80 to 100 nm and lengths between 10 and 20 μm, with a growth direction of [001]. Transport measurements revealed n-type conduction, attributed to the presence of oxygen vacancies in the crystal lattice. As-grown In2O3 nanowires were shown to have a carrier concentration of ≈5 × 10(17) cm(-3), while nanowires that were annealed in wet O2 showed a reduced carrier concentration of less than 10(16) cm(-3). Temperature dependent conductivity measurements on the as-grown nanowires and analysis of the thermally activated Arrhenius conduction for the temperature range of 77-350 K yielded an activation energy of 0.12 eV. This is explained on the basis of carrier exchange that occurs between the surface states and the bulk of the nanowire, resulting in a depleted surface layer of thickness of the order of the Debye length (LD), estimated to be about 3-4 nm for the as-grown nanowires and about 10 times higher for the more stoichiometric nanowires. Significant changes in the electrical conductance of individual In2O3 nanowires were also observed within several seconds of exposure to NH3 and O2 gas molecules at room temperature, thus demonstrating the potential use of In2O3 nanowires as efficient miniaturized chemical sensors. The sensing mechanism is dominated by the nanowire channel conductance, and a simple energy band diagram is used to explain the change in conductivity when gas molecules adsorbed on the nanowire surface influence its electrical properties. Less stoichiometric nanowires were found to be more sensitive to oxidizing gases while more stoichiometric nanowires showed significantly enhanced response to reducing gases.

DOI: 10.1088/0957-4484/24/22/225704
PubMed: 23644899

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires.</title>
<author>
<name sortKey="Gali, Pradeep" uniqKey="Gali P">Pradeep Gali</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Electrical Engineering, University of North Texas, Denton, TX 76203</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sapkota, Gopal" uniqKey="Sapkota G">Gopal Sapkota</name>
</author>
<author>
<name sortKey="Syllaios, A J" uniqKey="Syllaios A">A J Syllaios</name>
</author>
<author>
<name sortKey="Littler, Chris" uniqKey="Littler C">Chris Littler</name>
</author>
<author>
<name sortKey="Philipose, U" uniqKey="Philipose U">U Philipose</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2013">2013</date>
<idno type="doi">10.1088/0957-4484/24/22/225704</idno>
<idno type="RBID">pubmed:23644899</idno>
<idno type="pmid">23644899</idno>
<idno type="wicri:Area/Main/Corpus">000640</idno>
<idno type="wicri:Area/Main/Curation">000640</idno>
<idno type="wicri:Area/Main/Exploration">000378</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ammonia (analysis)</term>
<term>Electric Conductivity</term>
<term>Equipment Design</term>
<term>Indium (chemistry)</term>
<term>Nanowires (chemistry)</term>
<term>Oxygen (analysis)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Ammonia</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Indium</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanowires</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electric Conductivity</term>
<term>Equipment Design</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of stoichiometry of single crystalline In2O3 nanowires on electrical transport and gas sensing was investigated. The nanowires were synthesized by vapor phase transport and had diameters ranging from 80 to 100 nm and lengths between 10 and 20 μm, with a growth direction of [001]. Transport measurements revealed n-type conduction, attributed to the presence of oxygen vacancies in the crystal lattice. As-grown In2O3 nanowires were shown to have a carrier concentration of ≈5 × 10(17) cm(-3), while nanowires that were annealed in wet O2 showed a reduced carrier concentration of less than 10(16) cm(-3). Temperature dependent conductivity measurements on the as-grown nanowires and analysis of the thermally activated Arrhenius conduction for the temperature range of 77-350 K yielded an activation energy of 0.12 eV. This is explained on the basis of carrier exchange that occurs between the surface states and the bulk of the nanowire, resulting in a depleted surface layer of thickness of the order of the Debye length (LD), estimated to be about 3-4 nm for the as-grown nanowires and about 10 times higher for the more stoichiometric nanowires. Significant changes in the electrical conductance of individual In2O3 nanowires were also observed within several seconds of exposure to NH3 and O2 gas molecules at room temperature, thus demonstrating the potential use of In2O3 nanowires as efficient miniaturized chemical sensors. The sensing mechanism is dominated by the nanowire channel conductance, and a simple energy band diagram is used to explain the change in conductivity when gas molecules adsorbed on the nanowire surface influence its electrical properties. Less stoichiometric nanowires were found to be more sensitive to oxidizing gases while more stoichiometric nanowires showed significantly enhanced response to reducing gases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23644899</PMID>
<DateCreated>
<Year>2013</Year>
<Month>05</Month>
<Day>08</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>03</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1361-6528</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
<Day>7</Day>
</PubDate>
</JournalIssue>
<Title>Nanotechnology</Title>
<ISOAbbreviation>Nanotechnology</ISOAbbreviation>
</Journal>
<ArticleTitle>Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires.</ArticleTitle>
<Pagination>
<MedlinePgn>225704</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1088/0957-4484/24/22/225704</ELocationID>
<Abstract>
<AbstractText>The effect of stoichiometry of single crystalline In2O3 nanowires on electrical transport and gas sensing was investigated. The nanowires were synthesized by vapor phase transport and had diameters ranging from 80 to 100 nm and lengths between 10 and 20 μm, with a growth direction of [001]. Transport measurements revealed n-type conduction, attributed to the presence of oxygen vacancies in the crystal lattice. As-grown In2O3 nanowires were shown to have a carrier concentration of ≈5 × 10(17) cm(-3), while nanowires that were annealed in wet O2 showed a reduced carrier concentration of less than 10(16) cm(-3). Temperature dependent conductivity measurements on the as-grown nanowires and analysis of the thermally activated Arrhenius conduction for the temperature range of 77-350 K yielded an activation energy of 0.12 eV. This is explained on the basis of carrier exchange that occurs between the surface states and the bulk of the nanowire, resulting in a depleted surface layer of thickness of the order of the Debye length (LD), estimated to be about 3-4 nm for the as-grown nanowires and about 10 times higher for the more stoichiometric nanowires. Significant changes in the electrical conductance of individual In2O3 nanowires were also observed within several seconds of exposure to NH3 and O2 gas molecules at room temperature, thus demonstrating the potential use of In2O3 nanowires as efficient miniaturized chemical sensors. The sensing mechanism is dominated by the nanowire channel conductance, and a simple energy band diagram is used to explain the change in conductivity when gas molecules adsorbed on the nanowire surface influence its electrical properties. Less stoichiometric nanowires were found to be more sensitive to oxidizing gases while more stoichiometric nanowires showed significantly enhanced response to reducing gases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gali</LastName>
<ForeName>Pradeep</ForeName>
<Initials>P</Initials>
<Affiliation>Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Sapkota</LastName>
<ForeName>Gopal</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Syllaios</LastName>
<ForeName>A J</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Littler</LastName>
<ForeName>Chris</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Philipose</LastName>
<ForeName>U</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nanotechnology</MedlineTA>
<NlmUniqueID>101241272</NlmUniqueID>
<ISSNLinking>0957-4484</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>045A6V3VFX</RegistryNumber>
<NameOfSubstance>Indium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4OO9KME22D</RegistryNumber>
<NameOfSubstance>indium oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7664-41-7</RegistryNumber>
<NameOfSubstance>Ammonia</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance>Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Ammonia</DescriptorName>
<QualifierName MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Electric Conductivity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Indium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanowires</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>5</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1088/0957-4484/24/22/225704</ArticleId>
<ArticleId IdType="pubmed">23644899</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000378 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000378 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23644899
   |texte=   Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23644899" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024