Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Review of CO2 Sequestration Projects and Application in China

Identifieur interne : 000518 ( Pmc/Corpus ); précédent : 000517; suivant : 000519

A Review of CO2 Sequestration Projects and Application in China

Auteurs : Yong Tang ; Ruizhi Yang ; Xiaoqiang Bian

Source :

RBID : PMC:4181513

Abstract

In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO2 sources are located nearby storage reservoirs. In China, the CO2 storage potential capacity is of about 3.6 × 109 t for all onshore oilfields; 30.483 × 109 t for major gas fields between 900 m and 3500 m of depth; 143.505 × 109 t for saline aquifers; and 142.67 × 109 t for coal beds. On the other hand, planation, soil carbon sequestration, and CH4–CO2 reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO2 sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO2 sequestration.


Url:
DOI: 10.1155/2014/381854
PubMed: 25302323
PubMed Central: 4181513

Links to Exploration step

PMC:4181513

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Review of CO
<sub>2</sub>
Sequestration Projects and Application in China</title>
<author>
<name sortKey="Tang, Yong" sort="Tang, Yong" uniqKey="Tang Y" first="Yong" last="Tang">Yong Tang</name>
<affiliation>
<nlm:aff id="I1">The State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation Engineering, Southwest Petroleum University, Chengdu 610500, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Ruizhi" sort="Yang, Ruizhi" uniqKey="Yang R" first="Ruizhi" last="Yang">Ruizhi Yang</name>
<affiliation>
<nlm:aff id="I1">The State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation Engineering, Southwest Petroleum University, Chengdu 610500, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bian, Xiaoqiang" sort="Bian, Xiaoqiang" uniqKey="Bian X" first="Xiaoqiang" last="Bian">Xiaoqiang Bian</name>
<affiliation>
<nlm:aff id="I1">The State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation Engineering, Southwest Petroleum University, Chengdu 610500, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25302323</idno>
<idno type="pmc">4181513</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4181513</idno>
<idno type="RBID">PMC:4181513</idno>
<idno type="doi">10.1155/2014/381854</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000518</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000518</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A Review of CO
<sub>2</sub>
Sequestration Projects and Application in China</title>
<author>
<name sortKey="Tang, Yong" sort="Tang, Yong" uniqKey="Tang Y" first="Yong" last="Tang">Yong Tang</name>
<affiliation>
<nlm:aff id="I1">The State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation Engineering, Southwest Petroleum University, Chengdu 610500, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Ruizhi" sort="Yang, Ruizhi" uniqKey="Yang R" first="Ruizhi" last="Yang">Ruizhi Yang</name>
<affiliation>
<nlm:aff id="I1">The State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation Engineering, Southwest Petroleum University, Chengdu 610500, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bian, Xiaoqiang" sort="Bian, Xiaoqiang" uniqKey="Bian X" first="Xiaoqiang" last="Bian">Xiaoqiang Bian</name>
<affiliation>
<nlm:aff id="I1">The State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation Engineering, Southwest Petroleum University, Chengdu 610500, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Scientific World Journal</title>
<idno type="ISSN">2356-6140</idno>
<idno type="eISSN">1537-744X</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In 2008, the top CO
<sub>2</sub>
emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO
<sub>2</sub>
emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO
<sub>2</sub>
emission and mitigation of pollution. Coal-fired power plants are the focus of CO
<sub>2</sub>
source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO
<sub>2</sub>
sources are located nearby storage reservoirs. In China, the CO
<sub>2</sub>
storage potential capacity is of about 3.6 × 10
<sup>9</sup>
 t for all onshore oilfields; 30.483 × 10
<sup>9</sup>
 t for major gas fields between 900 m and 3500 m of depth; 143.505 × 10
<sup>9</sup>
 t for saline aquifers; and 142.67 × 10
<sup>9</sup>
 t for coal beds. On the other hand, planation, soil carbon sequestration, and CH
<sub>4</sub>
–CO
<sub>2</sub>
reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO
<sub>2</sub>
sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO
<sub>2</sub>
sequestration.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Xuan, Z" uniqKey="Xuan Z">Z Xuan</name>
</author>
<author>
<name sortKey="He, S" uniqKey="He S">S He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miao, S" uniqKey="Miao S">S Miao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friedmann, Sj" uniqKey="Friedmann S">SJ Friedmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H Jiang</name>
</author>
<author>
<name sortKey="Shen, P" uniqKey="Shen P">P Shen</name>
</author>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J Luo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Fang, Z" uniqKey="Fang Z">Z Fang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saeedi, A" uniqKey="Saeedi A">A Saeedi</name>
</author>
<author>
<name sortKey="Rezaee, R" uniqKey="Rezaee R">R Rezaee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loizzo, M" uniqKey="Loizzo M">M Loizzo</name>
</author>
<author>
<name sortKey="Lecampion, B" uniqKey="Lecampion B">B Lecampion</name>
</author>
<author>
<name sortKey="Brard, T" uniqKey="Brard T">T Brard</name>
</author>
<author>
<name sortKey="Harichandran, A" uniqKey="Harichandran A">A Harichandran</name>
</author>
<author>
<name sortKey="Jammes, L" uniqKey="Jammes L">L Jammes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ren, Sr" uniqKey="Ren S">SR Ren</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Curtis, M" uniqKey="Curtis M">M Curtis</name>
</author>
<author>
<name sortKey="Benson, Sm" uniqKey="Benson S">SM Benson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dahowski, Rt" uniqKey="Dahowski R">RT Dahowski</name>
</author>
<author>
<name sortKey="Davidson, Cl" uniqKey="Davidson C">CL Davidson</name>
</author>
<author>
<name sortKey="Li, Xc" uniqKey="Li X">XC Li</name>
</author>
<author>
<name sortKey="Wei, N" uniqKey="Wei N">N Wei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, Jl" uniqKey="Luo J">JL Luo</name>
</author>
<author>
<name sortKey="Gao, R" uniqKey="Gao R">R Gao</name>
</author>
<author>
<name sortKey="Wen Hui, H" uniqKey="Wen Hui H">H Wen-Hui</name>
</author>
<author>
<name sortKey="Huo, D" uniqKey="Huo D">D Huo</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, Mx" uniqKey="Fang M">MX Fang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Ss" uniqKey="Xu S">SS Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, Xm" uniqKey="Song X">XM Song</name>
</author>
<author>
<name sortKey="Yang, Sy" uniqKey="Yang S">SY Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pingping, S" uniqKey="Pingping S">S Pingping</name>
</author>
<author>
<name sortKey="Xinwei, L" uniqKey="Xinwei L">L Xinwei</name>
</author>
<author>
<name sortKey="Qiujie, L" uniqKey="Qiujie L">L Qiujie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Niu, B" uniqKey="Niu B">B Niu</name>
</author>
<author>
<name sortKey="Ren, S" uniqKey="Ren S">S Ren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L Sun</name>
</author>
<author>
<name sortKey="Chen, Wy" uniqKey="Chen W">WY Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanaka, S" uniqKey="Tanaka S">S Tanaka</name>
</author>
<author>
<name sortKey="Koide, H" uniqKey="Koide H">H Koide</name>
</author>
<author>
<name sortKey="Sasagawa, A" uniqKey="Sasagawa A">A Sasagawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takahashi, T" uniqKey="Takahashi T">T Takahashi</name>
</author>
<author>
<name sortKey="Ohsumi, T" uniqKey="Ohsumi T">T Ohsumi</name>
</author>
<author>
<name sortKey="Nakayama, K" uniqKey="Nakayama K">K Nakayama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shaw, J" uniqKey="Shaw J">J Shaw</name>
</author>
<author>
<name sortKey="Bachu, S" uniqKey="Bachu S">S Bachu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bachu, S" uniqKey="Bachu S">S Bachu</name>
</author>
<author>
<name sortKey="Shaw, Jc" uniqKey="Shaw J">JC Shaw</name>
</author>
<author>
<name sortKey="Pearson, Rm" uniqKey="Pearson R">RM Pearson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burruss, Rc" uniqKey="Burruss R">RC Burruss</name>
</author>
<author>
<name sortKey="Brennan, St" uniqKey="Brennan S">ST Brennan</name>
</author>
<author>
<name sortKey="Freeman, Pa" uniqKey="Freeman P">PA Freeman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Yf" uniqKey="Liu Y">YF Liu</name>
</author>
<author>
<name sortKey="Li, Xc" uniqKey="Li X">XC Li</name>
</author>
<author>
<name sortKey="Fang, Z" uniqKey="Fang Z">Z Fang</name>
</author>
<author>
<name sortKey="Bai, B" uniqKey="Bai B">B Bai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Bai, B" uniqKey="Bai B">B Bai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vangkilde Pedersena, T" uniqKey="Vangkilde Pedersena T">T Vangkilde-Pedersena</name>
</author>
<author>
<name sortKey="Anthonsen, Kl" uniqKey="Anthonsen K">KL Anthonsen</name>
</author>
<author>
<name sortKey="Smith, N" uniqKey="Smith N">N Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mamora, Dd" uniqKey="Mamora D">DD Mamora</name>
</author>
<author>
<name sortKey="Seo, Jg" uniqKey="Seo J">JG Seo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whittaker, S" uniqKey="Whittaker S">S Whittaker</name>
</author>
<author>
<name sortKey="Rostron, B" uniqKey="Rostron B">B Rostron</name>
</author>
<author>
<name sortKey="Hawkes, C" uniqKey="Hawkes C">C Hawkes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Preston, C" uniqKey="Preston C">C Preston</name>
</author>
<author>
<name sortKey="Monea, M" uniqKey="Monea M">M Monea</name>
</author>
<author>
<name sortKey="Jazrawi, W" uniqKey="Jazrawi W">W Jazrawi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Meer, Lgh" uniqKey="Van Der Meer L">LGH Van Der Meer</name>
</author>
<author>
<name sortKey="Kreft, E" uniqKey="Kreft E">E Kreft</name>
</author>
<author>
<name sortKey="Geel, C" uniqKey="Geel C">C Geel</name>
</author>
<author>
<name sortKey="Hartman, J" uniqKey="Hartman J">J Hartman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arts, Rj" uniqKey="Arts R">RJ Arts</name>
</author>
<author>
<name sortKey="Vandeweijer, Vp" uniqKey="Vandeweijer V">VP Vandeweijer</name>
</author>
<author>
<name sortKey="Hofstee, C" uniqKey="Hofstee C">C Hofstee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baklid, A" uniqKey="Baklid A">A Baklid</name>
</author>
<author>
<name sortKey="Korbol, R" uniqKey="Korbol R">R Korbol</name>
</author>
<author>
<name sortKey="Owren, G" uniqKey="Owren G">G Owren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eiken, O" uniqKey="Eiken O">O Eiken</name>
</author>
<author>
<name sortKey="Ringrose, P" uniqKey="Ringrose P">P Ringrose</name>
</author>
<author>
<name sortKey="Hermanrud, C" uniqKey="Hermanrud C">C Hermanrud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Michael, K" uniqKey="Michael K">K Michael</name>
</author>
<author>
<name sortKey="Golab, A" uniqKey="Golab A">A Golab</name>
</author>
<author>
<name sortKey="Shulakova, V" uniqKey="Shulakova V">V Shulakova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stevens, Sh" uniqKey="Stevens S">SH Stevens</name>
</author>
<author>
<name sortKey="Spector, D" uniqKey="Spector D">D Spector</name>
</author>
<author>
<name sortKey="Riemer, P" uniqKey="Riemer P">P Riemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cairns, G" uniqKey="Cairns G">G Cairns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robertson, Ep" uniqKey="Robertson E">EP Robertson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veld, Kv" uniqKey="Veld K">KV Veld</name>
</author>
<author>
<name sortKey="Mason, Cf" uniqKey="Mason C">CF Mason</name>
</author>
<author>
<name sortKey="Leach, A" uniqKey="Leach A">A Leach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Litynski, J" uniqKey="Litynski J">J Litynski</name>
</author>
<author>
<name sortKey="Rodosta, T" uniqKey="Rodosta T">T Rodosta</name>
</author>
<author>
<name sortKey="Myer, L" uniqKey="Myer L">L Myer</name>
</author>
<author>
<name sortKey="Kane, R" uniqKey="Kane R">R Kane</name>
</author>
<author>
<name sortKey="Washington, Ga" uniqKey="Washington G">GA Washington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taber, Jj" uniqKey="Taber J">JJ Taber</name>
</author>
<author>
<name sortKey="Martin, Fd" uniqKey="Martin F">FD Martin</name>
</author>
<author>
<name sortKey="Seright, Rs" uniqKey="Seright R">RS Seright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, Sp" uniqKey="Zeng S">SP Zeng</name>
</author>
<author>
<name sortKey="Yang, Xw" uniqKey="Yang X">XW Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lei, Hy" uniqKey="Lei H">HY Lei</name>
</author>
<author>
<name sortKey="Gong, Cl" uniqKey="Gong C">CL Gong</name>
</author>
<author>
<name sortKey="Guan, Bc" uniqKey="Guan B">BC Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, Z" uniqKey="Liang Z">Z Liang</name>
</author>
<author>
<name sortKey="Shu, W" uniqKey="Shu W">W Shu</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
<author>
<name sortKey="Shaoran, R" uniqKey="Shaoran R">R Shaoran</name>
</author>
<author>
<name sortKey="Qing, G" uniqKey="Qing G">G Qing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ren, S" uniqKey="Ren S">S Ren</name>
</author>
<author>
<name sortKey="Niu, B" uniqKey="Niu B">B Niu</name>
</author>
<author>
<name sortKey="Ren, B" uniqKey="Ren B">B Ren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hao, Zg" uniqKey="Hao Z">ZG Hao</name>
</author>
<author>
<name sortKey="Fei, Hc" uniqKey="Fei H">HC Fei</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Zh" uniqKey="Chen Z">ZH Chen</name>
</author>
<author>
<name sortKey="Yu, K" uniqKey="Yu K">K Yu</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W Liu</name>
</author>
<author>
<name sortKey="Jiao, Ll" uniqKey="Jiao L">LL Jiao</name>
</author>
<author>
<name sortKey="Yue, M" uniqKey="Yue M">M Yue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Fd" uniqKey="Zhang F">FD Zhang</name>
