Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reduced graphene oxide/InGaZn mixed oxide nanocomposite photocatalysts for hydrogen production.

Identifieur interne : 000065 ( Main/Exploration ); précédent : 000064; suivant : 000066

Reduced graphene oxide/InGaZn mixed oxide nanocomposite photocatalysts for hydrogen production.

Auteurs : RBID : pubmed:24127386

Abstract

A series of reduced graphene oxide and indium-gallium-zinc mixed oxide (RGO/IGZ) nanocomposites were successfully synthesised by a simple one-step hydrothermal method. The as-synthesised nanocomposites were characterised by crystallographic, microscopic, and spectroscopic methods to explore the robust photocatalytic activity of the prepared materials. XRD patterns confirmed the formation of highly pure, single-phase, hexagonal In2 Ga2 ZnO7 with no impurity-related peaks. All the photocatalysts absorbed visible light as observed from the diffuse reflectance UV/Vis spectra. The electron-hole recombination is effectively minimised by the formation of an RGO/metal oxide nanocomposite, which was successfully derived from a photoluminescence (PL) study and photoelectrochemical measurements. The decoration of IGZ nanocrystals onto reduced graphene sheets leads to significant quenching of its luminescent intensity, dramatically improved photocurrent generation (33 times more than neat IGZ) and significantly enhanced photostability. The high photocatalytic activity for H2 production is explained by the strong interaction between the IGZ nanocrystals with RGO sheets, low PL intensity, high photocurrent and large surface area.

DOI: 10.1002/cssc.201300685
PubMed: 24127386

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reduced graphene oxide/InGaZn mixed oxide nanocomposite photocatalysts for hydrogen production.</title>
<author>
<name sortKey="Martha, Satyabadi" uniqKey="Martha S">Satyabadi Martha</name>
<affiliation>
<nlm:affiliation>Colloids and Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar-751 013, Odisha (India), Fax.(+91) 674-258163.</nlm:affiliation>
<wicri:noCountry code="subField">Fax.(+91) 674-258163.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Padhi, Deepak Ku" uniqKey="Padhi D">Deepak Ku Padhi</name>
</author>
<author>
<name sortKey="Parida, Kulamani" uniqKey="Parida K">Kulamani Parida</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24127386</idno>
<idno type="pmid">24127386</idno>
<idno type="doi">10.1002/cssc.201300685</idno>
<idno type="wicri:Area/Main/Corpus">000365</idno>
<idno type="wicri:Area/Main/Curation">000365</idno>
<idno type="wicri:Area/Main/Exploration">000065</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A series of reduced graphene oxide and indium-gallium-zinc mixed oxide (RGO/IGZ) nanocomposites were successfully synthesised by a simple one-step hydrothermal method. The as-synthesised nanocomposites were characterised by crystallographic, microscopic, and spectroscopic methods to explore the robust photocatalytic activity of the prepared materials. XRD patterns confirmed the formation of highly pure, single-phase, hexagonal In2 Ga2 ZnO7 with no impurity-related peaks. All the photocatalysts absorbed visible light as observed from the diffuse reflectance UV/Vis spectra. The electron-hole recombination is effectively minimised by the formation of an RGO/metal oxide nanocomposite, which was successfully derived from a photoluminescence (PL) study and photoelectrochemical measurements. The decoration of IGZ nanocrystals onto reduced graphene sheets leads to significant quenching of its luminescent intensity, dramatically improved photocurrent generation (33 times more than neat IGZ) and significantly enhanced photostability. The high photocatalytic activity for H2 production is explained by the strong interaction between the IGZ nanocrystals with RGO sheets, low PL intensity, high photocurrent and large surface area.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Process">
<PMID Version="1">24127386</PMID>
<DateCreated>
<Year>2014</Year>
<Month>02</Month>
<Day>03</Day>
</DateCreated>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1864-564X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>ChemSusChem</Title>
<ISOAbbreviation>ChemSusChem</ISOAbbreviation>
</Journal>
<ArticleTitle>Reduced graphene oxide/InGaZn mixed oxide nanocomposite photocatalysts for hydrogen production.</ArticleTitle>
<Pagination>
<MedlinePgn>585-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/cssc.201300685</ELocationID>
<Abstract>
<AbstractText>A series of reduced graphene oxide and indium-gallium-zinc mixed oxide (RGO/IGZ) nanocomposites were successfully synthesised by a simple one-step hydrothermal method. The as-synthesised nanocomposites were characterised by crystallographic, microscopic, and spectroscopic methods to explore the robust photocatalytic activity of the prepared materials. XRD patterns confirmed the formation of highly pure, single-phase, hexagonal In2 Ga2 ZnO7 with no impurity-related peaks. All the photocatalysts absorbed visible light as observed from the diffuse reflectance UV/Vis spectra. The electron-hole recombination is effectively minimised by the formation of an RGO/metal oxide nanocomposite, which was successfully derived from a photoluminescence (PL) study and photoelectrochemical measurements. The decoration of IGZ nanocrystals onto reduced graphene sheets leads to significant quenching of its luminescent intensity, dramatically improved photocurrent generation (33 times more than neat IGZ) and significantly enhanced photostability. The high photocatalytic activity for H2 production is explained by the strong interaction between the IGZ nanocrystals with RGO sheets, low PL intensity, high photocurrent and large surface area.</AbstractText>
<CopyrightInformation>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Martha</LastName>
<ForeName>Satyabadi</ForeName>
<Initials>S</Initials>
<Affiliation>Colloids and Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar-751 013, Odisha (India), Fax.(+91) 674-258163.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Padhi</LastName>
<ForeName>Deepak Ku</ForeName>
<Initials>DK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Parida</LastName>
<ForeName>Kulamani</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>ChemSusChem</MedlineTA>
<NlmUniqueID>101319536</NlmUniqueID>
<ISSNLinking>1864-5631</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">electron transfer</Keyword>
<Keyword MajorTopicYN="N">graphene</Keyword>
<Keyword MajorTopicYN="N">hydrogen</Keyword>
<Keyword MajorTopicYN="N">hydrothermal synthesis</Keyword>
<Keyword MajorTopicYN="N">photochemistry</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>7</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>8</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>10</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24127386</ArticleId>
<ArticleId IdType="doi">10.1002/cssc.201300685</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000065 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000065 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24127386
   |texte=   Reduced graphene oxide/InGaZn mixed oxide nanocomposite photocatalysts for hydrogen production.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24127386" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024