Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metal Analysis in Citrus Sinensis Fruit Peel and Psidium Guajava Leaf

Identifieur interne : 000476 ( Pmc/Corpus ); précédent : 000475; suivant : 000477

Metal Analysis in Citrus Sinensis Fruit Peel and Psidium Guajava Leaf

Auteurs : Anju Dhiman ; Arun Nanda ; Sayeed Ahmad

Source :

RBID : PMC:3183626

Abstract

The determination of metal traces is very important because they are involved in biological cycles and indicate high toxicity. The objective of the present study is to measure the levels of heavy metals and mineral ions in medicinally important plant species, Citrus sinensis and Psidium guajava. This study investigates the accumulation of Copper (Cu), Zinc (Zn), Cadmium (Cd), Aluminum (Al), Mercury (Hg), Arsenic (As), Selenium (Se) and inorganic minerals like Calcium (Ca) and Magnesium (Mg) in C. sinensis (sweet orange) fruit peel and P. guajava (guava) leaf, to measure the levels of heavy metal contamination. Dried powdered samples of the plants were digested using wet digestion method and elemental determination was done by atomic absorption spectrophotometer. Results are expressed as mean ± standard deviation and analysed by student's ‘t’ test. Values are considered significant at P < 0.05. The results were compared with suitable safety standards and the levels of Cu, Zn, Cd, Mg and Ca in C. sinensis fruit peel and P. guajava leaves were within the acceptable limits for human consumption. The order of concentration of elements in both the samples showed the following trend: Mg > Ca > Al > Zn > Cu > Cd > Hg = As = Se. The content of Hg, As and Se in C. sinensis fruit peel and P. guajava leaves was significantly low and below detection limit. The content of toxic metals in tested plant samples was found to be low when compared with the limits prescribed by various authorities (World Health Organization, WHO; International Centre for Materials Research, ICMR; American Public Health Association, APHA). The content of Hg, As and Se in C. sinensis fruit peel and P. guajava leaves was not detectable and met the appropriate safety standards. In conclusion, the tested plant parts taken in the present study were found to be safe.


Url:
DOI: 10.4103/0971-6580.84271
PubMed: 21976824
PubMed Central: 3183626

Links to Exploration step

PMC:3183626

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metal Analysis in
<italic>Citrus Sinensis</italic>
Fruit Peel and
<italic>Psidium Guajava</italic>
Leaf</title>
<author>
<name sortKey="Dhiman, Anju" sort="Dhiman, Anju" uniqKey="Dhiman A" first="Anju" last="Dhiman">Anju Dhiman</name>
<affiliation>
<nlm:aff id="aff1">Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana-124 001, USA.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nanda, Arun" sort="Nanda, Arun" uniqKey="Nanda A" first="Arun" last="Nanda">Arun Nanda</name>
<affiliation>
<nlm:aff id="aff1">Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana-124 001, USA.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ahmad, Sayeed" sort="Ahmad, Sayeed" uniqKey="Ahmad S" first="Sayeed" last="Ahmad">Sayeed Ahmad</name>
<affiliation>
<nlm:aff id="aff2">Department of Pharmacognosy & Phytochemistry, Bioactive Natural Product Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi – 110062, USA.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Division of Kidney Diseases & Hypertension, Feinstien Institute of Medical Research, Great Neck, New York – 11021, USA.</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21976824</idno>
<idno type="pmc">3183626</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183626</idno>
<idno type="RBID">PMC:3183626</idno>
<idno type="doi">10.4103/0971-6580.84271</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">000476</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000476</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Metal Analysis in
<italic>Citrus Sinensis</italic>
Fruit Peel and
<italic>Psidium Guajava</italic>
Leaf</title>
<author>
<name sortKey="Dhiman, Anju" sort="Dhiman, Anju" uniqKey="Dhiman A" first="Anju" last="Dhiman">Anju Dhiman</name>
<affiliation>
<nlm:aff id="aff1">Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana-124 001, USA.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nanda, Arun" sort="Nanda, Arun" uniqKey="Nanda A" first="Arun" last="Nanda">Arun Nanda</name>
<affiliation>
<nlm:aff id="aff1">Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana-124 001, USA.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ahmad, Sayeed" sort="Ahmad, Sayeed" uniqKey="Ahmad S" first="Sayeed" last="Ahmad">Sayeed Ahmad</name>
<affiliation>
<nlm:aff id="aff2">Department of Pharmacognosy & Phytochemistry, Bioactive Natural Product Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi – 110062, USA.</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Division of Kidney Diseases & Hypertension, Feinstien Institute of Medical Research, Great Neck, New York – 11021, USA.</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Toxicology International</title>
<idno type="ISSN">0971-6580</idno>
<idno type="eISSN">0976-5131</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The determination of metal traces is very important because they are involved in biological cycles and indicate high toxicity. The objective of the present study is to measure the levels of heavy metals and mineral ions in medicinally important plant species,
<italic>Citrus sinensis</italic>
and
<italic>Psidium guajava</italic>
. This study investigates the accumulation of Copper (Cu), Zinc (Zn), Cadmium (Cd), Aluminum (Al), Mercury (Hg), Arsenic (As), Selenium (Se) and inorganic minerals like Calcium (Ca) and Magnesium (Mg) in
<italic>C. sinensis</italic>
