Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000446 ( Pmc/Corpus ); précédent : 0004459; suivant : 0004470 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Whole Genome Sequencing to Investigate the Emergence of Clonal Complex 23
<italic>Neisseria meningitidis</italic>
Serogroup Y Disease in the United States</title>
<author>
<name sortKey="Krauland, Mary G" sort="Krauland, Mary G" uniqKey="Krauland M" first="Mary G." last="Krauland">Mary G. Krauland</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Infectious Diseases Epidemiology Research Unit, School of Medicine and Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvanian, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hotopp, Julie C Dunning" sort="Hotopp, Julie C Dunning" uniqKey="Hotopp J" first="Julie C. Dunning" last="Hotopp">Julie C. Dunning Hotopp</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>The Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Riley, David R" sort="Riley, David R" uniqKey="Riley D" first="David R." last="Riley">David R. Riley</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>The Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Daugherty, Sean C" sort="Daugherty, Sean C" uniqKey="Daugherty S" first="Sean C." last="Daugherty">Sean C. Daugherty</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>The Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Marsh, Jane W" sort="Marsh, Jane W" uniqKey="Marsh J" first="Jane W." last="Marsh">Jane W. Marsh</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Infectious Diseases Epidemiology Research Unit, School of Medicine and Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvanian, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Messonnier, Nancy E" sort="Messonnier, Nancy E" uniqKey="Messonnier N" first="Nancy E." last="Messonnier">Nancy E. Messonnier</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mayer, Leonard W" sort="Mayer, Leonard W" uniqKey="Mayer L" first="Leonard W." last="Mayer">Leonard W. Mayer</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tettelin, Herve" sort="Tettelin, Herve" uniqKey="Tettelin H" first="Hervé" last="Tettelin">Hervé Tettelin</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>The Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Harrison, Lee H" sort="Harrison, Lee H" uniqKey="Harrison L" first="Lee H." last="Harrison">Lee H. Harrison</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Infectious Diseases Epidemiology Research Unit, School of Medicine and Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvanian, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22558202</idno>
<idno type="pmc">3338715</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338715</idno>
<idno type="RBID">PMC:3338715</idno>
<idno type="doi">10.1371/journal.pone.0035699</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">000446</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000446</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Whole Genome Sequencing to Investigate the Emergence of Clonal Complex 23
<italic>Neisseria meningitidis</italic>
Serogroup Y Disease in the United States</title>
<author>
<name sortKey="Krauland, Mary G" sort="Krauland, Mary G" uniqKey="Krauland M" first="Mary G." last="Krauland">Mary G. Krauland</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Infectious Diseases Epidemiology Research Unit, School of Medicine and Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvanian, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hotopp, Julie C Dunning" sort="Hotopp, Julie C Dunning" uniqKey="Hotopp J" first="Julie C. Dunning" last="Hotopp">Julie C. Dunning Hotopp</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>The Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Riley, David R" sort="Riley, David R" uniqKey="Riley D" first="David R." last="Riley">David R. Riley</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>The Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Daugherty, Sean C" sort="Daugherty, Sean C" uniqKey="Daugherty S" first="Sean C." last="Daugherty">Sean C. Daugherty</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>The Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Marsh, Jane W" sort="Marsh, Jane W" uniqKey="Marsh J" first="Jane W." last="Marsh">Jane W. Marsh</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Infectious Diseases Epidemiology Research Unit, School of Medicine and Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvanian, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Messonnier, Nancy E" sort="Messonnier, Nancy E" uniqKey="Messonnier N" first="Nancy E." last="Messonnier">Nancy E. Messonnier</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mayer, Leonard W" sort="Mayer, Leonard W" uniqKey="Mayer L" first="Leonard W." last="Mayer">Leonard W. Mayer</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tettelin, Herve" sort="Tettelin, Herve" uniqKey="Tettelin H" first="Hervé" last="Tettelin">Hervé Tettelin</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>The Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Harrison, Lee H" sort="Harrison, Lee H" uniqKey="Harrison L" first="Lee H." last="Harrison">Lee H. Harrison</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Infectious Diseases Epidemiology Research Unit, School of Medicine and Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvanian, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In the United States, serogroup Y, ST-23 clonal complex
<italic>Neisseria meningitidis</italic>
was responsible for an increase in meningococcal disease incidence during the 1990s. This increase was accompanied by antigenic shift of three outer membrane proteins, with a decrease in the population that predominated in the early 1990s as a different population emerged later in that decade. To understand factors that may have been responsible for the emergence of serogroup Y disease, we used whole genome pyrosequencing to investigate genetic differences between isolates from early and late
<italic>N. meningitidis</italic>
populations, obtained from meningococcal disease cases in Maryland in the 1990s. The genomes of isolates from the early and late populations were highly similar, with 1231 of 1776 shared genes exhibiting 100% amino acid identity and an average π
<sub>N</sub>
 =  0.0033 and average π
<sub>S</sub>
 =  0.0216. However, differences were found in predicted proteins that affect pilin structure and antigen profile and in predicted proteins involved in iron acquisition and uptake. The observed changes are consistent with acquisition of new alleles through horizontal gene transfer. Changes in antigen profile due to the genetic differences found in this study likely allowed the late population to emerge due to escape from population immunity. These findings may predict which antigenic factors are important in the cyclic epidemiology of meningococcal disease.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Harrison, Lh" uniqKey="Harrison L">LH Harrison</name>
</author>
<author>
<name sortKey="Trotter, Cl" uniqKey="Trotter C">CL Trotter</name>
</author>
<author>
<name sortKey="Ramsay, Me" uniqKey="Ramsay M">ME Ramsay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harrison, Lh" uniqKey="Harrison L">LH Harrison</name>
</author>
<author>
<name sortKey="Jolley, Ka" uniqKey="Jolley K">KA Jolley</name>
</author>
<author>
<name sortKey="Shutt, Ka" uniqKey="Shutt K">KA Shutt</name>
</author>
<author>
<name sortKey="Marsh, Jw" uniqKey="Marsh J">JW Marsh</name>
</author>
<author>
<name sortKey="O Leary, M" uniqKey="O Leary M">M O'Leary</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jackson, La" uniqKey="Jackson L">LA Jackson</name>
</author>
<author>
<name sortKey="Wenger, Jd" uniqKey="Wenger J">JD Wenger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenstein, Ne" uniqKey="Rosenstein N">NE Rosenstein</name>
</author>
<author>
<name sortKey="Perkins, Ba" uniqKey="Perkins B">BA Perkins</name>
</author>
<author>
<name sortKey="Stephens, Ds" uniqKey="Stephens D">DS Stephens</name>
</author>
<author>
<name sortKey="Lefkowitz, L" uniqKey="Lefkowitz L">L Lefkowitz</name>