</author>
<author>
<name sortKey="Wang, Zl" uniqKey="Wang Z">ZL Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, K" uniqKey="Yu K">K Yu</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W Liu</name>
</author>
<author>
<name sortKey="Chen, Zh" uniqKey="Chen Z">ZH Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, Jf" uniqKey="Ma J">JF Ma</name>
</author>
<author>
<name sortKey="Wang, Xz" uniqKey="Wang X">XZ Wang</name>
</author>
<author>
<name sortKey="Gao, R" uniqKey="Gao R">R Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liao, Xw" uniqKey="Liao X">XW Liao</name>
</author>
<author>
<name sortKey="Gao, Cn" uniqKey="Gao C">CN Gao</name>
</author>
<author>
<name sortKey="Wu, P" uniqKey="Wu P">P Wu</name>
</author>
<author>
<name sortKey="Su, K" uniqKey="Su K">K Su</name>
</author>
<author>
<name sortKey="Shangguan, Y" uniqKey="Shangguan Y">Y Shangguan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiao, Zs" uniqKey="Jiao Z">ZS Jiao</name>
</author>
<author>
<name sortKey="Surdam, Rc" uniqKey="Surdam R">RC Surdam</name>
</author>
<author>
<name sortKey="Zhoub, L" uniqKey="Zhoub L">L Zhoub</name>
</author>
<author>
<name sortKey="Staufferc, Ph" uniqKey="Staufferc P">PH Staufferc</name>
</author>
<author>
<name sortKey="Luob, T" uniqKey="Luob T">T Luob</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ran, X" uniqKey="Ran X">X Ran</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Liao, X" uniqKey="Liao X">X Liao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Liao, Wx" uniqKey="Liao W">WX Liao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huo, D" uniqKey="Huo D">D Huo</name>
</author>
<author>
<name sortKey="Jalali, Y" uniqKey="Jalali Y">Y Jalali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiang, W" uniqKey="Xiang W">W Xiang</name>
</author>
<author>
<name sortKey="Zhou, W" uniqKey="Zhou W">W Zhou</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Niu, Bl" uniqKey="Niu B">BL Niu</name>
</author>
<author>
<name sortKey="Ren, S" uniqKey="Ren S">S Ren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Ren, S" uniqKey="Ren S">S Ren</name>
</author>
<author>
<name sortKey="Ren, B" uniqKey="Ren B">B Ren</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Guo, Q" uniqKey="Guo Q">Q Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pruess, K" uniqKey="Pruess K">K Pruess</name>
</author>
<author>
<name sortKey="Xu, Tf" uniqKey="Xu T">TF Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, J" uniqKey="Moore J">J Moore</name>
</author>
<author>
<name sortKey="Adams, M" uniqKey="Adams M">M Adams</name>
</author>
<author>
<name sortKey="Allis, R" uniqKey="Allis R">R Allis</name>
</author>
<author>
<name sortKey="Lutz, S" uniqKey="Lutz S">S Lutz</name>
</author>
<author>
<name sortKey="Rauzi, S" uniqKey="Rauzi S">S Rauzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wigand, M" uniqKey="Wigand M">M Wigand</name>
</author>
<author>
<name sortKey="Carey, Jw" uniqKey="Carey J">JW Carey</name>
</author>
<author>
<name sortKey="Schutt, H" uniqKey="Schutt H">H Schütt</name>
</author>
<author>
<name sortKey="Spangenberg, E" uniqKey="Spangenberg E">E Spangenberg</name>
</author>
<author>
<name sortKey="Erzinger, J" uniqKey="Erzinger J">J Erzinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Xc" uniqKey="Li X">XC Li</name>
</author>
<author>
<name sortKey="Liu, Yf" uniqKey="Liu Y">YF Liu</name>
</author>
<author>
<name sortKey="Bai, B" uniqKey="Bai B">B Bai</name>
</author>
<author>
<name sortKey="Fang, Z" uniqKey="Fang Z">Z Fang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liao, Lm" uniqKey="Liao L">LM Liao</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Mi, Hg" uniqKey="Mi H">HG Mi</name>
</author>
<author>
<name sortKey="Ren, Sr" uniqKey="Ren S">SR Ren</name>
</author>
<author>
<name sortKey="Ma, Yx" uniqKey="Ma Y">YX Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Ren, S" uniqKey="Ren S">S Ren</name>
</author>
<author>
<name sortKey="Wang, R" uniqKey="Wang R">R Wang</name>
</author>
<author>
<name sortKey="Yi, P" uniqKey="Yi P">P Yi</name>
</author>
<author>
<name sortKey="Mi, H" uniqKey="Mi H">H Mi</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y Cheng</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Zhou, H" uniqKey="Zhou H">H Zhou</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pang, Zh" uniqKey="Pang Z">ZH Pang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pang, Z" uniqKey="Pang Z">Z Pang</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Yang, F" uniqKey="Yang F">F Yang</name>
</author>
<author>
<name sortKey="Duan, Z" uniqKey="Duan Z">Z Duan</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, Z" uniqKey="Fang Z">Z Fang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Golding, Sd" uniqKey="Golding S">SD Golding</name>
</author>
<author>
<name sortKey="Uysal, It" uniqKey="Uysal I">IT Uysal</name>
</author>
<author>
<name sortKey="Borehama, Cj" uniqKey="Borehama C">CJ Borehama</name>
</author>
<author>
<name sortKey="Kirstea, D" uniqKey="Kirstea D">D Kirstea</name>
</author>
<author>
<name sortKey="Baublysb, Ka" uniqKey="Baublysb K">KA Baublysb</name>
</author>
<author>
<name sortKey="Esterle, Js" uniqKey="Esterle J">JS Esterle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H Yu</name>
</author>
<author>
<name sortKey="Zhou, G" uniqKey="Zhou G">G Zhou</name>
</author>
<author>
<name sortKey="Fan, W" uniqKey="Fan W">W Fan</name>
</author>
<author>
<name sortKey="Ye, J" uniqKey="Ye J">J Ye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L Huang</name>
</author>
<author>
<name sortKey="Liu, Jy" uniqKey="Liu J">JY Liu</name>
</author>
<author>
<name sortKey="Shao, Q" uniqKey="Shao Q">Q Shao</name>
</author>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Wl" uniqKey="Wang W">WL Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caldwell, Im" uniqKey="Caldwell I">IM Caldwell</name>
</author>
<author>
<name sortKey="Maclaren, Vw" uniqKey="Maclaren V">VW Maclaren</name>
</author>
<author>
<name sortKey="Chen, Jm" uniqKey="Chen J">JM Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Sx" uniqKey="Xu S">SX Xu</name>
</author>
<author>
<name sortKey="Shi, Xz" uniqKey="Shi X">XZ Shi</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Gj" uniqKey="Zhang G">GJ Zhang</name>
</author>
<author>
<name sortKey="Dong, Y" uniqKey="Dong Y">Y Dong</name>
</author>
<author>
<name sortKey="Feng, Mr" uniqKey="Feng M">MR Feng</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W Zhao</name>
</author>
<author>
<name sortKey="Cao, H" uniqKey="Cao H">H Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Gj" uniqKey="Zhang G">GJ Zhang</name>
</author>
<author>
<name sortKey="Du, Yn" uniqKey="Du Y">YN Du</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y Xu</name>
</author>
<author>
<name sortKey="Zhang, Yf" uniqKey="Zhang Y">YF Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Gj" uniqKey="Zhang G">GJ Zhang</name>
</author>
<author>
<name sortKey="Qu, Jw" uniqKey="Qu J">JW Qu</name>
</author>
<author>
<name sortKey="Su, At" uniqKey="Su A">AT Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Xp" uniqKey="Yu X">XP Yu</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N Wang</name>
</author>
<author>
<name sortKey="Chu, W" uniqKey="Chu W">W Chu</name>
</author>
<author>
<name sortKey="Liu, M" uniqKey="Liu M">M Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G Zhang</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yue, Xa" uniqKey="Yue X">XA Yue</name>
</author>
<author>
<name sortKey="Zhao, Rb" uniqKey="Zhao R">RB Zhao</name>
</author>
<author>
<name sortKey="Zhao, Fl" uniqKey="Zhao F">FL Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Ry" uniqKey="Li R">RY Li</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">ScientificWorldJournal</journal-id>
<journal-id journal-id-type="iso-abbrev">ScientificWorldJournal</journal-id>
<journal-id journal-id-type="publisher-id">TSWJ</journal-id>
<journal-title-group>
<journal-title>The Scientific World Journal</journal-title>
</journal-title-group>
<issn pub-type="ppub">2356-6140</issn>
<issn pub-type="epub">1537-744X</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25302323</article-id>
<article-id pub-id-type="pmc">4181513</article-id>
<article-id pub-id-type="doi">10.1155/2014/381854</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A Review of CO
<sub>2</sub>
Sequestration Projects and Application in China</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Tang</surname>
<given-names>Yong</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Ruizhi</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bian</surname>
<given-names>Xiaoqiang</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
</contrib>
</contrib-group>
<aff id="I1">The State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation Engineering, Southwest Petroleum University, Chengdu 610500, China</aff>
<author-notes>
<corresp id="cor1">*Ruizhi Yang:
<email>yrz4293@163.com</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Arman Siahvashi</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>1</day>
<month>7</month>
<year>2014</year>
</pub-date>
<volume>2014</volume>
<elocation-id>381854</elocation-id>
<history>
<date date-type="received">
<day>28</day>
<month>4</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>6</day>
<month>6</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 Yong Tang et al.</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>In 2008, the top CO
<sub>2</sub>
emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO
<sub>2</sub>
emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO
<sub>2</sub>
emission and mitigation of pollution. Coal-fired power plants are the focus of CO
<sub>2</sub>
source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO
<sub>2</sub>
sources are located nearby storage reservoirs. In China, the CO
<sub>2</sub>
storage potential capacity is of about 3.6 × 10
<sup>9</sup>
 t for all onshore oilfields; 30.483 × 10
<sup>9</sup>
 t for major gas fields between 900 m and 3500 m of depth; 143.505 × 10
<sup>9</sup>
 t for saline aquifers; and 142.67 × 10
<sup>9</sup>
 t for coal beds. On the other hand, planation, soil carbon sequestration, and CH
<sub>4</sub>
–CO
<sub>2</sub>
reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO
<sub>2</sub>
sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO
<sub>2</sub>
sequestration.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>The enormous emission from greenhouse gas, predominated by CO
<sub>2</sub>
, has caused increasing threat to human environment and the ecological system. The current global annual carbon emission reaches up to more than 30 billion tons. In China, fossil fuel takes up 92.6% of the total energy; 67.1% of CO
<sub>2</sub>
is generated from coal and petroleum. Moreover, China is the biggest CO
<sub>2</sub>
emitter by now. According to International Environment Agency, emission from China would overpass the whole world's CO
<sub>2</sub>
emission by 2020 [
<xref rid="B1" ref-type="bibr">1</xref>
]. Therefore, it is an urgent requirement for China to transform from high-carbon to low-carbon society.</p>
<p>According to “Report on the Development of Low Carbon Economy of China (2012),” China is the largest country for carbon emission reduction. The world's largest carbon emission reduction project started in China in 2005, which is expected to reduce about 19 million tons of CO
<sub>2</sub>
equivalent emission every year [
<xref rid="B2" ref-type="bibr">2</xref>
]. 1.5 billion tons of CO
<sub>2</sub>
emission has been reduced during “11th five-year plan” in China, and it is likely to cut 7 billion tons of CO
<sub>2</sub>
in 2020.</p>
<p>Various ways of reducing carbon emission have already been applied in China. And, among them, a major mitigation method is carbon capture and sequestration (CCS).</p>
<p>It is believed that CCS is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered process. It includes carbon sequestration through forestation, soil carbon sequestration, direct ocean injection of CO
<sub>2</sub>
either into the deep seafloor or into the intermediate depths, and the deep geological sequestration, or even direct conversion of CO
<sub>2</sub>
to carbonate minerals [
<xref rid="B3" ref-type="bibr">3</xref>
], of which geological sequestration is a major component. CCS is an effective way for China to alleviate pollution and enhance the oil recovery, and most underground spaces in China are good for CO
<sub>2</sub>
geological storage [
<xref rid="B4" ref-type="bibr">4</xref>
]. However, CCS has just started in China, and there is a certain gap between China and abroad. But there are still some technical foundations in China, especially in the area of CO
<sub>2</sub>
recycling and injection [
<xref rid="B5" ref-type="bibr">5</xref>
].</p>
<p>Several main types of geological storage media for carbon sequestration are mostly considered in China: depleted or active oil and natural gas field, coal layers, and deep saline aquifers. The win-win effects make oil and natural gas field and coal layers are the promising storage media with great advantages. By using CO
<sub>2</sub>
for oil and gas fields and the coal seams, CO
<sub>2</sub>
is stored and the production is increased. And the deep saline aquifers are attractive due to the large storage capacity of interest [
<xref rid="B6" ref-type="bibr">6</xref>
<xref rid="B9" ref-type="bibr">9</xref>
].</p>
<p>
<xref ref-type="fig" rid="fig1">Figure 1</xref>
shows a map of large (100+ kt CO
<sub>2</sub>
/yr) CO
<sub>2</sub>
sources and potential candidates for geologic CO
<sub>2</sub>
storage basins in China [
<xref rid="B10" ref-type="bibr">10</xref>
].</p>
</sec>
<sec id="sec2">
<title>2. CO
<sub>2</sub>
Source Supply</title>
<p>A large amount of CO
<sub>2</sub>
emitted by industry could be supposed to serve as the significant potential CO
<sub>2</sub>
source to meet the storage demand if only the advanced capturing technology is available. And coal-fired power plant is the focus of CO
<sub>2</sub>
capture due to its excessive emission and the energy structure in China [
<xref rid="B3" ref-type="bibr">3</xref>
,
<xref rid="B11" ref-type="bibr">11</xref>
,
<xref rid="B12" ref-type="bibr">12</xref>
