Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna.

Identifieur interne : 000021 ( Main/Exploration ); précédent : 000020; suivant : 000022

Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna.

Auteurs : RBID : pubmed:24608232

Abstract

The ability to convert low-energy quanta into a quantum of higher energy is of great interest for a variety of applications, including bioimaging, drug delivery and photovoltaics. Although high conversion efficiencies can be achieved using macroscopic nonlinear crystals, upconverting light at the nanometre scale remains challenging because the subwavelength scale of materials prevents the exploitation of phase-matching processes. Light-plasmon interactions that occur in nanostructured noble metals have offered alternative opportunities for nonlinear upconversion of infrared light, but conversion efficiency rates remain extremely low due to the weak penetration of the exciting fields into the metal. Here, we show that third-harmonic generation from an individual semiconductor indium tin oxide nanoparticle is significantly enhanced when coupled within a plasmonic gold dimer. The plasmonic dimer acts as a receiving optical antenna, confining the incident far-field radiation into a near field localized at its gap; the indium tin oxide nanoparticle located at the plasmonic dimer gap acts as a localized nonlinear transmitter upconverting three incident photons at frequency ω into a photon at frequency 3ω. This hybrid nanodevice provides third-harmonic-generation enhancements of up to 10(6)-fold compared with an isolated indium tin oxide nanoparticle, with an effective third-order susceptibility up to 3.5 × 10(3) nm V(-2) and conversion efficiency of 0.0007%. We also show that the upconverted third-harmonic emission can be exploited to probe the near-field intensity at the plasmonic dimer gap.

DOI: 10.1038/nnano.2014.27
PubMed: 24608232

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna.</title>
<author>
<name sortKey="Aouani, Heykel" uniqKey="Aouani H">Heykel Aouani</name>
<affiliation>
<nlm:affiliation>1] The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK [2].</nlm:affiliation>
<wicri:noCountry code="subField">UK [2]</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Rahmani, Mohsen" uniqKey="Rahmani M">Mohsen Rahmani</name>
<affiliation>
<nlm:affiliation>1] The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK [2].</nlm:affiliation>
<wicri:noCountry code="subField">UK [2]</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Navarro C A, Miguel" uniqKey="Navarro C A M">Miguel Navarro-Cía</name>
<affiliation wicri:level="1">
<nlm:affiliation>Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Maier, Stefan A" uniqKey="Maier S">Stefan A Maier</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<date when="2014">2014</date>
<idno type="doi">10.1038/nnano.2014.27</idno>
<idno type="RBID">pubmed:24608232</idno>
<idno type="pmid">24608232</idno>
<idno type="wicri:Area/Main/Corpus">000126</idno>
<idno type="wicri:Area/Main/Curation">000126</idno>
<idno type="wicri:Area/Main/Exploration">000021</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ability to convert low-energy quanta into a quantum of higher energy is of great interest for a variety of applications, including bioimaging, drug delivery and photovoltaics. Although high conversion efficiencies can be achieved using macroscopic nonlinear crystals, upconverting light at the nanometre scale remains challenging because the subwavelength scale of materials prevents the exploitation of phase-matching processes. Light-plasmon interactions that occur in nanostructured noble metals have offered alternative opportunities for nonlinear upconversion of infrared light, but conversion efficiency rates remain extremely low due to the weak penetration of the exciting fields into the metal. Here, we show that third-harmonic generation from an individual semiconductor indium tin oxide nanoparticle is significantly enhanced when coupled within a plasmonic gold dimer. The plasmonic dimer acts as a receiving optical antenna, confining the incident far-field radiation into a near field localized at its gap; the indium tin oxide nanoparticle located at the plasmonic dimer gap acts as a localized nonlinear transmitter upconverting three incident photons at frequency ω into a photon at frequency 3ω. This hybrid nanodevice provides third-harmonic-generation enhancements of up to 10(6)-fold compared with an isolated indium tin oxide nanoparticle, with an effective third-order susceptibility up to 3.5 × 10(3) nm V(-2) and conversion efficiency of 0.0007%. We also show that the upconverted third-harmonic emission can be exploited to probe the near-field intensity at the plasmonic dimer gap.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Process">
<PMID Version="1">24608232</PMID>
<DateCreated>
<Year>2014</Year>
<Month>04</Month>
<Day>03</Day>
</DateCreated>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1748-3395</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Nature nanotechnology</Title>
<ISOAbbreviation>Nat Nanotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna.</ArticleTitle>
<Pagination>
<MedlinePgn>290-4</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nnano.2014.27</ELocationID>
<Abstract>
<AbstractText>The ability to convert low-energy quanta into a quantum of higher energy is of great interest for a variety of applications, including bioimaging, drug delivery and photovoltaics. Although high conversion efficiencies can be achieved using macroscopic nonlinear crystals, upconverting light at the nanometre scale remains challenging because the subwavelength scale of materials prevents the exploitation of phase-matching processes. Light-plasmon interactions that occur in nanostructured noble metals have offered alternative opportunities for nonlinear upconversion of infrared light, but conversion efficiency rates remain extremely low due to the weak penetration of the exciting fields into the metal. Here, we show that third-harmonic generation from an individual semiconductor indium tin oxide nanoparticle is significantly enhanced when coupled within a plasmonic gold dimer. The plasmonic dimer acts as a receiving optical antenna, confining the incident far-field radiation into a near field localized at its gap; the indium tin oxide nanoparticle located at the plasmonic dimer gap acts as a localized nonlinear transmitter upconverting three incident photons at frequency ω into a photon at frequency 3ω. This hybrid nanodevice provides third-harmonic-generation enhancements of up to 10(6)-fold compared with an isolated indium tin oxide nanoparticle, with an effective third-order susceptibility up to 3.5 × 10(3) nm V(-2) and conversion efficiency of 0.0007%. We also show that the upconverted third-harmonic emission can be exploited to probe the near-field intensity at the plasmonic dimer gap.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aouani</LastName>
<ForeName>Heykel</ForeName>
<Initials>H</Initials>
<Affiliation>1] The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK [2].</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Rahmani</LastName>
<ForeName>Mohsen</ForeName>
<Initials>M</Initials>
<Affiliation>1] The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK [2].</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Navarro-Cía</LastName>
<ForeName>Miguel</ForeName>
<Initials>M</Initials>
<Affiliation>Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT, UK.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Maier</LastName>
<ForeName>Stefan A</ForeName>
<Initials>SA</Initials>
<Affiliation>The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK.</Affiliation>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Nanotechnol</MedlineTA>
<NlmUniqueID>101283273</NlmUniqueID>
<ISSNLinking>1748-3387</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>1</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>3</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">nnano.2014.27</ArticleId>
<ArticleId IdType="doi">10.1038/nnano.2014.27</ArticleId>
<ArticleId IdType="pubmed">24608232</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000021 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000021 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24608232
   |texte=   Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24608232" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024