</author>
<author>
<name sortKey="Cartter, Ml" uniqKey="Cartter M">ML Cartter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcellistrem, Mc" uniqKey="Mcellistrem M">MC McEllistrem</name>
</author>
<author>
<name sortKey="Kolano, Ja" uniqKey="Kolano J">JA Kolano</name>
</author>
<author>
<name sortKey="Pass, Ma" uniqKey="Pass M">MA Pass</name>
</author>
<author>
<name sortKey="Caugant, Da" uniqKey="Caugant D">DA Caugant</name>
</author>
<author>
<name sortKey="Mendelsohn, Ab" uniqKey="Mendelsohn A">AB Mendelsohn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Achtman, M" uniqKey="Achtman M">M Achtman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leimkugel, J" uniqKey="Leimkugel J">J Leimkugel</name>
</author>
<author>
<name sortKey="Hodgson, A" uniqKey="Hodgson A">A Hodgson</name>
</author>
<author>
<name sortKey="Forgor, Aa" uniqKey="Forgor A">AA Forgor</name>
</author>
<author>
<name sortKey="Pfluger, V" uniqKey="Pfluger V">V Pfluger</name>
</author>
<author>
<name sortKey="Dangy, Jp" uniqKey="Dangy J">JP Dangy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, Ps" uniqKey="Moore P">PS Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chiou, Ac" uniqKey="Chiou A">AC Chiou</name>
</author>
<author>
<name sortKey="Andrade, Ss" uniqKey="Andrade S">SS Andrade</name>
</author>
<author>
<name sortKey="Almeida, Sc" uniqKey="Almeida S">SC Almeida</name>
</author>
<author>
<name sortKey="Zanella, Rc" uniqKey="Zanella R">RC Zanella</name>
</author>
<author>
<name sortKey="Andrade, Al" uniqKey="Andrade A">AL Andrade</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, S" uniqKey="Gupta S">S Gupta</name>
</author>
<author>
<name sortKey="Maiden, Mc" uniqKey="Maiden M">MC Maiden</name>
</author>
<author>
<name sortKey="Feavers, Im" uniqKey="Feavers I">IM Feavers</name>
</author>
<author>
<name sortKey="Nee, S" uniqKey="Nee S">S Nee</name>
</author>
<author>
<name sortKey="May, Rm" uniqKey="May R">RM May</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schuchat, A" uniqKey="Schuchat A">A Schuchat</name>
</author>
<author>
<name sortKey="Hilger, T" uniqKey="Hilger T">T Hilger</name>
</author>
<author>
<name sortKey="Zell, E" uniqKey="Zell E">E Zell</name>
</author>
<author>
<name sortKey="Farley, Mm" uniqKey="Farley M">MM Farley</name>
</author>
<author>
<name sortKey="Reingold, A" uniqKey="Reingold A">A Reingold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salzberg, S" uniqKey="Salzberg S">S Salzberg</name>
</author>
<author>
<name sortKey="Delcher, Al" uniqKey="Delcher A">AL Delcher</name>
</author>
<author>
<name sortKey="Fasman, Kh" uniqKey="Fasman K">KH Fasman</name>
</author>
<author>
<name sortKey="Henderson, J" uniqKey="Henderson J">J Henderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delcher, Al" uniqKey="Delcher A">AL Delcher</name>
</author>
<author>
<name sortKey="Harmon, D" uniqKey="Harmon D">D Harmon</name>
</author>
<author>
<name sortKey="Kasif, S" uniqKey="Kasif S">S Kasif</name>
</author>
<author>
<name sortKey="White, O" uniqKey="White O">O White</name>
</author>
<author>
<name sortKey="Salzberg, Sl" uniqKey="Salzberg S">SL Salzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lowe, Tm" uniqKey="Lowe T">TM Lowe</name>
</author>
<author>
<name sortKey="Eddy, Sr" uniqKey="Eddy S">SR Eddy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lagesen, K" uniqKey="Lagesen K">K Lagesen</name>
</author>
<author>
<name sortKey="Hallin, P" uniqKey="Hallin P">P Hallin</name>
</author>
<author>
<name sortKey="Rodland, Ea" uniqKey="Rodland E">EA Rodland</name>
</author>
<author>
<name sortKey="Staerfeldt, Hh" uniqKey="Staerfeldt H">HH Staerfeldt</name>
</author>
<author>
<name sortKey="Rognes, T" uniqKey="Rognes T">T Rognes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eddy, Sr" uniqKey="Eddy S">SR Eddy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krogh, A" uniqKey="Krogh A">A Krogh</name>
</author>
<author>
<name sortKey="Mian, Is" uniqKey="Mian I">IS Mian</name>
</author>
<author>
<name sortKey="Haussler, D" uniqKey="Haussler D">D Haussler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Altschul, Sf" uniqKey="Altschul S">SF Altschul</name>
</author>
<author>
<name sortKey="Gish, W" uniqKey="Gish W">W Gish</name>
</author>
<author>
<name sortKey="Miller, W" uniqKey="Miller W">W Miller</name>
</author>
<author>
<name sortKey="Myers, Ew" uniqKey="Myers E">EW Myers</name>
</author>
<author>
<name sortKey="Lipman, Dj" uniqKey="Lipman D">DJ Lipman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bendtsen, Jd" uniqKey="Bendtsen J">JD Bendtsen</name>
</author>
<author>
<name sortKey="Nielsen, H" uniqKey="Nielsen H">H Nielsen</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G von Heijne</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S Brunak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falquet, L" uniqKey="Falquet L">L Falquet</name>
</author>
<author>
<name sortKey="Pagni, M" uniqKey="Pagni M">M Pagni</name>
</author>
<author>
<name sortKey="Bucher, P" uniqKey="Bucher P">P Bucher</name>
</author>
<author>
<name sortKey="Hulo, N" uniqKey="Hulo N">N Hulo</name>
</author>
<author>
<name sortKey="Sigrist, Cj" uniqKey="Sigrist C">CJ Sigrist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Juncker, As" uniqKey="Juncker A">AS Juncker</name>
</author>
<author>
<name sortKey="Willenbrock, H" uniqKey="Willenbrock H">H Willenbrock</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G Von Heijne</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S Brunak</name>
</author>
<author>
<name sortKey="Nielsen, H" uniqKey="Nielsen H">H Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krogh, A" uniqKey="Krogh A">A Krogh</name>
</author>
<author>
<name sortKey="Larsson, B" uniqKey="Larsson B">B Larsson</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G von Heijne</name>
</author>
<author>
<name sortKey="Sonnhammer, El" uniqKey="Sonnhammer E">EL Sonnhammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delcher, Al" uniqKey="Delcher A">AL Delcher</name>
</author>
<author>
<name sortKey="Salzberg, Sl" uniqKey="Salzberg S">SL Salzberg</name>
</author>
<author>
<name sortKey="Phillippy, Am" uniqKey="Phillippy A">AM Phillippy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tettelin, H" uniqKey="Tettelin H">H Tettelin</name>
</author>
<author>
<name sortKey="Saunders, Nj" uniqKey="Saunders N">NJ Saunders</name>
</author>
<author>
<name sortKey="Heidelberg, J" uniqKey="Heidelberg J">J Heidelberg</name>
</author>
<author>
<name sortKey="Jeffries, Ac" uniqKey="Jeffries A">AC Jeffries</name>
</author>
<author>
<name sortKey="Nelson, Ke" uniqKey="Nelson K">KE Nelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Angiuoli, Sv" uniqKey="Angiuoli S">SV Angiuoli</name>
</author>
<author>
<name sortKey="Dunning Hotopp, Jc" uniqKey="Dunning Hotopp J">JC Dunning Hotopp</name>
</author>
<author>
<name sortKey="Salzberg, Sl" uniqKey="Salzberg S">SL Salzberg</name>
</author>
<author>
<name sortKey="Tettelin, H" uniqKey="Tettelin H">H Tettelin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schoen, C" uniqKey="Schoen C">C Schoen</name>
</author>
<author>
<name sortKey="Blom, J" uniqKey="Blom J">J Blom</name>
</author>
<author>
<name sortKey="Claus, H" uniqKey="Claus H">H Claus</name>
</author>
<author>
<name sortKey="Schramm Gluck, A" uniqKey="Schramm Gluck A">A Schramm-Gluck</name>
</author>
<author>
<name sortKey="Brandt, P" uniqKey="Brandt P">P Brandt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parkhill, J" uniqKey="Parkhill J">J Parkhill</name>
</author>
<author>
<name sortKey="Achtman, M" uniqKey="Achtman M">M Achtman</name>
</author>
<author>
<name sortKey="James, Kd" uniqKey="James K">KD James</name>
</author>
<author>
<name sortKey="Bentley, Sd" uniqKey="Bentley S">SD Bentley</name>
</author>
<author>
<name sortKey="Churcher, C" uniqKey="Churcher C">C Churcher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, J" uniqKey="Peng J">J Peng</name>
</author>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L Yang</name>
</author>
<author>
<name sortKey="Yang, F" uniqKey="Yang F">F Yang</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
<author>