(sweet orange) fruit peel and
<italic>P. guajava</italic>
(guava) leaf, to measure the levels of heavy metal contamination. Dried powdered samples of the plants were digested using wet digestion method and elemental determination was done by atomic absorption spectrophotometer. Results are expressed as mean ± standard deviation and analysed by student's ‘t’ test. Values are considered significant at
<italic>P</italic>
< 0.05. The results were compared with suitable safety standards and the levels of Cu, Zn, Cd, Mg and Ca in
<italic>C. sinensis</italic>
fruit peel and
<italic>P. guajava</italic>
leaves were within the acceptable limits for human consumption. The order of concentration of elements in both the samples showed the following trend: Mg > Ca > Al > Zn > Cu > Cd > Hg = As = Se. The content of Hg, As and Se in
<italic>C. sinensis</italic>
fruit peel and
<italic>P. guajava</italic>
leaves was significantly low and below detection limit. The content of toxic metals in tested plant samples was found to be low when compared with the limits prescribed by various authorities (World Health Organization, WHO; International Centre for Materials Research, ICMR; American Public Health Association, APHA). The content of Hg, As and Se in
<italic>C. sinensis</italic>
fruit peel and
<italic>P. guajava</italic>
leaves was not detectable and met the appropriate safety standards. In conclusion, the tested plant parts taken in the present study were found to be safe.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Bala, M" uniqKey="Bala M">M Bala</name>
</author>
<author>
<name sortKey="Shehu, R A" uniqKey="Shehu R">R A Shehu</name>
</author>
<author>
<name sortKey="Lawal, M" uniqKey="Lawal M">M Lawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ekpete, Oa" uniqKey="Ekpete O">OA Ekpete</name>
</author>
<author>
<name sortKey="Kpee, F" uniqKey="Kpee F">F Kpee</name>
</author>
<author>
<name sortKey="Amadi, Jc" uniqKey="Amadi J">JC Amadi</name>
</author>
<author>
<name sortKey="Rotimi, Rb" uniqKey="Rotimi R">RB Rotimi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sobukola, Op" uniqKey="Sobukola O">OP Sobukola</name>
</author>
<author>
<name sortKey="Adeniran, Om" uniqKey="Adeniran O">OM Adeniran</name>
</author>
<author>
<name sortKey="Odedairo, Aa" uniqKey="Odedairo A">AA Odedairo</name>
</author>
<author>
<name sortKey="Kajihausa, Oe" uniqKey="Kajihausa O">OE Kajihausa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dube, L" uniqKey="Dube L">L Dube</name>
</author>
<author>
<name sortKey="Granry, Jc" uniqKey="Granry J">JC Granry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, Gd" uniqKey="Miller G">GD Miller</name>
</author>
<author>
<name sortKey="Jarvis, Jk" uniqKey="Jarvis J">JK Jarvis</name>
</author>
<author>
<name sortKey="Mcbean, Ld" uniqKey="Mcbean L">LD McBean</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akroum, S" uniqKey="Akroum S">S Akroum</name>
</author>
<author>
<name sortKey="Satta, D" uniqKey="Satta D">D Satta</name>
</author>
<author>
<name sortKey="Lalaoui, K" uniqKey="Lalaoui K">K Lalaoui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahdavian, Se" uniqKey="Mahdavian S">SE Mahdavian</name>
</author>
<author>
<name sortKey="Somashekar, Rk" uniqKey="Somashekar R">RK Somashekar</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khandelwal, Kr" uniqKey="Khandelwal K">KR Khandelwal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oliva, Sr" uniqKey="Oliva S">SR Oliva</name>
</author>
<author>
<name sortKey="Valdes, B" uniqKey="Valdes B">B Valdes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jinwal, A" uniqKey="Jinwal A">A Jinwal</name>
</author>
<author>
<name sortKey="Dixit, S" uniqKey="Dixit S">S Dixit</name>
</author>
<author>
<name sortKey="Malik, S" uniqKey="Malik S">S Malik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mariam, I" uniqKey="Mariam I">I Mariam</name>
</author>
<author>
<name sortKey="Iqbal, S" uniqKey="Iqbal S">S Iqbal</name>
</author>
<author>
<name sortKey="Nagyara, Sa" uniqKey="Nagyara S">SA Nagyara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saracoglu, S" uniqKey="Saracoglu S">S Saracoglu</name>
</author>
<author>
<name sortKey="Saygi, Ko" uniqKey="Saygi K">KO Saygi</name>
</author>
<author>
<name sortKey="Uluozlu, Od" uniqKey="Uluozlu O">OD Uluozlu</name>
</author>
<author>
<name sortKey="Tuzen, F" uniqKey="Tuzen F">F Tuzen</name>
</author>
<author>
<name sortKey="Soylak, M" uniqKey="Soylak M">M Soylak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Obahiagbon, Fi" uniqKey="Obahiagbon F">FI Obahiagbon</name>
</author>
<author>
<name sortKey="Erhabor, Jo" uniqKey="Erhabor J">JO Erhabor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hashem, Ar" uniqKey="Hashem A">AR Hashem</name>
</author>
<author>
<name sortKey="Abed, Kf" uniqKey="Abed K">KF Abed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caselles, J" uniqKey="Caselles J">J Caselles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krejpcio, Z" uniqKey="Krejpcio Z">Z Krejpcio</name>
</author>
<author>
<name sortKey="Krol, E" uniqKey="Krol E">E Krol</name>
</author>
<author>
<name sortKey="Sionkowski, S" uniqKey="Sionkowski S">S Sionkowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lowndes, Sa" uniqKey="Lowndes S">SA Lowndes</name>
</author>
<author>
<name sortKey="Harris, Al" uniqKey="Harris A">AL Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yildiz, N" uniqKey="Yildiz N">N Yildiz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fargasova, A" uniqKey="Fargasova A">A Fargasova</name>
</author>
<author>
<name sortKey="Pastierova1, J" uniqKey="Pastierova1 J">J Pastierová1</name>
</author>
<author>
<name sortKey="Svetkova, K" uniqKey="Svetkova K">K Svetková</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Begum, A" uniqKey="Begum A">A Begum</name>