]. Therein, technologies of solvents method, membranes separation, solid sorbents, and cryogenic fractionation have been applied to separate CO
<sub>2</sub>
from natural gas or waste gas [
<xref rid="B13" ref-type="bibr">13</xref>
]. CO
<sub>2</sub>
could be transported via highway, railway, shipping, and pipeline, of which pipeline is especially suitable for large-scaled and long-term gas injection, like the CO
<sub>2</sub>
-EOR project in Jilin oilfield.</p>
<p>Many efforts have been used to develop more efficient techniques for CO
<sub>2</sub>
capture in China, like the blended solvent presented by the Joint International Center for CO
<sub>2</sub>
Capture and Storage of Hunan University, MSA chemical absorption technique developed by Sinopec. And the research of Joint Research Center for Advanced Environmental Technology of Tsinghua University showed that carbon-based materials have high adsorption capacity with merits of low cost and easy regeneration. And Fang indicated that membrane vacuum regeneration has the potential to reduce energy consumption greatly [
<xref rid="B14" ref-type="bibr">14</xref>
].</p>
<p>CO
<sub>2</sub>
capturing projects have been progressing extraordinarily throughout China. Post-Combustion Capture CO
<sub>2</sub>
and Refining Utilization project with capacity of 0.12 × 10
<sup>6</sup>
 t/yr in China is the biggest postcombustion capture project in the world then [
<xref rid="B15" ref-type="bibr">15</xref>
]. Sinopec has built the 100 t/d CCUS (Carbon Capture, Utilization and Storage) project on coal-fired power plant flue gas and deployed three ways of recycling CO
<sub>2</sub>
with more than 80% of capture efficiency and over 95% of purity. China Huaneng Group has built the first coal-fired power plant CO
<sub>2</sub>
capture demonstration project in 2008 with 3000 t/yr of CO
<sub>2</sub>
capture ability and completed the second power plant in Shanghai Shidongkou demonstration project with 0.1 × 10
<sup>6</sup>
 t/yr of CO
<sub>2</sub>
capture ability. Shenhua Group launched China's first CO
<sub>2</sub>
capture and geologic storage full process demonstration project in 2010 [
<xref rid="B16" ref-type="bibr">16</xref>
]. Moreover, the project with the scale of 50000 t/yr capture capacity which has product purity of more than 99.5% has been put into use in 2012 in Yanchang. And for the future, improving efficiency and reducing cost are the crucial development tendency.</p>
</sec>
<sec id="sec3">
<title>3. CO
<sub>2</sub>
Sequestration</title>
<sec id="sec3.1">
<title>3.1. Estimation of CO
<sub>2</sub>
Sequestration Capacity</title>
<p>Several methods have been developed to assess the CO
<sub>2</sub>
storage capacity in geological media at home and abroad [
<xref rid="B17" ref-type="bibr">17</xref>
<xref rid="B27" ref-type="bibr">27</xref>
]. Examples are listed as follows.</p>
<p>Zhang et al. [
<xref rid="B18" ref-type="bibr">18</xref>
] developed the formula which considers the different storage mechanisms:
<disp-formula id="eq1">
<label>(1)</label>
<mml:math id="M1">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mtext>CO</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">3</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">4</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
where
<italic>M</italic>
<sub>1</sub>
is the storage capacity of CO
<sub>2</sub>
taking the volume previously occupied by produced oil;
<italic>M</italic>
<sub>2</sub>
is the storage capacity of CO
<sub>2</sub>
dissolved in residual oil;
<italic>M</italic>
<sub>3</sub>
is the storage capacity of CO
<sub>2</sub>
dissolved in water contained in reservoir; and
<italic>M</italic>
<sub>4</sub>
is the storage capacity of CO
<sub>2</sub>
reacting with reservoir rock.</p>
<p>Sun and Chen [
<xref rid="B19" ref-type="bibr">19</xref>
] proposed the study to calculate increased oil production and the CO
<sub>2</sub>
storage capacity in oil reservoir and depleted oil reservoir.</p>
<p>Proportion of increased oil by CO
<sub>2</sub>
-EOR is as follows:
<disp-formula id="eq2">
<label>(2)</label>
<mml:math id="M2">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mi>%</mml:mi>
<mml:mtext>EXTRA</mml:mtext>
<mml:mo>=</mml:mo>
<mml:mrow>
<mml:mo symmetric="false">{</mml:mo>
<mml:mrow>
<mml:mtable>
<mml:mtr>
<mml:mtd columnalign="left">
<mml:mn mathvariant="normal">5.3</mml:mn>
<mml:mi>%</mml:mi>
</mml:mtd>
<mml:mtd columnalign="left">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>A</mml:mi>
<mml:mi>P</mml:mi>
<mml:mi>I</mml:mi>
<mml:mo></mml:mo>
<mml:mn mathvariant="normal">31</mml:mn>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd columnalign="left">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mn mathvariant="normal">1.3</mml:mn>
<mml:mo>×</mml:mo>
<mml:mi>A</mml:mi>
<mml:mi>P</mml:mi>
<mml:mi>I</mml:mi>
<mml:mo></mml:mo>
<mml:mn mathvariant="normal">35</mml:mn>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mi>%</mml:mi>
</mml:mtd>
<mml:mtd columnalign="left">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mn mathvariant="normal">31</mml:mn>
<mml:mo><</mml:mo>
<mml:mi>A</mml:mi>
<mml:mi>P</mml:mi>
<mml:mi>I</mml:mi>
<mml:mo><</mml:mo>
<mml:mn mathvariant="normal">41</mml:mn>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd columnalign="left">
<mml:mn mathvariant="normal">18.3</mml:mn>
<mml:mi>%</mml:mi>
</mml:mtd>
<mml:mtd columnalign="left">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>A</mml:mi>
<mml:mi>P</mml:mi>
<mml:mi>I</mml:mi>
<mml:mo></mml:mo>
<mml:mn mathvariant="normal">41</mml:mn>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:mrow>
</mml:mrow>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mtext>OOIP</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mtext>OOIP</mml:mtext>
<mml:mo>×</mml:mo>
<mml:mi>C</mml:mi>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
where OOIP is the original oil in place, Mt;
<italic>C</italic>
is the contact ratio between oil and CO
<sub>2</sub>
. OOIP
<sub>
<italic>e</italic>
</sub>
is the amount of oil that can contact with CO
<sub>2</sub>
, Mt.</p>
<p>The increased oil production and storage capacity are as follows:
<disp-formula id="eq3">
<label>(3)</label>
<mml:math id="M3">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mtext>EOR</mml:mtext>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mtext>OOIP</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>×</mml:mo>
<mml:mi>%</mml:mi>
<mml:mtext>EXTRA</mml:mtext>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mtext>CO</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mtext>EOR</mml:mtext>
<mml:mo>×</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mtext>CO</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
where EOR is the increased oil production, Mt; CO
<sub>2</sub>
is the storage capacity, t or Mt;
<italic>R</italic>
<sub>CO
<sub>2</sub>
</sub>
is the ratio between the amount of injected CO
<sub>2</sub>
and the amount of increased oil, t/bbl or t/t.</p>
<p>However, for the CO
<sub>2</sub>
storage capacity in depleted oil reservoir,
<disp-formula id="eq4">
<label>(4)</label>
<mml:math id="M4">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mtext>CO</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mtext>OOIP</mml:mtext>
<mml:mo>×</mml:mo>
<mml:mtext>RF</mml:mtext>
<mml:mo>_</mml:mo>
<mml:mtext>O</mml:mtext>
<mml:mo>×</mml:mo>
<mml:mtext>FVF</mml:mtext>
<mml:mo>_</mml:mo>
<mml:mtext>O</mml:mtext>
<mml:mo>×</mml:mo>
<mml:mi>ρ</mml:mi>
<mml:msub>
<mml:mrow>
<mml:mtext>CO</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
where RF_O is the oil recovery when depleted; FVF_O is the formation volume factor;
<italic>ρ</italic>
CO
<sub>2</sub>
is the density of SCCO
<sub>2</sub>
under the reservoir temperature and pressure, Mt/m
<sup>3</sup>
.</p>
<p>Tanaka and coworkers [
<xref rid="B20" ref-type="bibr">20</xref>
,
<xref rid="B21" ref-type="bibr">21</xref>
] set up two models based on underground structures: model (
<xref ref-type="disp-formula" rid="EEq1">5</xref>
) is suitable for aquifers that are well sealed by cap rocks and model (
<xref ref-type="disp-formula" rid="EEq2">6</xref>
) for aquifers in monoclonal structures and there may be problem of CO
<sub>2</sub>
leakage into the upper portion. Consider
<disp-formula id="EEq1">
<label>(5)</label>
<mml:math id="M5">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:maligngroup></mml:maligngroup>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
<mml:mtext>CO</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:malignmark></mml:malignmark>
<mml:mo>=</mml:mo>
<mml:mi>E</mml:mi>
<mml:mi>f</mml:mi>
<mml:mo>×</mml:mo>
<mml:mi>A</mml:mi>
<mml:mo>×</mml:mo>
<mml:mi>h</mml:mi>
<mml:mo>×</mml:mo>
<mml:mi mathvariant="normal">Φ</mml:mi>
<mml:mo>×</mml:mo>
<mml:mi>ρ</mml:mi>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:maligngroup></mml:maligngroup>
<mml:malignmark></mml:malignmark>
<mml:mo>×</mml:mo>
<mml:mrow>
<mml:mo>[</mml:mo>
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mi>S</mml:mi>
<mml:mi>g</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>B</mml:mi>
<mml:mi>g</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mtext>CO</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
<mml:mo>+</mml:mo>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
<mml:mo></mml:mo>
<mml:mi>S</mml:mi>
<mml:mi>g</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mi>R</mml:mi>
<mml:mi>s</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mtext>CO</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mo>]</mml:mo>
</mml:mrow>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
<disp-formula id="EEq2">
<label>(6)</label>
<mml:math id="EEq2EAAA0JB0ACCCA">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
<mml:mtext>CO</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mi>S</mml:mi>
<mml:mi>f</mml:mi>
<mml:mo>×</mml:mo>
<mml:mi>A</mml:mi>
<mml:mo>×</mml:mo>
<mml:mi>h</mml:mi>
<mml:mo>×</mml:mo>
<mml:mi mathvariant="normal">Φ</mml:mi>
<mml:mo>×</mml:mo>
<mml:mi>R</mml:mi>
<mml:mi>s</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mtext>CO</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>×</mml:mo>
<mml:mi>ρ</mml:mi>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
where
<italic>Ef</italic>
is the sweep efficiency (fraction, dimensionless),
<italic>A</italic>
is storage area (m
<sup>2</sup>
),
<italic>h</italic>
is effective formation thickness (m), Φ is effective reservoir porosity (fraction, dimensionless),
<italic>Sg</italic>
is saturation of supercritical CO
<sub>2</sub>
(fraction, dimensionless),
<italic>Bg</italic>
(CO
<sub>2</sub>
) is CO
<sub>2</sub>
formation volume factor (m
<sup>2</sup>
/m
<sup>3</sup>
, reservoir volume/standard volume),
<italic>Rs</italic>
(CO
<sub>2</sub>
) is CO
<sub>2</sub>
solubility in formation water (m
<sup>3</sup>
/m
<sup>2</sup>
),
<italic>ρ</italic>
is density of CO
<sub>2</sub>
at standard condition (kg/m
<sup>3</sup>
), and
<italic>Sf</italic>
is the storage factor (fraction, dimensionless).</p>
</sec>
<sec id="sec3.2">
<title>3.2. Geological Sequestration</title>
<p>CO
<sub>2</sub>
can be more effectively sequestrated at pressure higher than 7.38 MPa (equivalent depth of about 800 m), and at temperature above 31.1°C, where CO
<sub>2</sub>
will stay in a supercritical state with an elevated density up to 600 kg/m
<sup>3</sup>
, 400 times more condensed compared to that at atmospheric conditions. SCCO
<sub>2</sub>
(supercritical CO
<sub>2</sub>
) is characterized by stable and inert chemical property. Consequently, at pressures and temperatures typically encountered in the field, CO
<sub>2</sub>
will behave as a supercritical fluid [
<xref rid="B28" ref-type="bibr">28</xref>
].</p>
<p>CO
<sub>2</sub>
geosequestration has been implemented successfully around the world like CO
<sub>2</sub>
-EOR and storage in Weyburn project of Canada in 2000 [
<xref rid="B29" ref-type="bibr">29</xref>
,
<xref rid="B30" ref-type="bibr">30</xref>
]; CO
<sub>2</sub>
storage in K12-B gas field of The Netherlands in 2004 [
<xref rid="B31" ref-type="bibr">31</xref>
]; the upcoming ROAD project in 2015 with CO
<sub>2</sub>
storage in P18-4 depleted gas field of The Netherlands [
<xref rid="B32" ref-type="bibr">32</xref>
]; associated CO
<sub>2</sub>
separation and injection into the saline aquifer in Sleipner project of Norway in 1996 [
<xref rid="B33" ref-type="bibr">33</xref>
]; CO
<sub>2</sub>
storage in In Salah aquifer of Algeria in 2004 and Snohvit aquifer of Norway in 2008 [
<xref rid="B34" ref-type="bibr">34</xref>
,
<xref rid="B35" ref-type="bibr">35</xref>
]; CO
<sub>2</sub>
-enhanced coal bed methane (CO
<sub>2</sub>
-ECBM) and storage in San Juan Basin of New Mexico in 1995 [
<xref rid="B36" ref-type="bibr">36</xref>
], and other CO
<sub>2</sub>
-ECBM projects in USA [
<xref rid="B37" ref-type="bibr">37</xref>
,
<xref rid="B38" ref-type="bibr">38</xref>
].</p>
<p>Research results suggest that CCS can provide a valuable greenhouse gas mitigation option for most regions and industrial sectors in China and can be able to store more than 80% of emissions from these large CO
<sub>2</sub>
sources (2900 million tons of CO
<sub>2</sub>
annually) at costs less than $70/t CO
<sub>2</sub>
for perhaps a century or more [
<xref rid="B10" ref-type="bibr">10</xref>
]. Similarly, various geosequestration projects have been in progress in China, regarding the storage in oil and gas fields, in saline aquifer and in coal seams.</p>
<sec id="sec3.2.1">
<title>3.2.1. CO
<sub>2</sub>
Sequestration in Oil and Gas Field</title>
<p>Carbon sequestration with enhanced oil recovery (CSEOR) is a kind of win-win process to increase oil production and store CO
<sub>2</sub>
. Moreover, the revenue created could be able to offset the storage cost and bring valuable profit.</p>
<p>CO
<sub>2</sub>
has been widely used for EOR around the world. CO
<sub>2</sub>
-EOR projects now produce about 0.35 × 10
<sup>6</sup>
bbls/day in USA, accounting for 5.6% of total USA oil and gas production, compared to just 0.19 × 10
<sup>6</sup>
bbls/day in 2000. And approximately 50 million metric tons of CO
<sub>2</sub>
is used each year for EOR in USA [
<xref rid="B39" ref-type="bibr">39</xref>
,
<xref rid="B40" ref-type="bibr">40</xref>
].</p>
<p>CSEOR or CSEGR has been assessed and applied for several oil and gas fields across China. When the buried depth is more than 800 m (guarantee the supercritical state of CO