<name sortKey="Yan, Y" uniqKey="Yan Y">Y Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Budroni, S" uniqKey="Budroni S">S Budroni</name>
</author>
<author>
<name sortKey="Siena, E" uniqKey="Siena E">E Siena</name>
</author>
<author>
<name sortKey="Hotopp, Jc" uniqKey="Hotopp J">JC Hotopp</name>
</author>
<author>
<name sortKey="Seib, Kl" uniqKey="Seib K">KL Seib</name>
</author>
<author>
<name sortKey="Serruto, D" uniqKey="Serruto D">D Serruto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crabtree, J" uniqKey="Crabtree J">J Crabtree</name>
</author>
<author>
<name sortKey="Angiuoli, Sv" uniqKey="Angiuoli S">SV Angiuoli</name>
</author>
<author>
<name sortKey="Wortman, Jr" uniqKey="Wortman J">JR Wortman</name>
</author>
<author>
<name sortKey="White, Or" uniqKey="White O">OR White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riley, Dr" uniqKey="Riley D">DR Riley</name>
</author>
<author>
<name sortKey="Angiuoli, Sv" uniqKey="Angiuoli S">SV Angiuoli</name>
</author>
<author>
<name sortKey="Crabtree, J" uniqKey="Crabtree J">J Crabtree</name>
</author>
<author>
<name sortKey="Dunning Hotopp, Jc" uniqKey="Dunning Hotopp J">JC Dunning Hotopp</name>
</author>
<author>
<name sortKey="Tettelin, H" uniqKey="Tettelin H">H Tettelin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunning Hotopp, Jc" uniqKey="Dunning Hotopp J">JC Dunning Hotopp</name>
</author>
<author>
<name sortKey="Lin, M" uniqKey="Lin M">M Lin</name>
</author>
<author>
<name sortKey="Madupu, R" uniqKey="Madupu R">R Madupu</name>
</author>
<author>
<name sortKey="Crabtree, J" uniqKey="Crabtree J">J Crabtree</name>
</author>
<author>
<name sortKey="Angiuoli, Sv" uniqKey="Angiuoli S">SV Angiuoli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tettelin, H" uniqKey="Tettelin H">H Tettelin</name>
</author>
<author>
<name sortKey="Masignani, V" uniqKey="Masignani V">V Masignani</name>
</author>
<author>
<name sortKey="Cieslewicz, Mj" uniqKey="Cieslewicz M">MJ Cieslewicz</name>
</author>
<author>
<name sortKey="Donati, C" uniqKey="Donati C">C Donati</name>
</author>
<author>
<name sortKey="Medini, D" uniqKey="Medini D">D Medini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chenna, R" uniqKey="Chenna R">R Chenna</name>
</author>
<author>
<name sortKey="Sugawara, H" uniqKey="Sugawara H">H Sugawara</name>
</author>
<author>
<name sortKey="Koike, T" uniqKey="Koike T">T Koike</name>
</author>
<author>
<name sortKey="Lopez, R" uniqKey="Lopez R">R Lopez</name>
</author>
<author>
<name sortKey="Gibson, Tj" uniqKey="Gibson T">TJ Gibson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huson, Dh" uniqKey="Huson D">DH Huson</name>
</author>
<author>
<name sortKey="Bryant, D" uniqKey="Bryant D">D Bryant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Egan, A" uniqKey="Egan A">A Egan</name>
</author>
<author>
<name sortKey="Mahurkar, A" uniqKey="Mahurkar A">A Mahurkar</name>
</author>
<author>
<name sortKey="Crabtree, J" uniqKey="Crabtree J">J Crabtree</name>
</author>
<author>
<name sortKey="Badger, Jh" uniqKey="Badger J">JH Badger</name>
</author>
<author>
<name sortKey="Carlton, Jm" uniqKey="Carlton J">JM Carlton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rice, P" uniqKey="Rice P">P Rice</name>
</author>
<author>
<name sortKey="Longden, I" uniqKey="Longden I">I Longden</name>
</author>
<author>
<name sortKey="Bleasby, A" uniqKey="Bleasby A">A Bleasby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edgar, Rc" uniqKey="Edgar R">RC Edgar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunning Hotopp, Jc" uniqKey="Dunning Hotopp J">JC Dunning Hotopp</name>
</author>
<author>
<name sortKey="Grifantini, R" uniqKey="Grifantini R">R Grifantini</name>
</author>
<author>
<name sortKey="Kumar, N" uniqKey="Kumar N">N Kumar</name>
</author>
<author>
<name sortKey="Tzeng, Yl" uniqKey="Tzeng Y">YL Tzeng</name>
</author>
<author>
<name sortKey="Fouts, D" uniqKey="Fouts D">D Fouts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pizza, M" uniqKey="Pizza M">M Pizza</name>
</author>
<author>
<name sortKey="Scarlato, V" uniqKey="Scarlato V">V Scarlato</name>
</author>
<author>
<name sortKey="Masignani, V" uniqKey="Masignani V">V Masignani</name>
</author>
<author>
<name sortKey="Giuliani, Mm" uniqKey="Giuliani M">MM Giuliani</name>
</author>
<author>
<name sortKey="Arico, B" uniqKey="Arico B">B Arico</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Hq" uniqKey="Jiang H">HQ Jiang</name>
</author>
<author>
<name sortKey="Hoiseth, Sk" uniqKey="Hoiseth S">SK Hoiseth</name>
</author>
<author>
<name sortKey="Harris, Sl" uniqKey="Harris S">SL Harris</name>
</author>
<author>
<name sortKey="Mcneil, Lk" uniqKey="Mcneil L">LK McNeil</name>
</author>
<author>
<name sortKey="Zhu, D" uniqKey="Zhu D">D Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Comanducci, M" uniqKey="Comanducci M">M Comanducci</name>
</author>
<author>
<name sortKey="Bambini, S" uniqKey="Bambini S">S Bambini</name>
</author>
<author>
<name sortKey="Brunelli, B" uniqKey="Brunelli B">B Brunelli</name>
</author>
<author>
<name sortKey="Adu Bobie, J" uniqKey="Adu Bobie J">J Adu-Bobie</name>
</author>
<author>
<name sortKey="Arico, B" uniqKey="Arico B">B Arico</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, Ca" uniqKey="Hsu C">CA Hsu</name>
</author>
<author>
<name sortKey="Lin, Wr" uniqKey="Lin W">WR Lin</name>
</author>
<author>
<name sortKey="Li, Jc" uniqKey="Li J">JC Li</name>
</author>
<author>
<name sortKey="Liu, Yl" uniqKey="Liu Y">YL Liu</name>
</author>
<author>
<name sortKey="Tseng, Yt" uniqKey="Tseng Y">YT Tseng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cehovin, A" uniqKey="Cehovin A">A Cehovin</name>
</author>
<author>
<name sortKey="Winterbotham, M" uniqKey="Winterbotham M">M Winterbotham</name>
</author>
<author>
<name sortKey="Lucidarme, J" uniqKey="Lucidarme J">J Lucidarme</name>
</author>
<author>
<name sortKey="Borrow, R" uniqKey="Borrow R">R Borrow</name>
</author>
<author>
<name sortKey="Tang, Cm" uniqKey="Tang C">CM Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carbonnelle, E" uniqKey="Carbonnelle E">E Carbonnelle</name>
</author>
<author>
<name sortKey="Helaine, S" uniqKey="Helaine S">S Helaine</name>
</author>
<author>
<name sortKey="Nassif, X" uniqKey="Nassif X">X Nassif</name>
</author>
<author>
<name sortKey="Pelicic, V" uniqKey="Pelicic V">V Pelicic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kahler, Cm" uniqKey="Kahler C">CM Kahler</name>
</author>
<author>
<name sortKey="Blum, E" uniqKey="Blum E">E Blum</name>
</author>
<author>
<name sortKey="Miller, Yk" uniqKey="Miller Y">YK Miller</name>
</author>
<author>
<name sortKey="Ryan, D" uniqKey="Ryan D">D Ryan</name>
</author>
<author>
<name sortKey="Popovic, T" uniqKey="Popovic T">T Popovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennett, Js" uniqKey="Bennett J">JS Bennett</name>
</author>
<author>
<name sortKey="Bentley, Sd" uniqKey="Bentley S">SD Bentley</name>
</author>
<author>
<name sortKey="Vernikos, Gs" uniqKey="Vernikos G">GS Vernikos</name>
</author>
<author>
<name sortKey="Quail, Ma" uniqKey="Quail M">MA Quail</name>
</author>
<author>
<name sortKey="Cherevach, I" uniqKey="Cherevach I">I Cherevach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joseph, B" uniqKey="Joseph B">B Joseph</name>
</author>
<author>
<name sortKey="Schwarz, Rf" uniqKey="Schwarz R">RF Schwarz</name>
</author>
<author>
<name sortKey="Linke, B" uniqKey="Linke B">B Linke</name>
</author>
<author>
<name sortKey="Blom, J" uniqKey="Blom J">J Blom</name>
</author>
<author>
<name sortKey="Becker, A" uniqKey="Becker A">A Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Didelot, X" uniqKey="Didelot X">X Didelot</name>
</author>
<author>
<name sortKey="Urwin, R" uniqKey="Urwin R">R Urwin</name>
</author>
<author>
<name sortKey="Maiden, Mc" uniqKey="Maiden M">MC Maiden</name>
</author>
<author>
<name sortKey="Falush, D" uniqKey="Falush D">D Falush</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castillo Ramirez, S" uniqKey="Castillo Ramirez S">S Castillo-Ramirez</name>
</author>
<author>
<name sortKey="Harris, Sr" uniqKey="Harris S">SR Harris</name>
</author>
<author>
<name sortKey="Holden, Mt" uniqKey="Holden M">MT Holden</name>