</author>
<author>
<name sortKey="Ramaiah, M" uniqKey="Ramaiah M">M Ramaiah</name>
</author>
<author>
<name sortKey="Harikrishan, A" uniqKey="Harikrishan A">A Harikrishan</name>
</author>
<author>
<name sortKey="Khan, I" uniqKey="Khan I">I Khan</name>
</author>
<author>
<name sortKey="Veena, K" uniqKey="Veena K">K Veena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ang, Lh" uniqKey="Ang L">LH Ang</name>
</author>
<author>
<name sortKey="Ng, Lt" uniqKey="Ng L">LT Ng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gloria, Pm" uniqKey="Gloria P">PM Gloria</name>
</author>
<author>
<name sortKey="Egid, Bm" uniqKey="Egid B">BM Egid</name>
</author>
<author>
<name sortKey="Chande, Co" uniqKey="Chande C">CO Chande</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Toxicol Int</journal-id>
<journal-id journal-id-type="publisher-id">TI</journal-id>
<journal-title-group>
<journal-title>Toxicology International</journal-title>
</journal-title-group>
<issn pub-type="ppub">0971-6580</issn>
<issn pub-type="epub">0976-5131</issn>
<publisher>
<publisher-name>Medknow Publications Pvt Ltd</publisher-name>
<publisher-loc>India</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21976824</article-id>
<article-id pub-id-type="pmc">3183626</article-id>
<article-id pub-id-type="publisher-id">TI-18-163</article-id>
<article-id pub-id-type="doi">10.4103/0971-6580.84271</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Metal Analysis in
<italic>Citrus Sinensis</italic>
Fruit Peel and
<italic>Psidium Guajava</italic>
Leaf</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Dhiman</surname>
<given-names>Anju</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nanda</surname>
<given-names>Arun</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ahmad</surname>
<given-names>Sayeed</given-names>
</name>
<xref ref-type="aff" rid="aff2">1</xref>
<xref ref-type="aff" rid="aff3">2</xref>
</contrib>
</contrib-group>
<aff id="aff1">Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana-124 001, USA.</aff>
<aff id="aff2">
<label>1</label>
Department of Pharmacognosy & Phytochemistry, Bioactive Natural Product Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi – 110062, USA.</aff>
<aff id="aff3">
<label>2</label>
Division of Kidney Diseases & Hypertension, Feinstien Institute of Medical Research, Great Neck, New York – 11021, USA.</aff>
<author-notes>
<corresp id="cor1">
<bold>Address for correspondence:</bold>
Dr. Anju Dhiman, Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana- 124001, India. E-mail:
<email xlink:href="ad_mdu@rediffmail.com">ad_mdu@rediffmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<season>Jul-Dec</season>
<year>2011</year>
</pub-date>
<volume>18</volume>
<issue>2</issue>
<fpage>163</fpage>
<lpage>167</lpage>
<permissions>
<copyright-statement>© Toxicology International</copyright-statement>
<copyright-year>2011</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-sa/3.0">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>The determination of metal traces is very important because they are involved in biological cycles and indicate high toxicity. The objective of the present study is to measure the levels of heavy metals and mineral ions in medicinally important plant species,
<italic>Citrus sinensis</italic>
and
<italic>Psidium guajava</italic>
. This study investigates the accumulation of Copper (Cu), Zinc (Zn), Cadmium (Cd), Aluminum (Al), Mercury (Hg), Arsenic (As), Selenium (Se) and inorganic minerals like Calcium (Ca) and Magnesium (Mg) in
<italic>C. sinensis</italic>
(sweet orange) fruit peel and
<italic>P. guajava</italic>
(guava) leaf, to measure the levels of heavy metal contamination. Dried powdered samples of the plants were digested using wet digestion method and elemental determination was done by atomic absorption spectrophotometer. Results are expressed as mean ± standard deviation and analysed by student's ‘t’ test. Values are considered significant at
<italic>P</italic>
< 0.05. The results were compared with suitable safety standards and the levels of Cu, Zn, Cd, Mg and Ca in
<italic>C. sinensis</italic>
fruit peel and
<italic>P. guajava</italic>
leaves were within the acceptable limits for human consumption. The order of concentration of elements in both the samples showed the following trend: Mg > Ca > Al > Zn > Cu > Cd > Hg = As = Se. The content of Hg, As and Se in
<italic>C. sinensis</italic>
fruit peel and
<italic>P. guajava</italic>
leaves was significantly low and below detection limit. The content of toxic metals in tested plant samples was found to be low when compared with the limits prescribed by various authorities (World Health Organization, WHO; International Centre for Materials Research, ICMR; American Public Health Association, APHA). The content of Hg, As and Se in
<italic>C. sinensis</italic>
fruit peel and
<italic>P. guajava</italic>
leaves was not detectable and met the appropriate safety standards. In conclusion, the tested plant parts taken in the present study were found to be safe.</p>
</abstract>
<kwd-group>
<kwd>Atomic absorption spectrophotometer</kwd>
<kwd>
<italic>Citrus sinensis</italic>
</kwd>
<kwd>heavy metals</kwd>
<kwd>
<italic>Psidium guajava</italic>
</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-1">
<title>INTRODUCTION</title>
<p>Heavy metals are elements having atomic weight between 63.545 and 200.5 g and a specific gravity greater than four.[
<xref ref-type="bibr" rid="ref1">1</xref>