<sub>2</sub>
); the CO
<sub>2</sub>
storage potential capacity is of about 3.6 × 10
<sup>9</sup>
 t, assuming that all onshore oilfields in China are used for CO
<sub>2</sub>
-EOR, and it can reach up to 4.6 × 10
<sup>9</sup>
 t while considering all onshore oilfields as depleted reservoirs. Therein, reservoirs in northeast and north China have tremendous sequestration potential, accounting for more than 60% of the total capacity [
<xref rid="B24" ref-type="bibr">24</xref>
].</p>
<p>Considering the depth between 900 m and 3500 m, China's major gas fields are able to provide storage capacity of about 30.483 × 10
<sup>9</sup>
 t of CO
<sub>2</sub>
, and the proven natural gas resources correspond to storage capacity of 4.103 × 10
<sup>9</sup>
 t CO
<sub>2</sub>
. However, gas industry has been started late in China, and there will be no large-scale depleted gas field for a long time. In this way, gas fields should not be used to store CO
<sub>2</sub>
in the near future but should serve as the strategic energy reserves due to the good sealing property of depleted gas fields [
<xref rid="B25" ref-type="bibr">25</xref>
].</p>
<p>Oil reservoirs are screened on the basis of oil gravity, reservoir temperature and pressure, MMP, and remaining oil saturation, to determine their suitability for CO
<sub>2</sub>
flooding [
<xref rid="B17" ref-type="bibr">17</xref>
]. And several different types of screening criteria have been proposed at home and abroad for CO
<sub>2</sub>
-EOR and storage [
<xref rid="B17" ref-type="bibr">17</xref>
,
<xref rid="B41" ref-type="bibr">41</xref>
<xref rid="B44" ref-type="bibr">44</xref>
], regarding crude oil properties, reservoir characters, cap formation characters, and economic and environmental issues.</p>
<p>Jilin oilfield, located in northeast of China, is conducting the first large-scale demonstration project on CO
<sub>2</sub>
-EOR and storage. The oil-bearing formations are characterized by good development of sandbody, good connectivity, and well-defined cap rocks [
<xref rid="B45" ref-type="bibr">45</xref>
]. Natural source of CO
<sub>2</sub>
is mainly from natural gas. And miscible flooding can be achieved in block Hei-59 and Hei-79; well location is indicated in
<xref ref-type="fig" rid="fig2">Figure 2</xref>
.</p>
<p>In 2008, Jilin oilfield built a pilot demonstration area of CO
<sub>2</sub>
flooding and storage in the Daqingzi oilfield. And in 2009, a demonstration area with its annual CO
<sub>2</sub>
storage of 0.2 × 10
<sup>6</sup>
 t and annual oil displacement of 0.1 × 10
<sup>6</sup>
 t was established, which indicated realization of commercial application of such technology. Good production response has been observed after about 6 months of CO
<sub>2</sub>
injection since April 2008, as shown in
<xref ref-type="fig" rid="fig3">Figure 3</xref>
. Oil production in the whole pilot area has rapidly increased from 20 t/d to around 100 t/d and has been maintained at 60 t/d in 2011. By the end of May 8, 2011, about 0.167 × 10
<sup>6</sup>
 t of CO
<sub>2</sub>
was stored without obvious CO
<sub>2</sub>
leakage; and 0.119 × 10
<sup>6</sup>
 t of oil was produced by CO
<sub>2</sub>
-EOR. At the same time, a plant was built in the Jilin oilfield to separate and capture 0.2 × 10
<sup>6</sup>
 t of CO
<sub>2</sub>
annually [
<xref rid="B46" ref-type="bibr">46</xref>
,
<xref rid="B47" ref-type="bibr">47</xref>
]. 0.27 × 10
<sup>6</sup>
 t of CO
<sub>2</sub>
has been safely stored until August 2012 with remarkable economic benefit, with 1 : 1.37 as the input and output ratio [
<xref rid="B48" ref-type="bibr">48</xref>
]. It is expected that, by 2015, the first production area will be built in China, with an annual CO
<sub>2</sub>
displacement amount reaching 0.5 × 10
<sup>6</sup>
 t and an annual CO
<sub>2</sub>
storage over 0.7 × 10
<sup>6</sup>
 t, all of which are equivalent to the total amount of CO
<sub>2</sub>
released from burning of 0.3 × 10
<sup>6</sup>
 t of coal [
<xref rid="B46" ref-type="bibr">46</xref>
].</p>
<p>And the further work will be focused on optimizing EOR performance, verifying of the geocapacity storage in the targeted zones and carrying forward the monitoring programs [
<xref rid="B45" ref-type="bibr">45</xref>
].</p>
<p>Caoshe oilfield is located in Subei Basin and has been selected to implement CO
<sub>2</sub>
-EOR and storage demonstration project. The geological map is shown in
<xref ref-type="fig" rid="fig4">Figure 4</xref>
. Taizhou formation is the main oil-bearing formation in Caoshe oilfield. And during the development periods, the oilfield has developed a complete well pattern of injectors and producers with good well connection, the water cut at the producer has been relatively low, and the reservoir pressure has been well maintained [
<xref rid="B23" ref-type="bibr">23</xref>
,
<xref rid="B49" ref-type="bibr">49</xref>
].</p>
<p>Taizhou formation is geologically suitable for CSEOR. Taizhou formation has carried out the CO
<sub>2</sub>
-EOR pilot test in July 2005, and 5.842 × 10
<sup>7</sup>
 m
<sup>3</sup>
CO
<sub>2</sub>
has been injected from July 2005 to December 2009 with increased oil production of 0.03 × 10
<sup>6</sup>
 t [
<xref rid="B49" ref-type="bibr">49</xref>
,
<xref rid="B50" ref-type="bibr">50</xref>
]. CO
<sub>2</sub>
can achieve a miscible displacement process and be stored safely in the stratigraphic and structure traps of Taizhou formation reservoir [
<xref rid="B51" ref-type="bibr">51</xref>
]. Besides, Nanjing Chemical plant, a synthetic ammonia plant 120 km away from the Caoshe oilfield, would provide a low-cost CO
<sub>2</sub>
source for the CCS demonstration project. The detailed numerical reservoir model indicates that the maximum CO
<sub>2</sub>
storage capacity at standard condition is estimated to be 0.309 × 10
<sup>9</sup>
 m
<sup>3</sup>
.
<xref ref-type="fig" rid="fig5"> Figure 5</xref>
shows the simulation result of CO
<sub>2</sub>
miscible flooding. Furthermore, the revenue from incremental oil production is significant, which cannot only offset the cost of the CO
<sub>2</sub>
storage, but also can generate certain economic benefit to Caoshe oilfield [
<xref rid="B23" ref-type="bibr">23</xref>
], while Zhang indicated that the storage cost of CO
<sub>2</sub>
-EOR process is $25.78/t, based on the economic evaluation model established [
<xref rid="B52" ref-type="bibr">52</xref>
].</p>
<p>The Ordos Basin is the second largest sedimentary basin in China, which takes account for 43% of resources of the whole country. In 2011, the oil and gas production exceeded 0.052 × 10
<sup>9</sup>
 t of oil equivalents [
<xref rid="B53" ref-type="bibr">53</xref>
]. Ordos Basin is able to provide a huge potential capacity for CO
<sub>2</sub>
storage.</p>
<p>Jingbian field is located in central Ordos Basin in northern Shaanxi slope and has been screened out to conduct the CO
<sub>2</sub>
sequestration. CO
<sub>2</sub>
will be captured from the energy and chemical engineering industrial zone in Jingbian City which is 30 km away from the operation site. And it is estimated to inject CO
<sub>2</sub>
of 0.04 × 10
<sup>6</sup>
 t/yr and increase oil production of 0.05 × 10
<sup>6</sup>
 t/yr from CO
<sub>2</sub>
-EOR [
<xref rid="B53" ref-type="bibr">53</xref>
].</p>
<p>Furthermore, various feasibility studies of geological CO
<sub>2</sub>
sequestration have been implemented for wide areas of Ordos Basin [
<xref rid="B54" ref-type="bibr">54</xref>
<xref rid="B56" ref-type="bibr">56</xref>
]. For example, research indicates that, for 261 production layers of Changqing oilfield, total oil production increment and CO
<sub>2</sub>
sequestration amount can reach about 0.098 × 10
<sup>9</sup>
 t and about 0.239 × 10
<sup>9</sup>
 t, respectively [
<xref rid="B54" ref-type="bibr">54</xref>
]. Results from the 50-year injection simulation indicate that a total of 450 Mt of CO
<sub>2</sub>
can be injected into the targeted reservoir of Majiagou formation (northern Ordos Basin), while 166 Mt of original pore fluids will be displaced by CO
<sub>2</sub>
[
<xref rid="B55" ref-type="bibr">55</xref>
].</p>
<p>Additionally, other fields around the country also show good results for CO
<sub>2</sub>
application. Xinjiang oilfield, a vital oilfield in western China, is located in Junggar Basin. Around 0.181 × 10
<sup>9</sup>
 t additional oil could be produced for the total screened out 275 production units, which could provide about 0.495 × 10
<sup>9</sup>
 t for CO
<sub>2</sub>
sequestration capacity [
<xref rid="B57" ref-type="bibr">57</xref>
]. Many mature oil reservoirs in Shengli oilfield (north China) are close to the main CO
<sub>2</sub>
sources and have good geographical and geological conditions for CO
<sub>2</sub>
storage. The total EOR potential can be 9.997 × 10
<sup>6</sup>
 t, and the CO
<sub>2</sub>
storage capacity can reach 95.539 × 10
<sup>6</sup>
 t [
<xref rid="B44" ref-type="bibr">44</xref>
]. Zhongyuan oilfield (central China) and Daqing oilfield (northeast China) get obvious recovery increment after CO
<sub>2</sub>
flooding.</p>
<p>The associated CO
<sub>2</sub>
from natural gas is another major carbon emission. IPCC estimated that about 50 million tons of reservoir-CO
<sub>2</sub>
is liberated into the atmosphere every year, from natural gas production [
<xref rid="B11" ref-type="bibr">11</xref>
]. Projecting this to year 2030, and assuming sourness does not increase, the emissions figure could be 150 Mt/yr [
<xref rid="B58" ref-type="bibr">58</xref>
]. And in South China Sea, the geological reserve of CO
<sub>2</sub>
is huge [
<xref rid="B59" ref-type="bibr">59</xref>
].</p>
<p>DF1-1 gas field is located in the west of the South China Sea, which is associated with a high concentration of CO
<sub>2</sub>
. A demonstrative project of CO
<sub>2</sub>
sequestration is considered for nearly abandoned southeast block of the lower Group II formation in the DF1-1 gas field, which was reassessed for the safety of CO
<sub>2</sub>
storage [
<xref rid="B58" ref-type="bibr">58</xref>
]. The separated CO
<sub>2</sub>
would be injected back into the original gas reservoir, similar to the demonstration projects carried out in K12-B (Netherlands).</p>
<p>The feasibility studies showed that the faults in gas field are characteristic of good sealing property for the targeted block. The injected CO
<sub>2</sub>
of the southeast block will be effectively trapped in the reservoir because of its good sealing mechanism and poor connectivity with other blocks [
<xref rid="B60" ref-type="bibr">60</xref>
]. Simulation results indicate that CO
<sub>2</sub>
can be injected steadily at a rate of 0.140 × 10
<sup>6</sup>
 Sm
<sup>3</sup>
/d over 10 years, and the cumulative CO
<sub>2</sub>
gas injection can be 0.511 × 10
<sup>9</sup>
 Sm
<sup>3</sup>
for the pressure control required. Zhang et al. [
<xref rid="B60" ref-type="bibr">60</xref>
] showed that unit storage of CO
<sub>2</sub>
is approximately $20/t at the current economic situation, while there will be no extra finial returns for this demonstration CO
<sub>2</sub>
sequestration project.</p>
<p>On the other hand, CO
<sub>2</sub>
injection into oil and gas reservoirs associated with large aquifers takes advantages of lower geological leakage risk from oil and gas traps and large storage capacity from the connected aquifers [
<xref rid="B61" ref-type="bibr">61</xref>
]. Results of cases studies of five oil reservoirs selected from Shengli and Jiangsu oilfields in China demonstrate that CO
<sub>2</sub>
storage capacity can be greatly increased if the lateral and underlying aquifers are included.</p>
</sec>
<sec id="sec3.2.2">
<title>3.2.2. CO
<sub>2</sub>
Sequestration in Saline Aquifer</title>
<p>Deep saline aquifers have proven to be the promising geological media for CO
<sub>2</sub>
sequestration due to the large storage capacity and wide availability. The injected CO
<sub>2</sub>
can be sequestrated in deep saline aquifers through a combination of physical and chemical trapping mechanisms, which include stratigraphic or structure trapping, residual trapping, solubility trapping, mineral trapping and hydrodynamic trapping [
<xref rid="B27" ref-type="bibr">27</xref>
,
<xref rid="B62" ref-type="bibr">62</xref>
<xref rid="B64" ref-type="bibr">64</xref>
].</p>
<p>143.505 × 10
<sup>9</sup>
 t CO
<sub>2</sub>
can be stored in saline aquifers of China [
<xref rid="B65" ref-type="bibr">65</xref>
]. Most of the north China plain; northern, eastern, and southern Sichuan Basin; southeast of Junggar Basin are the priority for CO
<sub>2</sub>
aquifer storage in the future, like the deep saline aquifers in Songliao Basin (northeast China) can contribute about 8.96 × 10
<sup>9</sup>
 t of CO
<sub>2</sub>
sequestration capacity [
<xref rid="B66" ref-type="bibr">66</xref>
].</p>
<p>Saline aquifer trap LT13-1, located in the east of DF1-1 gas field, 60 km away from the Dongfang gas terminal, has been selected as the target CO
<sub>2</sub>
storage site to sequestrate the CO
<sub>2</sub>
discharged from the DF1-1 gas terminal [
<xref rid="B67" ref-type="bibr">67</xref>
]. The reservoir is relatively good in homogeneousness and high in salinity, indicating a good trap feature. The injected CO
<sub>2</sub>
will be trapped both in a supercritical state and in dissolved state in formation water. Sandbodies A and C of LT13-1 structure can provide a CO
<sub>2</sub>
storage capacity of approximately 0.1 × 10
<sup>9</sup>
 t [
<xref rid="B67" ref-type="bibr">67</xref>
], as shown in Figures
<xref ref-type="fig" rid="fig6">6</xref>
and
<xref ref-type="fig" rid="fig7">7</xref>
. Zhang et al. pointed out that the storage cost is about $33–37/t, slightly higher than abroad due to the high cost of offshore pipeline [
<xref rid="B68" ref-type="bibr">68</xref>
].</p>
<p>Being one of the most typical sedimentary basins in eastern coastal of China, the Bohai Bay Basin is a potential candidate for CO
<sub>2</sub>
sequestration. CO
<sub>2</sub>
storage in deep saline aquifers is considered as a viable option because of the wide-distribution with a high CO
<sub>2</sub>
storage capacity. The CO
<sub>2</sub>
storage capacity within the assessing range is 3.9 × 10
<sup>9</sup>
 t in saline aquifers of Bohai Bay Basin, and storage capacity in Neogene Guantao formation lower than 3500 m is 3.3 × 10
<sup>9</sup>