</author>
<author>
<name sortKey="He, M" uniqKey="He M">M He</name>
</author>
<author>
<name sortKey="Parkhill, J" uniqKey="Parkhill J">J Parkhill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nassif, X" uniqKey="Nassif X">X Nassif</name>
</author>
<author>
<name sortKey="Lowy, J" uniqKey="Lowy J">J Lowy</name>
</author>
<author>
<name sortKey="Stenberg, P" uniqKey="Stenberg P">P Stenberg</name>
</author>
<author>
<name sortKey="O Gaora, P" uniqKey="O Gaora P">P O'Gaora</name>
</author>
<author>
<name sortKey="Ganji, A" uniqKey="Ganji A">A Ganji</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rudel, T" uniqKey="Rudel T">T Rudel</name>
</author>
<author>
<name sortKey="Scheurerpflug, I" uniqKey="Scheurerpflug I">I Scheurerpflug</name>
</author>
<author>
<name sortKey="Meyer, Tf" uniqKey="Meyer T">TF Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Power, Pm" uniqKey="Power P">PM Power</name>
</author>
<author>
<name sortKey="Roddam, Lf" uniqKey="Roddam L">LF Roddam</name>
</author>
<author>
<name sortKey="Dieckelmann, M" uniqKey="Dieckelmann M">M Dieckelmann</name>
</author>
<author>
<name sortKey="Srikhanta, Yn" uniqKey="Srikhanta Y">YN Srikhanta</name>
</author>
<author>
<name sortKey="Tan, Yc" uniqKey="Tan Y">YC Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Power, Pm" uniqKey="Power P">PM Power</name>
</author>
<author>
<name sortKey="Roddam, Lf" uniqKey="Roddam L">LF Roddam</name>
</author>
<author>
<name sortKey="Rutter, K" uniqKey="Rutter K">K Rutter</name>
</author>
<author>
<name sortKey="Fitzpatrick, Sz" uniqKey="Fitzpatrick S">SZ Fitzpatrick</name>
</author>
<author>
<name sortKey="Srikhanta, Yn" uniqKey="Srikhanta Y">YN Srikhanta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, P" uniqKey="Zhu P">P Zhu</name>
</author>
<author>
<name sortKey="Van Der Ende, A" uniqKey="Van Der Ende A">A van der Ende</name>
</author>
<author>
<name sortKey="Falush, D" uniqKey="Falush D">D Falush</name>
</author>
<author>
<name sortKey="Brieske, N" uniqKey="Brieske N">N Brieske</name>
</author>
<author>
<name sortKey="Morelli, G" uniqKey="Morelli G">G Morelli</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22558202</article-id>
<article-id pub-id-type="pmc">3338715</article-id>
<article-id pub-id-type="publisher-id">PONE-D-11-20797</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0035699</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Genomics</subject>
<subj-group>
<subject>Comparative Genomics</subject>
<subject>Genome Evolution</subject>
<subject>Genome Sequencing</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Microbiology</subject>
<subj-group>
<subject>Bacterial Pathogens</subject>
<subj-group>
<subject>Gram Negative</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Microbial Evolution</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Medicine</subject>
<subj-group>
<subject>Epidemiology</subject>
<subj-group>
<subject>Infectious Disease Epidemiology</subject>
<subject>Molecular Epidemiology</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Infectious Diseases</subject>
<subj-group>
<subject>Bacterial Diseases</subject>
<subj-group>
<subject>Meningococcal Disease</subject>
<subject>Meningococcal Infections</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Whole Genome Sequencing to Investigate the Emergence of Clonal Complex 23
<italic>Neisseria meningitidis</italic>
Serogroup Y Disease in the United States</article-title>
<alt-title alt-title-type="running-head">
<italic>Neisseria Meningitidis</italic>
Serogroup Y Emergence</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Krauland</surname>
<given-names>Mary G.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hotopp</surname>
<given-names>Julie C. Dunning</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Riley</surname>
<given-names>David R.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Daugherty</surname>
<given-names>Sean C.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Marsh</surname>
<given-names>Jane W.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Messonnier</surname>
<given-names>Nancy E.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mayer</surname>
<given-names>Leonard W.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tettelin</surname>
<given-names>Hervé</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Harrison</surname>
<given-names>Lee H.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Infectious Diseases Epidemiology Research Unit, School of Medicine and Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvanian, United States of America</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>The Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, United States of America</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Borrow</surname>
<given-names>Ray</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">Health Protection Agency, United Kingdom</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>mgk8@pitt.edu</email>
</corresp>
<fn fn-type="con">
<p>Conceived and designed the experiments: MGK JCDH JWM HT LHH. Performed the experiments: MGK JCDH. Analyzed the data: MGK JCDH. Contributed reagents/materials/analysis tools: MK JCDH DRR SCD NEM LWM. Wrote the paper: MGK JCDH JWM LHH. Reviewed the manuscript: MGK JCDH DRR SCD JWM NEM LWM HT LHH.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>27</day>
<month>4</month>
<year>2012</year>
</pub-date>
<volume>7</volume>
<issue>4</issue>
<elocation-id>e35699</elocation-id>
<history>
<date date-type="received">
<day>14</day>
<month>10</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>20</day>
<month>3</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.</copyright-statement>
<copyright-year>2012</copyright-year>
</permissions>
<abstract>
<p>In the United States, serogroup Y, ST-23 clonal complex
<italic>Neisseria meningitidis</italic>
was responsible for an increase in meningococcal disease incidence during the 1990s. This increase was accompanied by antigenic shift of three outer membrane proteins, with a decrease in the population that predominated in the early 1990s as a different population emerged later in that decade. To understand factors that may have been responsible for the emergence of serogroup Y disease, we used whole genome pyrosequencing to investigate genetic differences between isolates from early and late
<italic>N. meningitidis</italic>
populations, obtained from meningococcal disease cases in Maryland in the 1990s. The genomes of isolates from the early and late populations were highly similar, with 1231 of 1776 shared genes exhibiting 100% amino acid identity and an average π
<sub>N</sub>
 =  0.0033 and average π
<sub>S</sub>
 =  0.0216. However, differences were found in predicted proteins that affect pilin structure and antigen profile and in predicted proteins involved in iron acquisition and uptake. The observed changes are consistent with acquisition of new alleles through horizontal gene transfer. Changes in antigen profile due to the genetic differences found in this study likely allowed the late population to emerge due to escape from population immunity. These findings may predict which antigenic factors are important in the cyclic epidemiology of meningococcal disease.</p>
</abstract>
<counts>
<page-count count="12"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>
<italic>Neisseria meningitidis</italic>
is a leading cause of bacterial meningitis world-wide
<xref ref-type="bibr" rid="pone.0035699-Harrison1">[1]</xref>
. The most common disease-causing serogroups are A, B, C, X, W-135, and Y. In the United States, serogroup Y
<italic>N. meningitidis</italic>
was responsible for an increasing proportion of all meningococcal disease during the 1990s and also for an increased incidence of disease. For example, during 1989–1991, ∼ 2% of invasive meningococcal strains in the U.S. were serogroup Y, whereas by the mid 1990s, over a third of cases were caused by this serogroup. The predominant genetic lineage of serogroup Y isolates from this time period was the ST-23 clonal complex