] The elements play essential roles in biological processes, but at higher concentrations they may be toxic to the biota and they disturb the biochemical processes and cause hazards. These elements include metals (Cd, Chromium - Cr, Cobalt - Co, Cu, Zn, Palladium - Pd, Nickel - Ni, and Silver - Ag) and metalloids (Se, As, Antimony - Sb). Most of the trace elements are transition metals with variable oxidation states and coordination numbers. These metals form complexes with organics in the environment thereby increasing their mobility in the biota and manifest toxic effects.[
<xref ref-type="bibr" rid="ref2">2</xref>
]</p>
<p>Heavy metals have been reported to have positive and negative roles in human life. Some like Cd, lead (Pb) and Hg are major contaminants of food supply and may be considered the most important problem to our environment while others like iron (Fe), Zn and Cu are essential for biochemical reactions in the body.[
<xref ref-type="bibr" rid="ref3">3</xref>
] Intracellular free magnesium is involved in the energy reactions of phosphorylation and is necessary for the activation of hundreds of enzymatic reactions concerning adenosine-5’-triphosphate (ATP).[
<xref ref-type="bibr" rid="ref4">4</xref>
] Ca is an essential nutrient required for critical biological functions such as nerve conduction, muscle contraction, cell adhesiveness, mitosis, blood coagulation and structural support of the skeleton.[
<xref ref-type="bibr" rid="ref5">5</xref>
] Generally, most heavy metals are not biodegradable, have long biological half-lives and have the potential for accumulation in different body organs leading to unwanted side effects. The content of essential elements in plants is conditional, being affected by the characteristics of the soil and the ability of plants to selectively accumulate some metals.[
<xref ref-type="bibr" rid="ref3">3</xref>
] Several plants are used widespread for their many therapeutic and pharmaceutical virtues, especially antioxidant, anti-tumoral, and anti-infectious activities. A big part of the world's population still relies on the benefits of food for the treatment of common illnesses.[
<xref ref-type="bibr" rid="ref6">6</xref>
] Food chain contamination by heavy metals has become a burning issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and air.[
<xref ref-type="bibr" rid="ref7">7</xref>
] Therefore, based on persistent nature and cumulative behaviour as well as the probability of potential toxicity effects of heavy metals as a result of consumption of medicinal plant species, there is need to test and analyze the medicinal plants to ensure that levels of trace elements meet the agreed international requirements. The objective of this study is to measure the levels of heavy metals and mineral ions in
<italic>C. sinensis</italic>
and
<italic>P. guajava</italic>
, the favourite fruits consumed widely in the tropics, and therefore, to evaluate the potential of these plants’ for metal accumulation.</p>
</sec>
<sec sec-type="materials|methods" id="sec1-2">
<title>MATERIALS AND METHODS</title>
<sec id="sec2-1">
<title>Reagent and solutions</title>
<p>All solutions used in the study were prepared from analytical reagent grade chemicals. Nitric acid, hydrochloric acid and hydrogen peroxide were obtained from E-Merck (India) Ltd., Mumbai, India. High-performance liquid chromatography (HPLC) grade water was used in all experiments. The standard solutions of analytes for calibration procedure were produced by diluting a stock solution of 1000 parts per million (ppm) of all the investigated elements.</p>
</sec>
<sec id="sec2-2">
<title>Sample collection</title>
<p>Fresh fruit peel of
<italic>C. sinensis</italic>
and fresh leaves of
<italic>P. guajava</italic>
were collected from Bahadurgarh, Haryana, India. The plant parts were taxonomically identified and authenticated by Dr. J.P. Yadav, Department of Biosciences, M.D. University, Rohtak, India. The voucher specimen of tested plant parts were deposited in Herbarium of Pharmaceutical Sciences, M.D. University (for
<italic>C. sinensis</italic>
, voucher number is DPS 0014, for
<italic>P. guajava</italic>
, voucher number is DPS 0015). The two samples were analyzed for determination of ash value, crude fibre content and presence of Cu, Zn, Cd, Mg, Ca, Al, Hg, Ag and Se.</p>
</sec>
<sec id="sec2-3">
<title>Sample preparation</title>
<p>The collected
<italic>C. sinensis</italic>
fruit peels and
<italic>P. guajava</italic>
leaves were thoroughly washed and rinsed with distilled water. The samples were then dried in oven at 40°C. The dried samples were then ground into fine powder and stored in fresh plastic polythene bags ready for further use.</p>
</sec>
<sec id="sec2-4">
<title>Determination of ash value</title>
<p>The sample (5 grams) was kept in a muffle furnace and ashed at a temperature not exceeding 525°C for 6 hours. The ash was then cooled in a dessicator and weighed. The ash content was recorded as gram per 100 gram fresh weight (g/100 g-f w).[
<xref ref-type="bibr" rid="ref8">8</xref>
]</p>
</sec>
<sec id="sec2-5">
<title>Determination of crude fibre content</title>
<p>The dried powdered drug samples of
<italic>C. sinensis</italic>
fruit peel and
<italic>P. guajava</italic>
leaves (2 grams each) were boiled separately with 10% v/v nitric acid and strained. Residues obtained were washed and boiled with 2.5% v/v sodium hydroxide solution for 30 seconds, then washed with hot water and transferred to dried crucible to obtain percent crude fibre content.[
<xref ref-type="bibr" rid="ref9">9</xref>
]</p>
</sec>
<sec id="sec2-6">
<title>Determination of metal content</title>
<sec id="sec3-1">
<title>Sample digestion</title>
<p>The powdered samples of
<italic>C. sinensis</italic>
fruit peel and
<italic>P. guajava</italic>