 t, accounting for 84.4% of the total potential [
<xref rid="B69" ref-type="bibr">70</xref>
].</p>
<p>
<xref ref-type="sec" rid="sec3">Section 3</xref>
in the lower part of the Neogene Guantao formation of Beitang Sag, Huanghua depression, near the center of the Bohai Bay Basin, has been chosen as the test site for CO
<sub>2</sub>
injection [
<xref rid="B70" ref-type="bibr">71</xref>
]. Due to the good cap-rock layers, CO
<sub>2</sub>
can be stored safely in
<xref ref-type="sec" rid="sec3">Section 3</xref>
in supercritical state. Based on the model (
<xref ref-type="disp-formula" rid="EEq2">6</xref>
) proposed by Tanaka, the CO
<sub>2</sub>
storage capacity of the Beitang Sag is estimated to be 17.03 Mt.</p>
</sec>
<sec id="sec3.2.3">
<title>3.2.3. CO
<sub>2</sub>
Sequestration in Coal Seam</title>
<p>China has abundant coal bed methane (CBM) resources. CBM reserves buried lower than 2000 m are estimated to be 36.8 Tm
<sup>3</sup>
, accounting for 13% of the world's resources and ranking third in the world [
<xref rid="B71" ref-type="bibr">72</xref>
].</p>
<p>Coal seams provide one of the most attractive sites for CO
<sub>2</sub>
geological sequestration in China as a result of the huge resources and the high and stable adsorption of CO
<sub>2</sub>
, particularly in combination with ECBM [
<xref rid="B26" ref-type="bibr">26</xref>
,
<xref rid="B72" ref-type="bibr">73</xref>
,
<xref rid="B73" ref-type="bibr">74</xref>
]. Adsorption is the main trapping mechanism for CO
<sub>2</sub>
storage in coal seams, which accounts for approximately 90% of the total storage. The ECBM potential associated with CO
<sub>2</sub>
sequestration is estimated to be over 3.751 × 10
<sup>12</sup>
 m
<sup>3</sup>
. And the CO
<sub>2</sub>
sequestration capacity of China coal beds is estimated to be about 142.67 × 10
<sup>9</sup>
 t [
<xref rid="B74" ref-type="bibr">75</xref>
]. Based on the assessment for coal beds of China in depth between 300 m and 1500 m, 1.632 × 10
<sup>12</sup>
 m
<sup>3</sup>
methane can be increased from CO
<sub>2</sub>
-ECBM, and about 12.078 × 10
<sup>9</sup>
 t of CO
<sub>2</sub>
can be stored [
<xref rid="B26" ref-type="bibr">26</xref>
].</p>
<p>The Yaojie coalfield is located in the western margin of Minhe and extends across the Gansu and Qinghai provinces of China. The Haishiwan coalfield is located in the deep part of the Yaojie coalfield. High concentrations of CO
<sub>2</sub>
(34.1–98.64%) have been observed in the number 2 coal seam of Haishiwan coalfield [
<xref rid="B75" ref-type="bibr">69</xref>
].</p>
<p>And the temperature-pressure conditions in Haishiwan coalfield indicate that supercritical CO
<sub>2</sub>
may occur in the eastern half of the coalfield. Moreover, the Haishiwan coalfield is an ideal storage area because of the good sealing features and the presence of large volumes of juvenile CO
<sub>2</sub>
that have been naturally sequestered over 15 million years. The pure CO
<sub>2</sub>
storage capacity of the Haishiwan coal seam is 44.7 m
<sup>3</sup>
/t at 7.5 MPa and 313.15 K [
<xref rid="B75" ref-type="bibr">69</xref>
], as shown in
<xref ref-type="fig" rid="fig8">Figure 8</xref>
.</p>
</sec>
</sec>
<sec id="sec3.3">
<title>3.3. Other Ways of Sequestration</title>
<p>Plantation forests are the most effective and ecofriendly way of absorbing CO
<sub>2</sub>
and increasing carbon sinks in terrestrial ecosystems, mitigating global warming and promoting ecological restoration. China's forestation rate is the highest in the world, contributing significantly to the nation's carbon sequestration [
<xref rid="B76" ref-type="bibr">76</xref>
]. Cost of carbon mitigation through plantation is relatively low, generally under $10/t, compared with $25–120/t for cost limitation of energy industry [
<xref rid="B77" ref-type="bibr">77</xref>
].</p>
<p>China currently has one of the world's most ambitious reforestation and afforestation programs, known as grain for green, which has been in place since 1999. It gives grain payouts to farmers who convert fields to forests. It is operating in many different regions across China. Although not one of its goals, carbon sequestration is a cobenefit of the program [
<xref rid="B78" ref-type="bibr">78</xref>
].</p>
<p>From 1950 to the present, plantations in China sequestered 1.686 PgC by net uptake into biomass and emission of soil organic carbon. Huang et al. [
<xref rid="B76" ref-type="bibr">76</xref>
] projected that China's forestation activities will continue to net sequester carbon to a level of 3.169 PgC by 2050.</p>
<p>On the other hand, China's rice paddies, accounting for 19% of the world's total, play an important role in soil carbon sequestration. The simulations demonstrated that all the recommended management practices could result in an increase in carbon sequestration potential, varying greatly from 29.2 to 847.7 TgC by 2050 [
<xref rid="B79" ref-type="bibr">79</xref>
].</p>
<p>Additionally, CH
<sub>4</sub>
–CO
<sub>2</sub>
reforming can effectively convert CO
<sub>2</sub>
and CH
<sub>4</sub>
into synthesis gas. Interests regarding the CO
<sub>2</sub>
reforming of CH
<sub>4</sub>
have been rising due to the feasible approach for resource utilization and greenhouse gas emission reduction and the generated raw materials needed by many manufacturing process. Many efforts have been carried to devote and investigate various types of catalysts to promote the conversion process [
<xref rid="B80" ref-type="bibr">80</xref>
<xref rid="B84" ref-type="bibr">84</xref>
].</p>
<p>Overall,
<xref ref-type="table" rid="tab1">Table 1</xref>
summarizes the main comparative information of the above CO
<sub>2</sub>
sequestration projects regarding different storage ways.</p>
</sec>
</sec>
<sec id="sec4">
<title>4. Challenge for Future</title>
<p>CCS is somehow a quite new technology in China. Even though a lot of assessments and potential analysis have been carried out across China, the real commercial implementations are limited. Various factors are supposed to be taken into consideration to promote CO
<sub>2</sub>
sequestration and to mitigate the deteriorating environment in China.</p>
<p>International engagement is critical in developing and enlarging CO
<sub>2</sub>
sequestration. China has already cooperated with other countries to start up a number of projects regarding CCS in many fields. However, more combined efforts are needed to move forward.</p>
<p>Technology is the priority determinant in CCS operation, including the technique from capture, transportation, assessment, and storage. The main oilfields in China are manifested in complex formation structure with strong heterogeneity, low or ultralow permeability, low porosity, and poor oil property [
<xref rid="B1" ref-type="bibr">1</xref>
]. CO
<sub>2</sub>
-EOR techniques would be challenged by high miscible pressure, severe gas channeling, heavy solid deposition, and development of complex reservoir [
<xref rid="B85" ref-type="bibr">85</xref>
].</p>
<p>On the other hand, effective policies are suggested to encourage and boost the CCS industry in China. Alternative ways should be developed to capture CO
<sub>2</sub>
and reduce CO
<sub>2</sub>
emission for different emitters.</p>
<p>Carbon emission trading system is forming in China. Market mechanism is important to reduce carbon emissions for China's low-carbon future [
<xref rid="B86" ref-type="bibr">86</xref>
].</p>
</sec>
<sec id="sec5">
<title>5. Conclusion</title>
<p>The demand for clean energy and low-carbon technologies is enormous in China, where the rapid growth and heavy reliance on coal provide a mass of opportunities for application of new techniques. A great amount of CO
<sub>2</sub>
can be sequestered by geological media, forestation, soil, and reforming. As a result, CCS is the most attractive way for reducing CO
<sub>2</sub>
emission in China.</p>
<p>CO
<sub>2</sub>
sequestration in depleted oil and gas reservoirs, saline aquifers, and coal beds is promising in China. A great number of projects have been implemented to testify the feasibility of CCS, examine the potential for commercial-scale CCS, and assess the storage capacity and possibility of CSEOR in large parts of China like Jilin oilfield, the first large-scale demonstration project on CSEOR.</p>
<p>Forestation, soil, and CO
<sub>2</sub>
reform could provide alternative ways for CO
<sub>2</sub>
sequestration. Combination of variety of methods can deeply promote the emission-reducing work.</p>
<p>There is a gap in carbon sequestration between China and other countries. Besides, most of the CO
<sub>2</sub>
storage projects in China are still in the evaluation and assessment stage. Further efforts are needed to move forward, involving international cooperation, advanced technology, positive policy, and society mechanism.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>The authors gratefully acknowledge the contributions of reviewers for critical reading of the paper, constructive comments, and suggestions. This work was supported by National Science Foundation of China (no. 51274173) and National Major Project of China (no. 2011ZX05016-006).</p>
</ack>
<sec sec-type="conflict">
<title>Conflict of Interests</title>
<p>The authors declare that there is no conflict of interests regarding the publication of this paper.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Xuan</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>He</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Potential and early opportunity-analysis on CO
<sub>2</sub>
geo-sequestration in China</article-title>
<conf-name>Proceedings of the 72nd European Association of Geoscientists and Engineers Conference and Exhibition (SPE EUROPEC '10)</conf-name>
<conf-date>June 2010</conf-date>
<fpage>842</fpage>
<lpage>848</lpage>
<pub-id pub-id-type="other">2-s2.0-78249237581</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miao</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>The World’s Largest Carbon Emission Reduction Project start in China</article-title>
<source>
<italic>Chinese Enterprise News</italic>
</source>
<year>2005</year>
<volume>1</volume>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Friedmann</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<source>
<italic>Carbon Capture and Sequestration Technologies: Status and Future Deployment</italic>
</source>
<year>2007</year>
<publisher-name>UCRL-BOOK-235276</publisher-name>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title xml:lang="zh">The present situation and prospect of carbon dioxide storage technology</article-title>
<source>
<italic>Energy and Environment</italic>
</source>
<year>2010</year>
<volume>32</volume>
<issue>6</issue>
<fpage>28</fpage>
<lpage>32</lpage>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title xml:lang="zh">Status quo of connection technologies of CO
<sub>2</sub>
geological storage in China</article-title>
<source>
<italic>Rock and Soil Mechanics</italic>
</source>
<year>2007</year>
<volume>28</volume>
<issue>10</issue>
<fpage>2229</fpage>
<lpage>2239</lpage>
<pub-id pub-id-type="other">2-s2.0-35948959763</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saeedi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rezaee</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Effect of residual natural gas saturation on multiphase flow behaviour during CO
<sub>2</sub>
geo-sequestration in depleted natural gas reservoirs</article-title>
<source>
<italic>Journal of Petroleum Science and Engineering</italic>
</source>
<year>2012</year>
<volume>82-83</volume>
<fpage>17</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="other">2-s2.0-84856427300</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Loizzo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lecampion</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Brard</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Harichandran</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jammes</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Reusing O&G-depleted reservoir for CO
<sub>2</sub>
storage: pros and cons</article-title>
<conf-name>SPE International Petroleum Conference and Exhibition</conf-name>
<conf-date>SPE 124317, 2010</conf-date>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ren</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title xml:lang="zh">Geological storage of CO
<sub>2</sub>
: overseas demonstration projects and its implications to China</article-title>
<source>
<italic>Journal of China University of Petroleum</italic>
</source>
<year>2010</year>
<volume>34</volume>
<issue>1</issue>
<fpage>93</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="other">2-s2.0-77951996624</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Curtis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Benson</surname>
<given-names>SM</given-names>
</name>
</person-group>
<source>
<italic>CO
<sub>2</sub>
Injection for Enhanced Gas Production and Carbon Sequestration</italic>
</source>
<year>2002</year>
<volume>74367</volume>
<publisher-name>SPE</publisher-name>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dahowski</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>XC</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>A $70/t CO
<sub>2</sub>
greenhouse gas mitigation backstop for China’s industrial and electric power sectors: insights from a comprehensive CCS cost curve</article-title>
<source>
<italic>International Journal of Greenhouse Gas Control</italic>
</source>
<year>2012</year>
<volume>11</volume>
<fpage>73</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="other">2-s2.0-84865335538</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>CCUS technology and projects of sinopec</article-title>
<conf-name>Proceedings of the 4th Annual Global Carbon Capture Utilization & Storage Summit</conf-name>
<conf-date>2013</conf-date>
<conf-loc>Beijing, China</conf-loc>
<fpage>144</fpage>
<lpage>163</lpage>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wen-Hui</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Huo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Carbon dioxide emission reduction and utilization</article-title>
<source>
<italic>Resources & Industries</italic>
</source>
<year>2011</year>
<volume>13</volume>
<issue>1</issue>
<fpage>132</fpage>