<xref ref-type="bibr" rid="pone.0035699-Harrison2">[2]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Jackson1">[3]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Rosenstein1">[4]</xref>
.</p>
<p>In a previous study, we demonstrated that the emergence and maintenance of ST-23 complex serogroup Y meningococcal disease in Maryland was associated with antigenic shift in three key meningococcal outer membrane proteins (OMPs), PorA, FetA, and PorB. A change in the pulsed field gel electrophoresis (PFGE) profile was also described, indicating that the strain that predominated in the early 1990s (early strain type) was replaced by another serogroup Y ST-23 complex strain that emerged later in the same decade (late strain type) through clonal replacement
<xref ref-type="bibr" rid="pone.0035699-Harrison2">[2]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-McEllistrem1">[5]</xref>
.</p>
<p>In clonal replacement, one circulating strain is supplanted by another. This phenomenon has been observed in disease-causing strains of
<italic>N. meningitidis</italic>
<xref ref-type="bibr" rid="pone.0035699-Achtman1">[6]</xref>
, in
<italic>N. meningitidis</italic>
carriage isolates
<xref ref-type="bibr" rid="pone.0035699-Leimkugel1">[7]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Moore1">[8]</xref>
, and other bacteria
<xref ref-type="bibr" rid="pone.0035699-Chiou1">[9]</xref>
. Clonal replacement may be the result of introduction of new genetic lineages that are more fit, more virulent, more transmissible or allow escape from population immunity due to differences in antigenic proteins. Alternatively, mutation or recombination within a population may result in the development of a sub-population that has distinct genetic features with enhanced fitness or with antigens that have changed enough to allow escape from population immunity. A modeling approach has demonstrated that infectious pathogens may develop stable co-existing populations which have non-overlapping repertoires of dominant antigens even when recombination is a common feature, as a result of selection due to immunity in the host population
<xref ref-type="bibr" rid="pone.0035699-Gupta1">[10]</xref>
. This concept would explain the existence of two populations of antigenically different but otherwise genetically similar strains causing disease in the same host population at the same time.</p>
<p>We used whole genome sequencing to more extensively investigate the genetic differences in early and late strain type serogroup Y ST-23 complex
<italic>N. meningitidis</italic>
isolates obtained from meningococcal disease cases in Maryland during the 1990s. We hypothesized that an accumulation of antigenic differences within an otherwise stable genome was responsible for the emergence of the late ST-23 complex strain type. The increase in serogroup Y meningococcal disease during this period presented the opportunity to investigate differences in disease-causing isolates in a relatively stable human population, thereby minimizing the confounding effects caused by population differences. The goal of this study was to identify differences that may explain clonal emergence and the cyclical nature of meningococcal disease. In addition, this study identified conserved antigens that could be investigated as potential vaccine candidates. To be responsible for the emergence of the late strain type, the differences found between the sequenced genomes of the early and late strain type must be found in the population of isolates from the time period of emergence, not just in the sequenced genomes. Therefore, we investigated target genes in isolates selected from early and late strain type populations. While some genes showed consistent allelic differences between early and late strain type population isolates, some did not. These results contribute to our understanding of which genes may be important in clonal emergence in
<italic>N. meningitidis</italic>
.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and Methods</title>
<sec id="s2a">
<title>Selection and Characterization of Study Isolates</title>
<p>The study isolates were obtained from the Maryland Active Bacterial Core surveillance (ABCs) site, which conducts active, population- and laboratory-based surveillance for meningococcal infection throughout Maryland and is a component of the multistate Emerging Infections Program Network
<xref ref-type="bibr" rid="pone.0035699-Schuchat1">[11]</xref>
. Early and late strain type ST-23 complex serogroup Y isolates were characterized by PFGE, MLST, and OMP genotyping as previously described
<xref ref-type="bibr" rid="pone.0035699-Harrison2">[2]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-McEllistrem1">[5]</xref>
. The early and late populations both contained one predominant PFGE type, so a representative isolate from each PFGE type was selected for whole genome sequencing. The date of isolation for the early strain type isolate (NM220) was June 1999 and for the late strain type isolate (NM233) was October 1999; dates of isolation were proximate by design. Both early and late profile isolates caused disease throughout the 1990s. Isolates for sequencing were chosen from the period with a peak in incidence. The proportion of disease caused by late profile isolates relative to early profile isolates was steady at this time but the incidence of disease caused by early strain type isolates was decreasing. NM220 (ST-23) and NM233 (ST-1621) are both from clonal complex 23 (ST-1621 is a single locus variant of ST-23).</p>
<p>To determine if gene differences between NM220 and NM233 were representative of the wider populations of disease-causing isolates, we selected 8 early strain type isolates and 8 late strain type isolates. Strains were chosen to be temporally similar between the early and late populations.</p>
</sec>
<sec id="s2b">
<title>Genome Sequencing</title>
<p>DNA was prepared by phenol-chloroform extraction from overnight cultures of isolated colonies grown on chocolate agar. Pyrosequencing using a GS-20 sequencer followed by assembly using the Newbler program (Roche) were accomplished by 454 Life Sciences and resulted in draft genomes. The average depth of coverage for all contigs was 22 for the early strain type and 27 for the late strain type (see
<xref ref-type="table" rid="pone-0035699-t001">Table 1</xref>
). Other general features of the genomes are summarized in
<xref ref-type="table" rid="pone-0035699-t001">Table 1</xref>
. A second round of pyrosequencing was accomplished using a 3kb paired end protocol. ORFs from the second sequencing were not manually curated, except for verification of selected differences. Genomes were compared between new and old sequences to identify regions missed in initial sequencing and to verify SNP differences. Missing regions were predominantly located in transposases and repeat regions.</p>
<table-wrap id="pone-0035699-t001" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0035699.t001</object-id>
<label>Table 1</label>
<caption>
<title>General Features of Sequenced Genomes.</title>
</caption>
<alternatives>
<graphic id="pone-0035699-t001-1" xlink:href="pone.0035699.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Features</td>
<td align="left" rowspan="1" colspan="1">NM220 (early strain type)</td>
<td align="left" rowspan="1" colspan="1">NM233 (late strain type)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Coverage of sequence</bold>
</td>
<td align="left" rowspan="1" colspan="1">21.60</td>
<td align="left" rowspan="1" colspan="1">27.25</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Average sequence read length</bold>
</td>
<td align="left" rowspan="1" colspan="1">242.869</td>
<td align="left" rowspan="1" colspan="1">246.036</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Number of contigs</bold>
</td>
<td align="left" rowspan="1" colspan="1">380</td>
<td align="left" rowspan="1" colspan="1">343</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Genome size (bp)</bold>
</td>
<td align="left" rowspan="1" colspan="1">2011600</td>
<td align="left" rowspan="1" colspan="1">1992570</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>G+C content (%)</bold>
</td>