leaves were digested by wet digestion method. Two grams of dried plant sample was taken in a 100 ml beaker and 10 ml of nitric acid was added. The sample was placed on a hot plate and heated at 95°C for 15 minutes. The digest was cooled and 5 ml of concentarted nitric acid was added and heated for additional 30 minutes at 95°C. The later step was repeated and the solution was reduced to about 5 ml without boiling. The sample was cooled again and 2 ml of water and 3 ml of 30% hydrogen peroxide was added. With the beaker covered, the sample was heated gently to start the peroxide reaction. If effervescence becomes excessively vigorous, sample was removed from the hot plate and 30% hydrogen peroxide was added in 1 ml increments, followed by gentle heating until the effervescence was subsides. 5 ml of concentrated hydrochloric acid and 10 ml of water was added and the sample was heated for additional 15 minutes without boiling. The sample was cooled through a whatman no. 42 ashless filter paper and diluted to 60 ml with deionised water.</p>
</sec>
</sec>
<sec id="sec2-7">
<title>Preparation of calibration curve using standard compounds</title>
<p>Standard solutions were prepared for each element depending upon the linear working range, corresponding five dilutions were made and their absorbances were measured. Standard dilutions, for each metal, was prepared from their respective stock solutions (1000 ppm) which is either available readymade or prepared from their respective salts. Calibration curves were plotted using standard operating procedure.</p>
</sec>
<sec id="sec2-8">
<title>Sample analysis</title>
<p>Metal content in the digested samples were analyzed for Cu, Zn, Cd, Mg, Ca, Al, Hg, As and Se in triplicate.</p>
<p>The instrumental conditions during the analysis of ten metals are listed in
<xref ref-type="table" rid="T1">Table 1</xref>
, mentioning details about parameters like wavelength (nm), slit setting (nm), light source, flame type and operating current, which are defined for respective metals.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Instrumental conditions for metal analysis by atomic absorption spectrophotometer mentioning details about parameters like wavelength (nm), slit setting (nm), light source, flame type and operating current</p>
</caption>
<graphic xlink:href="TI-18-163-g001"></graphic>
</table-wrap>
</sec>
</sec>
<sec sec-type="results" id="sec1-3">
<title>RESULTS</title>
<p>The values of different metals present in the plant samples (in
<italic>μ</italic>
g/g) along with their maximum permissible limits are listed in
<xref ref-type="table" rid="T2">Table 2</xref>
. The elements like Cu, Zn, Cd, Mg, Al, Hg, Ar, Se and inorganic minerals like Ca and Mg have been determined by atomic absorption spectrophotometer. The order of concentration of elements showed the following trend: Mg > Ca > Al > Zn > Cu > Cd > Hg = As = Se.</p>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Concentration of metal/mineral elements present in
<italic>
<bold>C. sinensis</bold>
</italic>
fruit peel and
<italic>
<bold>P. guajava</bold>
</italic>
leaf sample in μg/g dry weight
<sup>*</sup>
and their corresponding permissible limits</p>
</caption>
<graphic xlink:href="TI-18-163-g002"></graphic>
</table-wrap>
<p>In the present research, magnesium deposition in
<italic>C. sinensis</italic>
fruit peel was found to be higher than that found in
<italic>P. guajava</italic>
leaves. Calcium acts as a secondary messenger in various signal transduction cascades. There are no permissible limits of calcium.[
<xref ref-type="bibr" rid="ref12">12</xref>
] The content of Ca was found to be higher in
<italic>C. sinensis</italic>
fruit peel when compared to
<italic>P. guajava</italic>
leaves. Also,
<italic>C. sinensis</italic>
fruit peel showed higher accumulation capacity for aluminium as compared to
<italic>P. guajava</italic>
leaves. The concentration of Zn in tested samples was found to be low or not significantly high. The content of Zn, a biologically active metal, was lower in
<italic>C. sinensis</italic>
than
<italic>P. guajava</italic>
. The Cd concentration in both the tested samples was much lower than the prescribed value. The content of Cd was found to be less in
<italic>P. guajava</italic>
than
<italic>C. sinensis</italic>
. The levels of Se, Hg and As in
<italic>C. sinensis</italic>
fruit peel and
<italic>P. guajava</italic>
leaves were found to be negligible and not detectable.</p>
<p>The ash content of
<italic>C. sinensis</italic>
(sweet orange) fruit peel and
<italic>P. guajava</italic>
(guava) leaf studied was found to be 1.91 g and 1.87 g respectively. Sweet oranges peel and guava leaves had average crude fibre content of 43.33g/100 g-f w and 55g/100 g-f w respectively. Results are expressed as mean ± standard deviation and analysed by student's ‘t’ test. Values are considered significant at
<italic>P</italic>
< 0.05.</p>
</sec>
<sec sec-type="discussion" id="sec1-4">
<title>DISCUSSION</title>
<p>Trace elements play an important role in human biology, because they are either inadequately synthesized or not synthesized in the body. Some of these trace elements, for example, manganese (Mn), copper, zinc, are essential micronutrients and have a variety of biochemical functions in all living organisms.[
<xref ref-type="bibr" rid="ref13">13</xref>
] Plants and humans require adequate amounts of micronutrients like Fe and Zn, but accumulation of an excess or uptake of non-essential metals like Cd or Pb can be extremely harmful. Living organisms cannot synthesize mineral elements like other nutrients. Consequently, for the body to meet the needs of mineral elements, they are usually acquired through food intake. In the human body, the minerals function as structural components of body organs, tissues and constituents of body fluids and tissues as electrolytes, and catalysts in enzyme and hormone systems. The functional roles of elements are interrelated and balanced against each other, and most often cannot be considered as single elements with independent and self-sufficient roles in the organized bodily processes. A number of trace elements (e.g., Cu, Zn, Fe and Se), in addition to certain vitamins (e.g., vitamins A, D, F, D