<lpage>137</lpage>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="book">
<collab>Intergovernmental Panel on Climate Change (IPCC)</collab>
<source>
<italic>IPCC Special Report on Carbon Dioxide Capture and Storage</italic>
</source>
<year>2005</year>
<publisher-loc>Cambridge, UK</publisher-loc>
<publisher-name>Cambridge University Press for the Intergovernmental Panel on Climate Change</publisher-name>
<series>edited by B. Metz, O. Davidson</series>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Fang</surname>
<given-names>MX</given-names>
</name>
</person-group>
<source>
<italic>CO
<sub>2</sub>
capture by membrane and adsorption technology</italic>
</source>
<year>2013</year>
<publisher-name>Institute for Thermal Power Engineering of Zhejiang University</publisher-name>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>SS</given-names>
</name>
</person-group>
<article-title>CO
<sub>2</sub>
capture RD&D projects in China Huaneng Group</article-title>
<conf-name>Proceedings of the 4th Annual Global Carbon Capture Utilization & Storage Summit (CCS '13)</conf-name>
<conf-date>2013</conf-date>
<conf-loc>Beijing, China</conf-loc>
<fpage>102</fpage>
<lpage>125</lpage>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>XM</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>SY</given-names>
</name>
</person-group>
<article-title xml:lang="zh">Current situation of CCS technology at home and abroad and the positive strategy that China should adopt toward it</article-title>
<source>
<italic>Reservoir Evaluation and Development</italic>
</source>
<year>2011</year>
<volume>1</volume>
<issue>1-2</issue>
<fpage>25</fpage>
<lpage>30</lpage>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pingping</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xinwei</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Qiujie</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Methodology for estimation of CO
<sub>2</sub>
storage capacity in reservoirs</article-title>
<source>
<italic>Petroleum Exploration and Development</italic>
</source>
<year>2009</year>
<volume>36</volume>
<issue>2</issue>
<fpage>216</fpage>
<lpage>220</lpage>
<pub-id pub-id-type="other">2-s2.0-64249111456</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Integrated assessment of CO
<sub>2</sub>
-enhanced oil recovery and storage capacity</article-title>
<conf-name>Proceedings of the Canadian Unconventional Resources and International Petroleum Conference</conf-name>
<conf-date>October 2010</conf-date>
<pub-id pub-id-type="other">2-s2.0-79952958711</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>WY</given-names>
</name>
</person-group>
<article-title xml:lang="zh">Assessment of CO
<sub>2</sub>
geo-storage potential in onshore oil reservoirs, China</article-title>
<source>
<italic>China Population, Resources and Environment</italic>
</source>
<year>2012</year>
<volume>22</volume>
<issue>6</issue>
<fpage>76</fpage>
<lpage>81</lpage>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanaka</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Koide</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sasagawa</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Possibility of underground CO
<sub>2</sub>
sequestration in Japan</article-title>
<source>
<italic>Energy Conversion and Management</italic>
</source>
<year>1995</year>
<volume>36</volume>
<issue>6–9</issue>
<fpage>527</fpage>
<lpage>530</lpage>
<pub-id pub-id-type="other">2-s2.0-0029325675</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ohsumi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Estimation of CO
<sub>2</sub>
aquifer storage potential in Japan</article-title>
<source>
<italic>Energy Procedia</italic>
</source>
<year>2009</year>
<volume>1</volume>
<fpage>2631</fpage>
<lpage>2638</lpage>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shaw</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bachu</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Screening, evaluation, and ranking of oil reservoirs suitable for CO
<sub>2</sub>
-flood EOR and carbon dioxide sequestration</article-title>
<source>
<italic>Journal of Canadian Petroleum Technology</italic>
</source>
<year>2002</year>
<volume>41</volume>
<issue>9</issue>
<fpage>51</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="other">2-s2.0-0036708795</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Bachu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Pearson</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Estimation of oil recovery and CO
<sub>2</sub>
storage capacity in CO
<sub>2</sub>
EOR incorporating the effect of underlying aquifers</article-title>
<conf-name>Proceedings of the SPE/DOE Symposium on Improved Oil Recovery</conf-name>
<conf-date>April 2004</conf-date>
<conf-loc>Tulsa, Okla, USA</conf-loc>
<series>SPE 89340</series>
<pub-id pub-id-type="other">2-s2.0-84862376427</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="gov">
<person-group person-group-type="author">
<name>
<surname>Burruss</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Brennan</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Freeman</surname>
<given-names>PA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Development of a probabilistic assessment methodology for evaluation of carbon dioxide storage</article-title>
<source>
<italic>U.S. Geological Survey, Open-File Report</italic>
</source>
<year>2009</year>
<issue>2009-1038</issue>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>XC</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title xml:lang="zh">Preliminary estimation of CO
<sub>2</sub>
storage capacity in gas fields in China</article-title>
<source>
<italic>Rock and Soil Mechanics</italic>
</source>
<year>2006</year>
<volume>27</volume>
<issue>12</issue>
<fpage>2277</fpage>
<lpage>2281</lpage>
<pub-id pub-id-type="other">2-s2.0-33846917215</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Preliminary estimation of CO
<sub>2</sub>
storage capacity of coalbeds in China</article-title>
<source>
<italic>Chinese Journal of Rock Mechanics and Engineering</italic>
</source>
<year>2005</year>
<volume>24</volume>
<issue>16</issue>
<fpage>2947</fpage>
<lpage>2952</lpage>
<pub-id pub-id-type="other">2-s2.0-24044540388</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vangkilde-Pedersena</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Anthonsen</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Assessing European capacity for geological storage of carbon dioxide—the EU GeoCapacity project</article-title>
<source>
<italic>Energy Procedia</italic>
</source>
<year>2009</year>
<volume>1</volume>
<issue>1</issue>
<fpage>2663</fpage>
<lpage>2670</lpage>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Mamora</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Seo</surname>
<given-names>JG</given-names>
</name>
</person-group>
<article-title>Enhanced gas recovery by carbon dioxide sequestration in depleted gas reservoirs</article-title>
<conf-name>Proceedings of the SPE Annual Technical Conference and Exhibition</conf-name>
<conf-date>October 2002</conf-date>
<conf-loc>San Antonio, Tex, USA</conf-loc>
<fpage>151</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="other">2-s2.0-1142303640</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whittaker</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rostron</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Hawkes</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A decade of CO
<sub>2</sub>
injection into depleting oil fields: monitoring and research activities of the IEA GHG Weyburn-Midale CO
<sub>2</sub>
Monitoring and Storage Project</article-title>
<source>
<italic>Energy Procedia</italic>
</source>
<year>2011</year>
<volume>4</volume>
<fpage>6069</fpage>
<lpage>6076</lpage>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Preston</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Monea</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jazrawi</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IEA GHG Weyburn CO
<sub>2</sub>
monitoring and storage project</article-title>
<source>
<italic>Fuel Processing Technology</italic>
</source>
<year>2005</year>
<volume>86</volume>
<issue>14-15</issue>
<fpage>1547</fpage>
<lpage>1568</lpage>
<pub-id pub-id-type="other">2-s2.0-23144438145</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Van Der Meer</surname>
<given-names>LGH</given-names>
</name>
<name>
<surname>Kreft</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Geel</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hartman</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>K12-B A test site for CO
<sub>2</sub>
storage and enhanced gas recovery</article-title>
<conf-name>Proceedings of the 67th European Association of Geoscientists and Engineers, EAGE Conference and Exhibition, incorporating (SPE EUROPEC '05)</conf-name>
<conf-date>June 2005</conf-date>
<pub-id pub-id-type="other">2-s2.0-84858561936</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arts</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Vandeweijer</surname>
<given-names>VP</given-names>
</name>
<name>
<surname>Hofstee</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The feasibility of CO
<sub>2</sub>
storage in the depleted P18-4 gas field offshore the Netherlands (the ROAD project)</article-title>
<source>
<italic>International Journal of Greenhouse Gas Control</italic>
</source>
<year>2012</year>
<volume>11S</volume>
<fpage>S10</fpage>
<lpage>S20</lpage>
<pub-id pub-id-type="other">2-s2.0-84867085949</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Baklid</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Korbol</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Owren</surname>
<given-names>G</given-names>
</name>
</person-group>
<source>
<italic>Sleipner Vest CO
<sub>2</sub>
Disposal, CO
<sub>2</sub>
Injection into a Shallow Underground Aquifer</italic>
</source>
<year>1996</year>
<volume>36600</volume>
<publisher-name>SPE</publisher-name>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eiken</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Ringrose</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hermanrud</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Lessons learned from 14 years of CCS operations: sleipner, in Salah and Snøhvit</article-title>
<source>
<italic>Energy Procedia</italic>
</source>
<year>2011</year>
<volume>4</volume>
<fpage>5541</fpage>
<lpage>5548</lpage>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Michael</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Golab</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Shulakova</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Geological storage of CO
<sub>2</sub>
in saline aquifers—a review of the experience from existing storage operations</article-title>
<source>
<italic>International Journal of Greenhouse Gas Control</italic>
</source>
<year>2010</year>
<volume>4</volume>
<issue>4</issue>
<fpage>659</fpage>
<lpage>667</lpage>
<pub-id pub-id-type="other">2-s2.0-77952583739</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Stevens</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Spector</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Riemer</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Enhanced coalbed methane recovery using CO
<sub> 2</sub>
injection: Worldwide resource and CO
<sub> 2</sub>
sequestration potential</article-title>
<conf-name>Proceedings of the 6th International Oil & Gas Conference and Exhibition in China (IOGCEC '98)</conf-name>
<conf-date>November 1998</conf-date>
<fpage>489</fpage>
<lpage>501</lpage>
<pub-id pub-id-type="other">2-s2.0-0032317537</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Cairns</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Enhanced coal bed Methane recovery and CO
<sub>2</sub>
sequestration in an unmineable coal seam</article-title>
<comment>CONSOL Energy, 2001</comment>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Robertson</surname>
<given-names>EP</given-names>
</name>
</person-group>
<article-title>Enhanced coal bed methane recovery and CO
<sub>2</sub>
sequestration in the powder River Basin</article-title>
<comment>DOE. DE-FC26-05NT42587, 2010</comment>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Veld</surname>
<given-names>KV</given-names>
</name>
<name>
<surname>Mason</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Leach</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The Economics of CO
<sub>2</sub>
sequestration through Enhanced Oil recovery</article-title>
<source>
<italic>Energy Procedia</italic>
</source>
<year>2013</year>
<volume>37</volume>
<fpage>6909</fpage>
<lpage>6919</lpage>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Litynski</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rodosta</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Myer</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kane</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Washington</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>What is next in geologic CO
<sub>2</sub>
storage research?</article-title>
<conf-name>Proceedings of the Carbon Management Technology Conference (CMTC '12)</conf-name>
<conf-date>2012</conf-date>
<conf-loc>Orlando, Fla, USA</conf-loc>
<series>CMTC-151471-MS</series>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taber</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>FD</given-names>
</name>
<name>
<surname>Seright</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>EOR screening criteria reyisited—part 1: introduction to screening criteria and enhanced recovery field projects</article-title>
<source>
<italic>SPE Reservoir Engineering</italic>
</source>
<year>1997</year>
<volume>12</volume>
<issue>3</issue>
<fpage>189</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="other">2-s2.0-0031210996</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>XW</given-names>
</name>
<etal></etal>
</person-group>
<article-title xml:lang="zh">Fuzzy hierarchy analysis-based selection of oil reservoirs for gas storage and gas injection</article-title>
<source>
<italic>Henan Petroleum</italic>
</source>
<year>2005</year>
<volume>19</volume>
<issue>4</issue>
<fpage>40</fpage>