<td align="left" rowspan="1" colspan="1">51.7</td>
<td align="left" rowspan="1" colspan="1">51.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Large Contig #</bold>
<xref ref-type="table-fn" rid="nt101">1</xref>
</td>
<td align="left" rowspan="1" colspan="1">288</td>
<td align="left" rowspan="1" colspan="1">261</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Large Contig (bp)</bold>
</td>
<td align="left" rowspan="1" colspan="1">1992450</td>
<td align="left" rowspan="1" colspan="1">1977986</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Contig N50 (bp)</bold>
<xref ref-type="table-fn" rid="nt102">2</xref>
</td>
<td align="left" rowspan="1" colspan="1">10891</td>
<td align="left" rowspan="1" colspan="1">12240</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Number of predicted ORFs</bold>
<xref ref-type="table-fn" rid="nt103">3</xref>
</td>
<td align="left" rowspan="1" colspan="1">1896</td>
<td align="left" rowspan="1" colspan="1">1879</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Average gene length (bp)</bold>
</td>
<td align="left" rowspan="1" colspan="1">898</td>
<td align="left" rowspan="1" colspan="1">900</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Q40+ Bases, %</bold>
<xref ref-type="table-fn" rid="nt104">4</xref>
</td>
<td align="left" rowspan="1" colspan="1">99.71%</td>
<td align="left" rowspan="1" colspan="1">99.86%</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt101">
<label>1</label>
<p>Large Contig, contig at least 500 bases in length.</p>
</fn>
<fn id="nt102">
<label>2</label>
<p>Contig N50, length such that 50% of the assembled genome lies in contigs of N50 size or longer.</p>
</fn>
<fn id="nt103">
<label>3</label>
<p>ORF, open reading frame.</p>
</fn>
<fn id="nt104">
<label>4</label>
<p>Q40+ Bases, all the bases in the assembled contigs that carry a phred-equivalent quality score of 40 and above. A score of 40 is equivalent to an accuracy of 99.99%.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="pone-0035699-t002" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0035699.t002</object-id>
<label>Table 2</label>
<caption>
<title>Genes found in a majority of sequenced genomes but absent from NM220 and NM233.</title>
</caption>
<alternatives>
<graphic id="pone-0035699-t002-2" xlink:href="pone.0035699.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Protein Name</td>
<td align="left" rowspan="1" colspan="1">Representative Gene MC58 Genome</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">NadA</td>
<td align="left" rowspan="1" colspan="1">NMB_0394</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TspB</td>
<td align="left" rowspan="1" colspan="1">NMB_1548</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TspB</td>
<td align="left" rowspan="1" colspan="1">NMB_1628</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TspB</td>
<td align="left" rowspan="1" colspan="1">NMB_1747</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">zonula occludens toxin family protein</td>
<td align="left" rowspan="1" colspan="1">NMB_1551</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">zonula occludens toxin family protein</td>
<td align="left" rowspan="1" colspan="1">NMB_1626</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">zonula occludens toxin family protein</td>
<td align="left" rowspan="1" colspan="1">NMB_1749</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">tellurite resistance protein TehA</td>
<td align="left" rowspan="1" colspan="1">NMB_1603</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">oxidoreductase, zinc-binding dehydrogenase family</td>
<td align="left" rowspan="1" colspan="1">NMB_1395</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">peptidase, S24 family</td>
<td align="left" rowspan="1" colspan="1">NMB_0910</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PIN domain protein</td>
<td align="left" rowspan="1" colspan="1">NMB_1665</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">death-on-curing family protein</td>
<td align="left" rowspan="1" colspan="1">NMB_0917</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fic family protein</td>
<td align="left" rowspan="1" colspan="1">NMB_0255</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DNA-cytosine methyltransferase</td>
<td align="left" rowspan="1" colspan="1">NMB_0725</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">putative plasmid toxin protein PemI</td>
<td align="left" rowspan="1" colspan="1">NMB_0914</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">putative plasmid toxin protein PemK</td>
<td align="left" rowspan="1" colspan="1">NMB_0913</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">hemagglutinin/hemolysin family protein</td>
<td align="left" rowspan="1" colspan="1">NMB_0493</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">hemagglutinin/hemolysin family protein</td>
<td align="left" rowspan="1" colspan="1">NMB_1214</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">hemolysin secretion/activation protein, ShlB family</td>
<td align="left" rowspan="1" colspan="1">NMB_1762</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">hemolysin-activating acyltransferase, HlyC family protein</td>
<td align="left" rowspan="1" colspan="1">NMB_1763</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">hemolysin-activating lysine-acyltransferase hlyC</td>
<td align="left" rowspan="1" colspan="1">NMB_1210</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">HmbR</td>
<td align="left" rowspan="1" colspan="1">NMB_1668</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<table-wrap id="pone-0035699-t003" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0035699.t003</object-id>
<label>Table 3</label>
<caption>
<title>Genes found in NM220 and NM233 but not in other sequenced genomes.</title>
</caption>
<alternatives>
<graphic id="pone-0035699-t003-3" xlink:href="pone.0035699.t003"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Protein Name</td>
<td align="left" rowspan="1" colspan="1">NMY220 Gene</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">RelA/SpoT domain protein</td>
<td align="left" rowspan="1" colspan="1">NMY220_01221</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Exl2</td>
<td align="left" rowspan="1" colspan="1">NMY220_01514</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">hypothetical protein</td>
<td align="left" rowspan="1" colspan="1">NMY220_01650</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ATPase RavA</td>
<td align="left" rowspan="1" colspan="1">NMY220_01800</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">putative uncharacterized protein</td>
<td align="left" rowspan="1" colspan="1">NMY220_01801</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>PCR and Sanger sequencing were used as needed for resolution of homopolymer differences and verification of relevant insertions, deletions and point mutations, using primers designed from the whole genome sequences. Primers for amplification and sequencing of gene targets in the early and late strain type populations were obtained from the literature or were designed from whole genome sequences.</p>
</sec>
<sec id="s2c">
<title>Annotation</title>
<p>Prediction and annotation of open reading frames (ORFs) was accomplished using a suite of automated tools combining Glimmer gene prediction
<xref ref-type="bibr" rid="pone.0035699-Salzberg1">[12]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Delcher1">[13]</xref>
and ORF and non-ORF feature identification (
<italic>e.g.</italic>
protein motifs) using tRNAscan-SE
<xref ref-type="bibr" rid="pone.0035699-Lowe1">[14]</xref>
, RNAmmer
<xref ref-type="bibr" rid="pone.0035699-Lagesen1">[15]</xref>
, hmmpfam
<xref ref-type="bibr" rid="pone.0035699-Eddy1">[16]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Krogh1">[17]</xref>
, blastp
<xref ref-type="bibr" rid="pone.0035699-Altschul1">[18]</xref>
, SignalP
<xref ref-type="bibr" rid="pone.0035699-Bendtsen1">[19]</xref>
, prosite
<xref ref-type="bibr" rid="pone.0035699-Falquet1">[20]</xref>
, LipoP
<xref ref-type="bibr" rid="pone.0035699-Juncker1">[21]</xref>
, and tmhmm
<xref ref-type="bibr" rid="pone.0035699-Krogh2">[22]</xref>