<sub>12</sub>
and folacin) and other nutrients are strongly related to adequate immune response. These nutrients act together and/or separately, to form an active immune response.[
<xref ref-type="bibr" rid="ref14">14</xref>
]</p>
<p>Intracellular Mg deficiency is correlated with the impaired function of many enzymes utilizing high-energy phosphate bonds, as in the case of glucose metabolism.[
<xref ref-type="bibr" rid="ref4">4</xref>
] Ca is an essential nutrient required for critical biological functions such as nerve conduction, muscle contraction, cell adhesiveness, mitosis, blood coagulation and structural support of the skeleton. In recent years, an adequate intake of calcium has been demonstrated to reduce the risk for chronic diseases such as osteoporosis, hypertension and possibly colon cancer, as well as a number of other disorders.[
<xref ref-type="bibr" rid="ref5">5</xref>
] Aluminum (Al) occurs naturally and makes up about 8% of the surface of the earth. It is always found combined with other elements such as oxygen, silicon and fluorine. When aluminum enters into the environment, it binds to particles in the air. It can dissolve in lakes, streams and rivers depending on the quality of water. It can also be taken up into some plants from soil, however, it is not known to bioconcentrate upside in the food chain.[
<xref ref-type="bibr" rid="ref15">15</xref>
]</p>
<p>Among heavy metals, Zn is an important element for both plants and animals. It plays an important role in several metabolic processes; it activates enzymes and is involved in protein synthesis and in carbohydrate, nucleic acid and lipid metabolism. It form complexes with deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and affects the stability of these compounds. Zn concentration in plants is influenced by the age and vegetative state of the plant. Usually, the highest Zn content is found in young plants.[
<xref ref-type="bibr" rid="ref16">16</xref>
] Zinc is a cofactor of over two hundred enzymes involved in metabolic pathways but its high levels in human body can be toxic due to its interference with copper metabolism.[
<xref ref-type="bibr" rid="ref17">17</xref>
]</p>
<p>Cu is an essential trace element important for the function of many enzymes, notably cytochrome oxidase and superoxide dismutase. Copper ions can adopt oxidized Cu (II) or reduced Cu (I) states, allowing the metal to play a pivotal role in cell physiology as a catalytic cofactor in the redox chemistry of mitochondrial respiration, iron absorption, free radical scavenging, and elastin cross-linking.[
<xref ref-type="bibr" rid="ref18">18</xref>
] Copper plays a role in oxidative defense system, on the other hand, chronic copper toxicity can result in severe poisoning.[
<xref ref-type="bibr" rid="ref17">17</xref>
] Cd is highly toxic to animals and plants. In plants, exposure to Cd causes reduction in photosynthesis, water and nutrient uptake.[
<xref ref-type="bibr" rid="ref19">19</xref>
] Se has attracted attention because of its apparent ability, usually when administered as inorganic salts, to ameliorate the toxic effects of heavy metals such as Hg and Cd.[
<xref ref-type="bibr" rid="ref20">20</xref>
]</p>
<p>Also, the inorganic minerals like Na (sodium), k (potassium), Ca, Mg and heavy metals like Fe, Mn, Pb, Hg, Cr, Cd, Ni, Co, Be (beryllium), Cu etc., when present above the permissible limit are harmful.[
<xref ref-type="bibr" rid="ref21">21</xref>
] Of the numerous trace elements, that are present in contaminated soil, Cd, Pb, Hg, As, Se, Zn, Cu and Ni have been identified as elements of primary concern because of their potential hazard to man.[
<xref ref-type="bibr" rid="ref22">22</xref>
] The main purpose of ash determination is to assess the quality of the food materials. The ash contents, in these medicinal plant parts are not high; this implies low quantities of inorganic compounds in the fruits. Thus, to get higher quantities of such compounds in the body, repeated intake of the fruits is recommended. Fibre helps to maintain the health of the gastrointestinal tract, but in excess it may bind trace elements, leading to deficiencies of Fe and Zn in the body.[
<xref ref-type="bibr" rid="ref23">23</xref>
]</p>
<p>In the present study, it was found that the tested plant parts showed higher content for some elements (although not dangerous), while for others, the content was lower. The results were compared with suitable safety standards and the levels of Mg, Ca, Zn, Cu and Cd in
<italic>C. sinensis</italic>
fruit peel and
<italic>P. guajava</italic>
leaves were within the acceptable limits for human consumption. The content of toxic metals in tested plants was found to be significantly low. The content of Hg, As and Se in
<italic>C. sinensis</italic>
fruit peel and
<italic>P. guajava</italic>
leaves was below the detection limit and met the appropriate safety standards. In conclusion, the tested plant parts taken in the present study were found to be safe.</p>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="supported-by">
<p>
<bold>Source of Support:</bold>
Nil.</p>
</fn>
<fn fn-type="conflict">
<p>
<bold>Conflict of Interest:</bold>
None declared.</p>
</fn>
</fn-group>
<ref-list>
<title>REFERENCES</title>
<ref id="ref1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bala</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shehu</surname>
<given-names>R A</given-names>
</name>
<name>