<lpage>46</lpage>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lei</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>BC</given-names>
</name>
</person-group>
<article-title xml:lang="zh">New screening method for reservoir by CO
<sub>2</sub>
injection miscible flooding</article-title>
<source>
<italic>Journal of China University of Petroleum</italic>
</source>
<year>2008</year>
<volume>32</volume>
<issue>1</issue>
<fpage>72</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="other">2-s2.0-41649109237</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Shu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Shaoran</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Qing</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title xml:lang="zh">Assessment of CO
<sub>2</sub>
EOR and its geo-storage potential in mature oil reservoirs, Shengli Oilfield, China</article-title>
<source>
<italic>Petroleum Exploration and Development</italic>
</source>
<year>2009</year>
<volume>36</volume>
<issue>6</issue>
<fpage>737</fpage>
<lpage>742</lpage>
<pub-id pub-id-type="other">2-s2.0-71949111574</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>45</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Ren</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Monitoring on CO
<sub>2</sub>
EOR and storage in a CCS demonstration project of JiMn Oilfield China</article-title>
<conf-name>Proceedings of the SPE Annual Technical Conference and Exhibition 2011 (ATCE '11)</conf-name>
<conf-date>November 2011</conf-date>
<fpage>498</fpage>
<lpage>505</lpage>
<pub-id pub-id-type="other">2-s2.0-84863021464</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hao</surname>
<given-names>ZG</given-names>
</name>
<name>
<surname>Fei</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Integrated techniques of underground CO
<sub>2</sub>
storage and flooding put into commercial application in the Jilin oilfield</article-title>
<source>
<italic>Acta Geologica Sinica</italic>
</source>
<year>2012</year>
<volume>86</volume>
<issue>1</issue>
<fpage>p. 285</fpage>
</element-citation>
</ref>
<ref id="B47">
<label>47</label>
<element-citation publication-type="other">
<article-title>Petrochina’s CO
<sub>2</sub>
—EOR Research and Demonstration Project in the Jilin Oil Field (n.d.)</article-title>
<comment>2014,
<ext-link ext-link-type="uri" xlink:href="http://www.ccuschina.org.cn/English/News.aspx">http://www.ccuschina.org.cn/English/News.aspx</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B48">
<label>48</label>
<element-citation publication-type="other">
<comment>Major R&D Project of “Ji lin Oilfield CCS Technology Research” Passed the Acceptance Inspection, Jilin Xinhuanet, 2012,
<ext-link ext-link-type="uri" xlink:href="http://www.jl.xinhuanet.com/2010zhuanti/kanghong/2012-08/23/content_25544196.htm">http://www.jl.xinhuanet.com/2010zhuanti/kanghong/2012-08/23/content_25544196.htm</ext-link>
, (Chinese)</comment>
</element-citation>
</ref>
<ref id="B49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Jiao</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Yue</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title xml:lang="zh">CO
<sub>2</sub>
miscible flooding and production characteristics and preliminary discussion about the development effects—taking Caoshe oilfield in Northern Jiangsu area as an example</article-title>
<source>
<italic>Reservoir Evaluation and Development</italic>
</source>
<year>2011</year>
<volume>1</volume>
<fpage>37</fpage>
<lpage>41</lpage>
</element-citation>
</ref>
<ref id="B50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>FD</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>ZL</given-names>
</name>
</person-group>
<article-title xml:lang="zh">The field experiment and result analysis of CO
<sub>2</sub>
miscible displacement in Caoshe Oilfield of the North Jiangsu Basin</article-title>
<source>
<italic>Petroleum Geology & Experiment</italic>
</source>
<year>2010</year>
<volume>32</volume>
<issue>3</issue>
<fpage>296</fpage>
<lpage>300</lpage>
</element-citation>
</ref>
<ref id="B51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>ZH</given-names>
</name>
</person-group>
<article-title xml:lang="zh">Study of CO
<sub>2</sub>
miscible flooding technique in the caoshe oil field, the Qingtong Sag, the Northern Jiangsu Basin</article-title>
<source>
<italic>Petroleum Geology & Experiment</italic>
</source>
<year>2008</year>
<volume>30</volume>
<issue>2</issue>
<fpage>212</fpage>
<lpage>216</lpage>
</element-citation>
</ref>
<ref id="B52">
<label>52</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<source>
<italic>Research of CO
<sub>2</sub>
-EOR and Geological Storage in Jiangsu Caoshe Oilfield</italic>
</source>
<year>2010</year>
<publisher-name>China University of Petroleum</publisher-name>
<comment>(Chinese)</comment>
</element-citation>
</ref>
<ref id="B53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>XZ</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Monitoring the safety of CO
<sub>2</sub>
sequestration in Jingbian field, China</article-title>
<source>
<italic>Energy Procedia</italic>
</source>
<year>2013</year>
<volume>37</volume>
<fpage>3469</fpage>
<lpage>3478</lpage>
</element-citation>
</ref>
<ref id="B54">
<label>54</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Liao</surname>
<given-names>XW</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shangguan</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Assessment of CO
<sub>2</sub>
EOR and its geo-storage potential in mature oil reservoirs, Changqing Oil Field, China</article-title>
<conf-name>Proceedings of the Carbon Management Technology Conference</conf-name>
<conf-date>February 2012</conf-date>
<conf-loc>Orlando, Fla, USA</conf-loc>
<fpage>62</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="other">2-s2.0-84861000233</pub-id>
</element-citation>
</ref>
<ref id="B55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiao</surname>
<given-names>ZS</given-names>
</name>
<name>
<surname>Surdam</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Zhoub</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Staufferc</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Luob</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>A Feasibility Study of Geological CO
<sub>2</sub>
sequestration in the Ordos Basin, China</article-title>
<source>
<italic>Energy Procedia</italic>
</source>
<year>2011</year>
<volume>4</volume>
<fpage>5982</fpage>
<lpage>5989</lpage>
</element-citation>
</ref>
<ref id="B56">
<label>56</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Ran</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>An assessment of a CO
<sub>2</sub>
flood for EOR and sequestration benefits in the Ordos Basin, Northwest China</article-title>
<conf-name>Proceedings of the Carbon Management Technology Conference (CMTC '12)</conf-name>
<conf-date>February 2012</conf-date>
<fpage>90</fpage>
<lpage>94</lpage>
<series>150272</series>
<pub-id pub-id-type="other">2-s2.0-84861010002</pub-id>
</element-citation>
</ref>
<ref id="B57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>WX</given-names>
</name>
<etal></etal>
</person-group>
<article-title xml:lang="zh">Potential evaluation of CO
<sub>2</sub>
flooding enhanced oil recovery and geological sequestration in Xinjiang Oilfield</article-title>
<source>
<italic>Journal of Shaanxi University of Science & Technology</italic>
</source>
<year>2013</year>
<volume>31</volume>
<issue>2</issue>
<fpage>74</fpage>
<lpage>79</lpage>
</element-citation>
</ref>
<ref id="B58">
<label>58</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Huo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jalali</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>An analysis of CO
<sub>2</sub>
storage prospects in deep saline reservoirs</article-title>
<conf-name>Proceedings of the SPE Production and Operations Conference and Exhibition</conf-name>
<conf-date>June 2010</conf-date>
<conf-loc>Tunis, Tunisia</conf-loc>
<series> SPE 136077</series>
</element-citation>
</ref>
<ref id="B59">
<label>59</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Xiang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The potential of CO
<sub>2</sub>
-EOR in China offshore oilfield</article-title>
<conf-name>Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition</conf-name>
<conf-date>October 2008</conf-date>
<fpage>504</fpage>
<lpage>507</lpage>
<pub-id pub-id-type="other">2-s2.0-63849151612</pub-id>
</element-citation>
</ref>
<ref id="B60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Assessment of CO
<sub>2</sub>
storage in DFl-1 South China sea gas field for CCS demonstration</article-title>
<source>
<italic>Journal of Canadian Petroleum Technology</italic>
</source>
<year>2010</year>
<volume>49</volume>
<issue>8</issue>
<fpage>9</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="other">2-s2.0-77955935249</pub-id>
</element-citation>
</ref>
<ref id="B61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Q</given-names>
</name>
</person-group>
<article-title>Assessment of CO
<sub>2</sub>
storage capacity in oil reservoirs associated with large lateral/underlying aquifers: case studies from China</article-title>
<source>
<italic>International Journal of Greenhouse Gas Control</italic>
</source>
<year>2011</year>
<volume>5</volume>
<issue>4</issue>
<fpage>1016</fpage>
<lpage>1021</lpage>
<pub-id pub-id-type="other">2-s2.0-80051471007</pub-id>
</element-citation>
</ref>
<ref id="B62">
<label>62</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Pruess</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>TF</given-names>
</name>
</person-group>
<article-title>Numerical modeling of aquifer disposal of CO
<sub>2</sub>
</article-title>
<conf-name>Proceedings of the SPE/EPA/DOE Exploration and Production Environmental Conference</conf-name>
<conf-date>2001</conf-date>
<comment>SPE 66537</comment>
</element-citation>
</ref>
<ref id="B63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Allis</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lutz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rauzi</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Mineralogical and geochemical consequences of the long-term presence of CO
<sub>2</sub>
in natural reservoirs: an example from the Springerville-St. Johns Field, Arizona, and New Mexico, U.S.A</article-title>
<source>
<italic>Chemical Geology</italic>
</source>
<year>2005</year>
<volume>217</volume>
<issue>3-4</issue>
<fpage>365</fpage>
<lpage>385</lpage>
<pub-id pub-id-type="other">2-s2.0-18444398344</pub-id>
</element-citation>
</ref>
<ref id="B64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wigand</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Carey</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Schütt</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Spangenberg</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Erzinger</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Geochemical effects of CO
<sub>2</sub>
sequestration in sandstones under simulated in situ conditions of deep saline aquifers</article-title>
<source>
<italic>Applied Geochemistry</italic>
</source>
<year>2008</year>
<volume>23</volume>
<issue>9</issue>
<fpage>2735</fpage>
<lpage>2745</lpage>
<pub-id pub-id-type="other">2-s2.0-50549088361</pub-id>
</element-citation>
</ref>
<ref id="B65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>XC</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title xml:lang="zh">Ranking and screening of CO
<sub>2</sub>
saline aquifer storage zones in China</article-title>
<source>
<italic>Chinese Journal of Rock Mechanics and Engineering</italic>
</source>
<year>2006</year>
<volume>25</volume>
<issue>5</issue>
<fpage>963</fpage>
<lpage>968</lpage>
<pub-id pub-id-type="other">2-s2.0-33745737547</pub-id>
</element-citation>
</ref>
<ref id="B66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liao</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title xml:lang="zh">Study of geological storage of carbon dioxide in the Songliao Basin</article-title>
<source>
<italic>Geological Journal of Sichuan</italic>
</source>
<year>2012</year>
<volume>32</volume>
<issue>3</issue>
<fpage>268</fpage>
<lpage>271</lpage>
</element-citation>
</ref>
<ref id="B67">
<label>67</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mi</surname>
<given-names>HG</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>YX</given-names>
</name>
</person-group>
<article-title>CO
<sub>2</sub>
storage in saline aquifers: design of a demonstration project to dispose CO
<sub>2</sub>
associated with natural gas fields in South China sea</article-title>
<conf-name>Proceedings of the Canadian Unconventional Resources and International Petroleum Conference</conf-name>
<conf-date>October 2010</conf-date>
<conf-loc>Alberta, Canada</conf-loc>
<fpage>95</fpage>
<lpage>101</lpage>
<pub-id pub-id-type="other">2-s2.0-79952977420</pub-id>
</element-citation>
</ref>
<ref id="B68">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Feasibility study on associated CO
<sub>2</sub>
geological storage in a saline aquifer for development of Dongfang 1-1 gas field</article-title>
<source>
<italic>Journal of China University of Petroleum</italic>
</source>
<year>2010</year>
<volume>34</volume>
<issue>3</issue>
<fpage>89</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="other">2-s2.0-77954469312</pub-id>
</element-citation>
</ref>
<ref id="B75">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Evaluating the security of geological coalbed sequestration of supercritical CO
<sub>2</sub>
reservoirs: the Haishiwan coalfield, China as a natural analogue</article-title>
<source>
<italic>International Journal of Greenhouse Gas Control</italic>
</source>
<year>2013</year>
<volume>13</volume>
<fpage>102</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="other">2-s2.0-84872371771</pub-id>
</element-citation>
</ref>
<ref id="B69">
<label>70</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Pang</surname>
<given-names>ZH</given-names>
</name>
</person-group>
<article-title>Study on CO
<sub>2</sub>
sequestration in saline aquifers in the Bohai Bay Basin</article-title>
<conf-name>Proceedings of the 4th Annual Global Carbon Capture Utilization & Storage Summit</conf-name>
<conf-date>2013</conf-date>
<fpage>769</fpage>
<lpage>782</lpage>
</element-citation>