. Automated functional annotation based on database matches was followed by automated annotation improvement through mummer-based
<xref ref-type="bibr" rid="pone.0035699-Delcher2">[23]</xref>
mapping from the published MC58 genome
<xref ref-type="bibr" rid="pone.0035699-Tettelin1">[24]</xref>
. When a frameshift/point mutation was identified, the start and stop site coordinates were adjusted to encompass the entire gene. Since 454 sequencing causes frameshifts, many of the frameshifts are unlikely to be real. Therefore, where possible for the construction of orthologous clusters, the genes were translated excluding the frameshifted base(s) using a blast based algorithm implemented in Manatee [manatee.sourceforge.net]. ORFs of <50 aa in length and lacking functional evidence were removed from the genome if they were overlapping genes with functional annotation or known repeats (e.g. Correia repeats) or if they lacked an appropriate third position skew. Annotations were improved by using MugsyAnnotator
<xref ref-type="bibr" rid="pone.0035699-Angiuoli1">[25]</xref>
and manual curation using Manatee on the ortholog clusters.</p>
</sec>
<sec id="s2d">
<title>Genome Comparisons</title>
<p>Two methods were used to predict orthologous genes across the two serogroup Y genomes and all published
<italic>N. meningitidis</italic>
genomes
<xref ref-type="bibr" rid="pone.0035699-Tettelin1">[24]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Schoen1">[26]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Parkhill1">[27]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Peng1">[28]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Budroni1">[29]</xref>
. First, Jaccard ortholog clusters (JOCs) were obtained from bi-directional best blastp matches
<xref ref-type="bibr" rid="pone.0035699-Crabtree1">[30]</xref>
. JOCs are based solely on protein homology and do not utilize available information about gene synteny. Therefore, MugsyAnnotator was used to identify a second set of orthologs using whole genome alignment to better identify orthologs with conserved synteny
<xref ref-type="bibr" rid="pone.0035699-Angiuoli1">[25]</xref>
. The conservation of ortholog clusters across the various genomes analyzed was determined using Sybil, a web-based software package for comparative genomics
<xref ref-type="bibr" rid="pone.0035699-Riley1">[31]</xref>
, as described previously
<xref ref-type="bibr" rid="pone.0035699-Crabtree1">[30]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-DunningHotopp1">[32]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Tettelin2">[33]</xref>
. Since 454 draft genomes are prone to errors in homopolymers and many neisserial genes are known to be phase-variable, ORFs were not considered to be different if their amino acid sequences differed only because of a frameshift in a homopolymer or phase-variable region. With phase-variation, such differences would be characteristic of the individual isolates in culture and would not reflect differences in the population of strains. Due to the draft nature of the early and late strain type genomes, some repeat regions and genes such as transposases which occur in multiple copies within a genome were not resolved and were excluded from analysis. All well-resolved ORFs were compared between early and late strain type genomes, including, but not limited to, known antigens and potential antigens, which were defined as ORFs having lipoprotein attachment sites and/or signal sequences.</p>
<p>ClustalW2
<xref ref-type="bibr" rid="pone.0035699-Chenna1">[34]</xref>
(
<ext-link ext-link-type="uri" xlink:href="http://www.ebi.ac.uk/Tools/msa/clustalw2/">http://www.ebi.ac.uk/Tools/msa/clustalw2/</ext-link>
) was used for further investigation of nucleotide and amino acid sequence alignments. An unrooted phylogenetic network was created by aligning the genomes with Mugsy, using all of the positions present in all 22 available
<italic>N. meningitidis</italic>
genomes (1,535,077 bp) to determine the phylogenetic network with the NeighborNet algorithm using SplitsTree4
<xref ref-type="bibr" rid="pone.0035699-Huson1">[35]</xref>
.</p>
<p>π
<sub>S</sub>
(number of synonymous changes per synonymous site) and π
<sub>N</sub>
(number of non-synonymous changes per non-synonymous site) for all ORFs were calculated using codeml in the PAML package
<xref ref-type="bibr" rid="pone.0035699-Yang1">[36]</xref>
from within IDEA
<xref ref-type="bibr" rid="pone.0035699-Egan1">[37]</xref>
. Input nucleotide alignments were generated by using the EMBOSS tranalign tool
<xref ref-type="bibr" rid="pone.0035699-Rice1">[38]</xref>
on the protein alignments of the clusters as generated by Muscle
<xref ref-type="bibr" rid="pone.0035699-Edgar1">[39]</xref>
. Average π
<sub>S</sub>
and π
<sub>N</sub>
was calculated for the set of all genes, not just those with differences.</p>
<p>ORFs from 20 other available sequenced genomes
<xref ref-type="bibr" rid="pone.0035699-Budroni1">[29]</xref>
were compared to predicted ORFS of NM220 and NM233 genomes. Available genomes were grouped by clonal complex for comparison (
<xref ref-type="supplementary-material" rid="pone.0035699.s006">Table S1</xref>
). Absence of ORFs not meeting the previously described limits for orthologs was validated using Standalone BLAST against the nucleotide sequence of NM220 and NM233. Only ORFs not identified as orthologs and not found by Standalone BLAST analysis, with criteria of ≥80% nucleotide identity and ≥50% coverage were considered to be absent from the serogroup Y genomes.</p>
</sec>
<sec id="s2e">
<title>Nucleotide Sequence Accession Numbers</title>
<p>This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AGRQ00000000, AGRR00000000. The version described in this paper is the first version, AGRQ01000000, AGRR01000000. The following additional sequences for these genomes have also been deposited in GenBank: NM220
<italic>pilC1</italic>
(JN681261),
<italic>pilC2</italic>
(JN681262),
<italic>pilE/pilS</italic>
(JN681263); NM233
<italic>hpuA</italic>
(JN681260),
<italic>pilE/pilS</italic>
(JN681264).</p>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<sec id="s3a">
<title>General Features of Sequenced Genomes</title>
<p>The two study serogroup Y genomes were similar in size and G+C content to previously sequenced neisserial genomes (
<xref ref-type="table" rid="pone-0035699-t001">Table 1</xref>
). Differences in gene content between the serogroup Y genomes and the aggregate for each clonal complex ranged from 60 to 130 ORFs. The majority of gene differences were found in genes annotated as encoding hypothetical proteins, conserved hypothetical proteins, putative proteins, restriction modification systems, and phage-related proteins. Some genes were found in a majority of non-serogroup Y genomes. These include the genes
<italic>nadA</italic>
,
<italic>tspB,</italic>
and the hemoglobin receptor gene
<italic>hmbR</italic>
. Some representative genes found in a majority of other genomes but missing in the serogroup Y genomes are listed in
<xref ref-type="table" rid="pone-0035699-t002">Table 2</xref>
. Both serogroup Y genomes lack the islands of horizontal transfer PNM1 (20 ORFs), IHT-C (30 ORFs) and IHT-E (19 ORFs), which contain genes encoding mainly hypothetical proteins, phage related proteins, and a transposon
<xref ref-type="bibr" rid="pone.0035699-Tettelin1">[24]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-DunningHotopp2">[40]</xref>
. Only five genes were found in the serogroup Y genomes but not in any other sequenced genomes (
<xref ref-type="table" rid="pone-0035699-t003">Table 3</xref>
).</p>
</sec>
<sec id="s3b">
<title>Genetic Similarity between Early and Late Strain Types</title>
<p>Overall, the two genomes were highly related (
<xref ref-type="fig" rid="pone-0035699-g001">Figure 1</xref>