<surname>Lawal</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Determination of the level of some heavy metals in water collected from two pollution – prone irrigation areas around kano metropolis</article-title>
<source>Bajopas</source>
<year>2008</year>
<volume>1</volume>
<fpage>36</fpage>
<lpage>8</lpage>
</element-citation>
</ref>
<ref id="ref2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ekpete</surname>
<given-names>OA</given-names>
</name>
<name>
<surname>Kpee</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Amadi</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Rotimi</surname>
<given-names>RB</given-names>
</name>
</person-group>
<article-title>Adsorption of chromium(VI) and zinc(II) ions on the skin of orange peels (
<italic>Citrus sinensis</italic>
)</article-title>
<source>J Nepal Chem Soc</source>
<year>2010</year>
<volume>26</volume>
<fpage>31</fpage>
<lpage>9</lpage>
</element-citation>
</ref>
<ref id="ref3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sobukola</surname>
<given-names>OP</given-names>
</name>
<name>
<surname>Adeniran</surname>
<given-names>OM</given-names>
</name>
<name>
<surname>Odedairo</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Kajihausa</surname>
<given-names>OE</given-names>
</name>
</person-group>
<article-title>Heavy metal levels of some fruits and leafy vegetables from selected markets in Lagos, Nigeria</article-title>
<source>Afr J Food Sci</source>
<year>2010</year>
<volume>4</volume>
<fpage>389</fpage>
<lpage>93</lpage>
</element-citation>
</ref>
<ref id="ref4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dube</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Granry</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>The therapeutic use of magnesium in anesthesiology, intensive care and emergency medicine: a review</article-title>
<source>Can J Anesth</source>
<year>2003</year>
<volume>50</volume>
<fpage>732</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">12944451</pub-id>
</element-citation>
</ref>
<ref id="ref5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Jarvis</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>McBean</surname>
<given-names>LD</given-names>
</name>
</person-group>
<article-title>The importance of meeting calcium needs with foods</article-title>
<source>J Am Coll Nutr</source>
<year>2001</year>
<volume>20</volume>
<issue>2 Suppl</issue>
<fpage>168S</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="pmid">11349940</pub-id>
</element-citation>
</ref>
<ref id="ref6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akroum</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Satta</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lalaoui</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Antimicroial, antioxidant, cytotoxic activities and phytochemical screening of some algerian plants</article-title>
<source>Euro J Sci Res</source>
<year>2009</year>
<volume>31</volume>
<fpage>289</fpage>
<lpage>95</lpage>
</element-citation>
</ref>
<ref id="ref7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mahdavian</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Somashekar</surname>
<given-names>RK</given-names>
</name>
</person-group>
<article-title>Heavy metals and safety of fresh fruits in Bangalore city, India-a case study</article-title>
<source>J Sci Engg Tech</source>
<year>2008</year>
<volume>1</volume>
<fpage>17</fpage>
<lpage>27</lpage>
</element-citation>
</ref>
<ref id="ref8">
<label>8</label>
<element-citation publication-type="book">
<article-title>WHO</article-title>
<source>Quality Control Methods for Medicinal Plant Materials</source>
<year>1998</year>
<volume>559</volume>
<publisher-loc>Geneva</publisher-loc>
<publisher-name>World Health Organization</publisher-name>
<fpage>1</fpage>
<lpage>127</lpage>
</element-citation>
</ref>
<ref id="ref9">
<label>9</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Khandelwal</surname>
<given-names>KR</given-names>
</name>
</person-group>
<article-title>Evaluation</article-title>
<source>Practical Pharmacognosy</source>
<year>2008</year>
<edition>18th ed</edition>
<publisher-loc>New Delhi</publisher-loc>
<publisher-name>Nirali Publishers</publisher-name>
<fpage>160</fpage>
</element-citation>
</ref>
<ref id="ref10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oliva</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Valdes</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>
<italic>Ligustrum lucidum</italic>
Ait. f. leaves a bioindicator of the air-quality in a Mediterrarrean city</article-title>
<source>Environ Monit Assess</source>
<year>2004</year>
<volume>96</volume>
<fpage>221</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="pmid">15327160</pub-id>
</element-citation>
</ref>
<ref id="ref11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jinwal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dixit</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Malik</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Some trace elements investigation in ground water of Bhopal and Sehore district in Madhya Pradesh: India</article-title>
<source>J Appl Sci Environ Manage</source>
<year>2009</year>
<volume>13</volume>
<fpage>47</fpage>
<lpage>50</lpage>
</element-citation>
</ref>
<ref id="ref12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mariam</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Iqbal</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nagyara</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Distribution of some trace and macrominerals in beef, mutton and poultry</article-title>
<source>Int J Agri Biol</source>
<year>2004</year>
<volume>6</volume>
<fpage>816</fpage>
<lpage>20</lpage>
</element-citation>
</ref>