</ref>
<ref id="B70">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Geochemistry of a continental saline aquifer for CO
<sub> 2</sub>
sequestration: the Guantao formation in the Bohai Bay Basin, North China</article-title>
<source>
<italic>Applied Geochemistry</italic>
</source>
<year>2012</year>
<volume>27</volume>
<issue>9</issue>
<fpage>1821</fpage>
<lpage>1828</lpage>
<pub-id pub-id-type="other">2-s2.0-84865312957</pub-id>
</element-citation>
</ref>
<ref id="B71">
<label>72</label>
<element-citation publication-type="journal">
<collab>“Natural Gas Industry” Editorial Department</collab>
<article-title>CBM resources in China ranks third in the world</article-title>
<source>
<italic>Natural Gas Industry</italic>
</source>
<year>2010</year>
<volume>30</volume>
<issue>5</issue>
<fpage>p. 128</fpage>
</element-citation>
</ref>
<ref id="B72">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title xml:lang="zh">Feasibility study of gas mixture enhanced coalbed methane recovery technology</article-title>
<source>
<italic>Rock and Soil Mechanics</italic>
</source>
<year>2010</year>
<volume>31</volume>
<issue>10</issue>
<fpage>3223</fpage>
<lpage>3229</lpage>
<pub-id pub-id-type="other">2-s2.0-78149476025</pub-id>
</element-citation>
</ref>
<ref id="B73">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Golding</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Uysal</surname>
<given-names>IT</given-names>
</name>
<name>
<surname>Borehama</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Kirstea</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Baublysb</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Esterle</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>Adsorption and mineral trapping dominate CO
<sub>2</sub>
storage in coal system</article-title>
<source>
<italic>Energy Procedia</italic>
</source>
<year>2011</year>
<volume>4</volume>
<fpage>3131</fpage>
<lpage>3138</lpage>
</element-citation>
</ref>
<ref id="B74">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Predicted CO
<sub>2</sub>
enhanced coalbed methane recovery and CO
<sub>2</sub>
sequestration in China</article-title>
<source>
<italic>International Journal of Coal Geology</italic>
</source>
<year>2007</year>
<volume>71</volume>
<issue>2-3</issue>
<fpage>345</fpage>
<lpage>357</lpage>
<pub-id pub-id-type="other">2-s2.0-34248189192</pub-id>
</element-citation>
</ref>
<ref id="B76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Carbon sequestration by forestation across China: past, present, and future</article-title>
<source>
<italic>Renewable and Sustainable Energy Reviews</italic>
</source>
<year>2012</year>
<volume>16</volume>
<issue>2</issue>
<fpage>1291</fpage>
<lpage>1299</lpage>
<pub-id pub-id-type="other">2-s2.0-84855266937</pub-id>
</element-citation>
</ref>
<ref id="B77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>WL</given-names>
</name>
</person-group>
<article-title xml:lang="zh">Plantation—the effective way for low-carbon life</article-title>
<source>
<italic>Fujian Daily</italic>
</source>
<year>2013</year>
<volume>3</volume>
</element-citation>
</ref>
<ref id="B78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Caldwell</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Maclaren</surname>
<given-names>VW</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An integrated assessment model of carbon sequestration benefits: a case study of Liping county, China</article-title>
<source>
<italic>Journal of Environmental Management</italic>
</source>
<year>2007</year>
<volume>85</volume>
<issue>3</issue>
<fpage>757</fpage>
<lpage>773</lpage>
<pub-id pub-id-type="other">2-s2.0-34548840693</pub-id>
<pub-id pub-id-type="pmid">17178433</pub-id>
</element-citation>
</ref>
<ref id="B79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>SX</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>XZ</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Carbon sequestration potential of recommended management practices for paddy soils of China, 1980–2050</article-title>
<source>
<italic>Geoderma</italic>
</source>
<year>2011</year>
<volume>166</volume>
<issue>1</issue>
<fpage>206</fpage>
<lpage>213</lpage>
<pub-id pub-id-type="other">2-s2.0-80053052815</pub-id>
</element-citation>
</ref>
<ref id="B80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>CO
<sub>2</sub>
reforming of CH
<sub>4</sub>
in coke oven gas to syngas over coal char catalyst</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2010</year>
<volume>156</volume>
<issue>3</issue>
<fpage>519</fpage>
<lpage>523</lpage>
<pub-id pub-id-type="other">2-s2.0-74349099049</pub-id>
</element-citation>
</ref>
<ref id="B81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>YN</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>YF</given-names>
</name>
</person-group>
<article-title>Effects of preparation methods on the properties of cobalt/carbon catalyst for methane reforming with carbon dioxide to syngas</article-title>
<source>
<italic>Journal of Industrial and Engineering Chemistry</italic>
</source>
<year>2014</year>
<volume>20</volume>
<issue>4</issue>
<fpage>1677</fpage>
<lpage>1683</lpage>
</element-citation>
</ref>
<ref id="B82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>AT</given-names>
</name>
</person-group>
<article-title>Towards understanding the Carbon catalyzed CO
<sub>2</sub>
reforming of Methane to syngas</article-title>
<source>
<italic>Journal of Industrial and Engineering Chemistry</italic>
</source>
<year>2014</year>
</element-citation>
</ref>
<ref id="B83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>XP</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Carbon dioxide reforming of methane for syngas production over La-promoted NiMgAl catalysts derived from hydrotalcites</article-title>
<source>
<italic>Chemical Engineering Journal</italic>
</source>
<year>2012</year>
<volume>209</volume>
<fpage>623</fpage>
<lpage>632</lpage>
<pub-id pub-id-type="other">2-s2.0-84866148009</pub-id>
</element-citation>
</ref>
<ref id="B84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Ce-K-promoted Co-Mo/Al
<sub>2</sub>
O
<sub>3</sub>
catalysts for the water gas shift reaction</article-title>
<source>
<italic>International Journal of Hydrogen Energy</italic>
</source>
<year>2012</year>
<volume>37</volume>
<issue>8</issue>
<fpage>6363</fpage>
<lpage>6371</lpage>
<pub-id pub-id-type="other">2-s2.0-84859210069</pub-id>
</element-citation>
</ref>
<ref id="B85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yue</surname>
<given-names>XA</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>FL</given-names>
</name>
</person-group>
<article-title xml:lang="zh">Technological challenges for CO
<sub>2</sub>
EOR in China</article-title>
<source>
<italic>Sciencepaper Online</italic>
</source>
<year>2007</year>
<volume>2</volume>
<issue>7</issue>
<fpage>487</fpage>
<lpage>491</lpage>
</element-citation>
</ref>
<ref id="B86">
<label>86</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>RY</given-names>
</name>
</person-group>
<article-title>Report on the Development of Low Carbon Economy of China</article-title>
<comment>Released. GMW, 2013,
<ext-link ext-link-type="uri" xlink:href="http://politics.gmw.cn/2013-05/27/content_7767951.htm">http://politics.gmw.cn/2013-05/27/content_7767951.htm</ext-link>
</comment>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Locations of large CO
<sub>2</sub>
point sources and CO
<sub>2</sub>
storage reservoir in China (from Dahowski et al. [
<xref rid="B10" ref-type="bibr">10</xref>
]).</p>
</caption>
<graphic xlink:href="TSWJ2014-381854.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Diagram of well location and surface layout of cross-well seismic lines: yellow dots are CO
<sub>2</sub>
injectors, and the seismic lines are in deep blue color (from Ren et al. [
<xref rid="B45" ref-type="bibr">45</xref>
]).</p>
</caption>
<graphic xlink:href="TSWJ2014-381854.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Measured oil production, water cut, CO
<sub>2</sub>
content and GOR in the CO
<sub>2</sub>
miscible pilot area of Jinlin oilfield (from Ren et al. [
<xref rid="B45" ref-type="bibr">45</xref>
]).</p>
</caption>
<graphic xlink:href="TSWJ2014-381854.003"></graphic>
</fig>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Geotectonic map showing the main depression and uplift regions in the Suibei basin, where the Caoshe oilfield is located (from Zhang [
<xref rid="B52" ref-type="bibr">52</xref>
]).</p>
</caption>
<graphic xlink:href="TSWJ2014-381854.004"></graphic>
</fig>
<fig id="fig5" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>Simulation result of CO
<sub>2</sub>
miscible flooding of the Taizhou Formation reservoir in the Caoshe oilfield (from Yu et al. [
<xref rid="B51" ref-type="bibr">51</xref>
]).</p>
</caption>
<graphic xlink:href="TSWJ2014-381854.005"></graphic>
</fig>
<fig id="fig6" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Distribution of sandbodies in the LT13-1 saline aquifer (from Zhang [
<xref rid="B52" ref-type="bibr">52</xref>
]).</p>
</caption>
<graphic xlink:href="TSWJ2014-381854.006"></graphic>
</fig>
<fig id="fig7" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<p>CO
<sub>2</sub>
gas distribution radius in sandbodies A and C during and after injection (from Zhang [
<xref rid="B52" ref-type="bibr">52</xref>
]).</p>
</caption>
<graphic xlink:href="TSWJ2014-381854.007"></graphic>
</fig>
<fig id="fig8" orientation="portrait" position="float">
<label>Figure 8</label>
<caption>
<p>High-pressure CO
<sub>2</sub>
adsorption on the dry Haishiwan coals at 40°C with respect to density (a); CO
<sub>2</sub>
excess sorption isotherms and free CO
<sub>2</sub>
content versus pressure (b);
<italic>P</italic>
<sub>SC</sub>
is the critical pressure of CO
<sub>2</sub>
(from Li et al. [
<xref rid="B75" ref-type="bibr">69</xref>
]).</p>
</caption>
<graphic xlink:href="TSWJ2014-381854.008"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Comparison of different CO
<sub>2</sub>
sequestration projects.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Storage media</th>
<th align="center" rowspan="1" colspan="1">Total CO
<sub>2</sub>
storage capacity</th>
<th align="center" rowspan="1" colspan="1">Project</th>
<th align="center" rowspan="1" colspan="1">CO
<sub>2</sub>
storage capacity</th>
<th align="center" rowspan="1" colspan="1">EOR potential</th>
<th align="center" rowspan="1" colspan="1">Cost of storage</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="6" colspan="1">Oilfield</td>
<td align="center" rowspan="6" colspan="1">4.6 × 10
<sup>9</sup>
 t (>800 m)</td>
<td align="center" rowspan="1" colspan="1">Jilin</td>
<td align="center" rowspan="1" colspan="1">0.7 × 10
<sup>6</sup>
 t </td>
<td align="center" rowspan="1" colspan="1">0.5 × 10
<sup>6</sup>
 t </td>
<td align="center" rowspan="1" colspan="1">1 : 1.37
<break></break>
(input : output)</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Caoshe</td>
<td align="center" rowspan="1" colspan="1">0.309 × 10
<sup>9</sup>
 m
<sup>3</sup>
<break></break>
(by 2009)</td>
<td align="center" rowspan="1" colspan="1">0.03 × 10
<sup>6</sup>
 t
<break></break>
(by 2009)</td>
<td align="center" rowspan="1" colspan="1">$25.78/t</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Jingbian</td>
<td align="center" rowspan="1" colspan="1">0.04 × 10
<sup>6</sup>
 t/yr</td>
<td align="center" rowspan="1" colspan="1">0.05 × 10
<sup>6</sup>
 t/yr</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Changqing</td>
<td align="center" rowspan="1" colspan="1">0.098 × 10
<sup>9</sup>
 t</td>
<td align="center" rowspan="1" colspan="1">0.239 × 10
<sup>9</sup>
 t </td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Shengli</td>
<td align="center" rowspan="1" colspan="1">95.539 × 10
<sup>6</sup>
 t</td>
<td align="center" rowspan="1" colspan="1">9.997 × 10
<sup>6</sup>
 t</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Xinjiang</td>
<td align="center" rowspan="1" colspan="1">0.495 × 10
<sup>9</sup>
 t</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" colspan="6" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Gas field</td>
<td align="center" rowspan="1" colspan="1">30.483 × 10
<sup>9</sup>
 t  
<break></break>
(900–3500 m)</td>
<td align="center" rowspan="1" colspan="1">DF1-1</td>
<td align="center" rowspan="1" colspan="1">0.511 × 10
<sup>9</sup>
 Sm
<sup>3</sup>
</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">$20/t</td>
</tr>
<tr>
<td align="center" colspan="6" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="3" colspan="1">Saline aquifer</td>
<td align="center" rowspan="3" colspan="1">143.505 × 10
<sup>9</sup>
 t</td>
<td align="center" rowspan="1" colspan="1">LT13-1</td>
<td align="center" rowspan="1" colspan="1">0.1 × 10
<sup>9</sup>
 t</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">$33–37/t</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Bohai Bay</td>
<td align="center" rowspan="1" colspan="1">3.9 × 10
<sup>9</sup>
 t</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Songliao</td>
<td align="center" rowspan="1" colspan="1">8.96 × 10
<sup>9</sup>
 t</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" colspan="6" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Coal seam</td>
<td align="center" rowspan="1" colspan="1">142.67 × 10
<sup>9</sup>
 t</td>
<td align="center" rowspan="1" colspan="1">Haishiwan</td>
<td align="center" rowspan="1" colspan="1">44.7 m
<sup>3</sup>
/t</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" colspan="6" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Plantation</td>
<td align="center" rowspan="1" colspan="1">3.169 PgC  
<break></break>
(by 2050)</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"><$10/t</td>
</tr>
<tr>
<td align="center" colspan="6" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Soil carbon sequestration</td>
<td align="center" rowspan="1" colspan="1">29.2–847.7 TgC  
<break></break>
(by 2050)</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000518 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000518 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4181513
   |texte=   A Review of CO2 Sequestration Projects and Application in China
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25302323" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024