<ref id="ref13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saracoglu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Saygi</surname>
<given-names>KO</given-names>
</name>
<name>
<surname>Uluozlu</surname>
<given-names>OD</given-names>
</name>
<name>
<surname>Tuzen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Soylak</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Determination of trace element contents of baby foods from Turkey</article-title>
<source>Food Chem</source>
<year>2006</year>
<volume>105</volume>
<fpage>280</fpage>
<lpage>5</lpage>
</element-citation>
</ref>
<ref id="ref14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Obahiagbon</surname>
<given-names>FI</given-names>
</name>
<name>
<surname>Erhabor</surname>
<given-names>JO</given-names>
</name>
</person-group>
<article-title>Nigerian dates: Elemental uptake and recommended dietary allowances</article-title>
<source>Afr J Food Sci</source>
<year>2010</year>
<volume>4</volume>
<fpage>469</fpage>
<lpage>71</lpage>
</element-citation>
</ref>
<ref id="ref15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hashem</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Abed</surname>
<given-names>KF</given-names>
</name>
</person-group>
<article-title>Aluminum, cadmium and microorganisms in female hair and nails from Riyadh, Saudi Arabia 2007 Iran</article-title>
<source>J Med Sci</source>
<year>2007</year>
<volume>7</volume>
<fpage>263</fpage>
<lpage>6</lpage>
</element-citation>
</ref>
<ref id="ref16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Caselles</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Levels of lead and other metals in
<italic>Citrus</italic>
alongside a motor road</article-title>
<source>Water, air, and soil pollut</source>
<year>1998</year>
<volume>105</volume>
<fpage>593</fpage>
<lpage>602</lpage>
</element-citation>
</ref>
<ref id="ref17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krejpcio</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Krol</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Sionkowski</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Evaluation of heavy metals contents in spices and herbs available on the polish market</article-title>
<source>Pol J Environ Stud</source>
<year>2007</year>
<volume>16</volume>
<fpage>97</fpage>
<lpage>100</lpage>
</element-citation>
</ref>
<ref id="ref18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lowndes</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>AL</given-names>
</name>
</person-group>
<article-title>The role of copper in tumour angiogenesis</article-title>
<source>J Mammary Gland Biol Neoplasia</source>
<year>2005</year>
<volume>10</volume>
<fpage>299</fpage>
<lpage>310</lpage>
<pub-id pub-id-type="pmid">16924372</pub-id>
</element-citation>
</ref>
<ref id="ref19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yildiz</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Response of tomato and corn plants to increasing Cd levels in nutrient culture Pak</article-title>
<source>J Bot</source>
<year>1005</year>
<volume>37</volume>
<fpage>593</fpage>
<lpage>9</lpage>
</element-citation>
</ref>
<ref id="ref20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fargasova</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pastierová1</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Svetková</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Effect of Se-metal pair combinations (Cd, Zn, Cu, Pb) on photosynthetic pigments production and metal accumulation in
<italic>Sinapis alba</italic>
L. seedlings</article-title>
<source>Plant Soil Environ</source>
<year>2006</year>
<volume>52</volume>
<fpage>8</fpage>
<lpage>15</lpage>
</element-citation>
</ref>
<ref id="ref21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Begum</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ramaiah</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Harikrishan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Veena</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Heavy metal pollution and chemical profile of cauvery river water</article-title>
<source>E J Chem</source>
<year>2009</year>
<volume>6</volume>
<fpage>47</fpage>
<lpage>52</lpage>
</element-citation>
</ref>
<ref id="ref22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ang</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>LT</given-names>
</name>
</person-group>
<article-title>Trace element cncentration in Mango (
<italic>Mangifera indica L</italic>
.), seedless Guava (
<italic>Psidium guajava L</italic>
.) and Papaya (
<italic>Carica papaya L</italic>
.) grown on agricultural and ex-mining lands of Bidor, Perak</article-title>
<source>J Trop Agric Sci</source>
<year>2000</year>
<volume>23</volume>
<fpage>15</fpage>
<lpage>22</lpage>
</element-citation>
</ref>
<ref id="ref23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gloria</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Egid</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Chande</surname>
<given-names>CO</given-names>
</name>
</person-group>
<article-title>Post harvest changes in physico-chemical properties and levels of some inorganic elements in off vine ripened orange (
<italic>Citrus sinensis</italic>
) fruits cv (Navel andValencia) of Tanzania</article-title>
<source>Afr J Biotech</source>
<year>2010</year>
<volume>9</volume>
<fpage>1809</fpage>
<lpage>15</lpage>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000476 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000476 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3183626
   |texte=   Metal Analysis in Citrus Sinensis Fruit Peel and Psidium Guajava Leaf
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:21976824" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024