). Of 1776 shared ORFs, 1231 showed 100% amino acid identity, with a further 319 having between 99% and 100% identity. In contrast, a comparison including the genomes MC58, Z2491, 053442, FAM18, alpha14, and N1568 yielded 1490 shared ORFs, with 80 exhibiting 100% identity and an additional 538 having between 99 and 100% amino acid identity. Overall, NM220 (early strain type) and NM223 (late strain type) had 13,950 SNPs, excluding insertions and deletions that cannot be systematically examined as these are draft genomes with sequencing gaps in different locations. Repeat pyrosequencing resulted in confirmation of 10,317 SNP differences between NM220 and NM233. Not all SNPs were resolved, including regions present in one genome but missing from the other. Alignment of nucleotide sequences of the early strain type, the late strain type and a subset of other available sequenced genomes showed a high level of nucleotide conservation between the early and late strains (
<xref ref-type="supplementary-material" rid="pone.0035699.s001">Figure S1</xref>
). A phylogenetic network showed the early strain type and late strain type as most closely related among all currently available sequenced meningococcal genomes (
<xref ref-type="fig" rid="pone-0035699-g002">Figure 2</xref>
), with the serogroup Y genomes clustering in a branch not closely related to other genomes. Values for π
<sub>N</sub>
and π
<sub>S</sub>
were low over a majority of the genomes (
<xref ref-type="fig" rid="pone-0035699-g001">Figures 1</xref>
and
<xref ref-type="fig" rid="pone-0035699-g003">3</xref>
) with average π
<sub>N</sub>
 = 0.0033 and average π
<sub>S</sub>
 = 0.0216. No non-synonymous changes were found in 1238 shared ORFs and no synonymous changes were found in 1195 shared ORFs. ORFs with the highest π
<sub>N</sub>
and π
<sub>S</sub>
included antigens, predicted membrane proteins, hypothetical proteins and housekeeping genes (
<xref ref-type="table" rid="pone-0035699-t004">Table 4</xref>
).</p>
<table-wrap id="pone-0035699-t004" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0035699.t004</object-id>
<label>Table 4</label>
<caption>
<title>Genes with highest π
<sub>S</sub>
and π
<sub>N</sub>
in the early strain type and late strain type genome comparison. Maximum likelihood π
<sub>S and</sub>
π
<sub>N</sub>
calculated using the codeml program from PAML.</title>
</caption>
<alternatives>
<graphic id="pone-0035699-t004-4" xlink:href="pone.0035699.t004"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td colspan="5" align="left" rowspan="1">Highest π
<sub>S</sub>
</td>
<td colspan="5" align="left" rowspan="1">Highest Π
<sub>N</sub>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">π
<sub>N</sub>
</td>
<td align="left" rowspan="1" colspan="1">π
<sub>S</sub>
</td>
<td align="left" rowspan="1" colspan="1">Early</td>
<td align="left" rowspan="1" colspan="1">Late</td>
<td align="left" rowspan="1" colspan="1">Predicted Protein</td>
<td align="left" rowspan="1" colspan="1">π
<sub>N</sub>
</td>
<td align="left" rowspan="1" colspan="1">π
<sub>S</sub>
</td>
<td align="left" rowspan="1" colspan="1">Early</td>
<td align="left" rowspan="1" colspan="1">Late</td>
<td align="left" rowspan="1" colspan="1">Predicted Protein</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">0.2789</td>
<td align="left" rowspan="1" colspan="1">1.2413</td>
<td align="left" rowspan="1" colspan="1">NMY220_1828</td>
<td align="left" rowspan="1" colspan="1">NMY233_1807</td>
<td align="left" rowspan="1" colspan="1">PorB</td>
<td align="left" rowspan="1" colspan="1">0.2789</td>
<td align="left" rowspan="1" colspan="1">1.2413</td>
<td align="left" rowspan="1" colspan="1">NMY220_1828</td>
<td align="left" rowspan="1" colspan="1">NMY233_1807</td>
<td align="left" rowspan="1" colspan="1">PorB</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0372</td>
<td align="left" rowspan="1" colspan="1">0.5443</td>
<td align="left" rowspan="1" colspan="1">NMY220_1280</td>
<td align="left" rowspan="1" colspan="1">NMY233_1266</td>
<td align="left" rowspan="1" colspan="1">glucokinase</td>
<td align="left" rowspan="1" colspan="1">0.1793</td>
<td align="left" rowspan="1" colspan="1">0.2512</td>
<td align="left" rowspan="1" colspan="1">NMY220_1916</td>
<td align="left" rowspan="1" colspan="1">NMY233_1893</td>
<td align="left" rowspan="1" colspan="1">conserved hypothetical protein</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0786</td>
<td align="left" rowspan="1" colspan="1">0.5293</td>
<td align="left" rowspan="1" colspan="1">NMY220_1431</td>
<td align="left" rowspan="1" colspan="1">NMY233_1409</td>
<td align="left" rowspan="1" colspan="1">putative permease, YjgP/YjgQ family</td>
<td align="left" rowspan="1" colspan="1">0.1559</td>
<td align="left" rowspan="1" colspan="1">0.2387</td>
<td align="left" rowspan="1" colspan="1">NMY220_1413</td>
<td align="left" rowspan="1" colspan="1">NMY233_1391</td>
<td align="left" rowspan="1" colspan="1">lactoferrin-binding protein</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0406</td>
<td align="left" rowspan="1" colspan="1">0.4260</td>
<td align="left" rowspan="1" colspan="1">NMY220_1858</td>
<td align="left" rowspan="1" colspan="1">NMY233_1837</td>
<td align="left" rowspan="1" colspan="1">thiamine biosynthesis protein ThiS</td>
<td align="left" rowspan="1" colspan="1">0.0980</td>
<td align="left" rowspan="1" colspan="1">0.0821</td>
<td align="left" rowspan="1" colspan="1">NMY220_0860</td>
<td align="left" rowspan="1" colspan="1">NMY233_0849</td>
<td align="left" rowspan="1" colspan="1">prepilin-type N-terminal cleavage/methylation domain protein</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0173</td>
<td align="left" rowspan="1" colspan="1">0.3737</td>
<td align="left" rowspan="1" colspan="1">NMY220_0538</td>
<td align="left" rowspan="1" colspan="1">NMY233_0511</td>
<td align="left" rowspan="1" colspan="1">magnesium and cobalt efflux protein CorC</td>
<td align="left" rowspan="1" colspan="1">0.0964</td>
<td align="left" rowspan="1" colspan="1">0.1445</td>
<td align="left" rowspan="1" colspan="1">NMY220_0962</td>
<td align="left" rowspan="1" colspan="1">NMY233_0948</td>
<td align="left" rowspan="1" colspan="1">conserved hypothetical protein</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0375</td>
<td align="left" rowspan="1" colspan="1">0.3675</td>
<td align="left" rowspan="1" colspan="1">NMY220_1299</td>
<td align="left" rowspan="1" colspan="1">NMY233_1283</td>
<td align="left" rowspan="1" colspan="1">conserved hypothetical protein</td>
<td align="left" rowspan="1" colspan="1">0.0959</td>
<td align="left" rowspan="1" colspan="1">0.2951</td>
<td align="left" rowspan="1" colspan="1">NMY220_1241</td>
<td align="left" rowspan="1" colspan="1">NMY233_1228</td>
<td align="left" rowspan="1" colspan="1">conserved hypothetical protein</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0936</td>
<td align="left" rowspan="1" colspan="1">0.3545</td>
<td align="left" rowspan="1" colspan="1">NMY220_0390</td>
<td align="left" rowspan="1" colspan="1">NMY233_0372</td>
<td align="left" rowspan="1" colspan="1">shikimate 5-dehydrogenase (AroE)</td>
<td align="left" rowspan="1" colspan="1">0.0951</td>
<td align="left" rowspan="1" colspan="1">0.2212</td>
<td align="left" rowspan="1" colspan="1">NMY220_1068</td>
<td align="left" rowspan="1" colspan="1">NMY233_1071</td>
<td align="left" rowspan="1" colspan="1">putative lipoprotein</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0299</td>
<td align="left" rowspan="1" colspan="1">0.3518</td>
<td align="left" rowspan="1" colspan="1">NMY220_1433</td>
<td align="left" rowspan="1" colspan="1">NMY233_1411</td>
<td align="left" rowspan="1" colspan="1">ornithine carbamoyltransferase</td>
<td align="left" rowspan="1" colspan="1">0.0936</td>
<td align="left" rowspan="1" colspan="1">0.3545</td>
<td align="left" rowspan="1" colspan="1">NMY220_0390</td>
<td align="left" rowspan="1" colspan="1">NMY233_0372</td>
<td align="left" rowspan="1" colspan="1">shikimate 5-dehydrogenase (AroE)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0266</td>
<td align="left" rowspan="1" colspan="1">0.3293</td>
<td align="left" rowspan="1" colspan="1">NMY220_0388</td>
<td align="left" rowspan="1" colspan="1">NMY233_0370</td>
<td align="left" rowspan="1" colspan="1">lipopolysaccharide ABC transporter,ATP-binding protein</td>
<td align="left" rowspan="1" colspan="1">0.0921</td>
<td align="left" rowspan="1" colspan="1">0.3260</td>
<td align="left" rowspan="1" colspan="1">NMY220_0548</td>
<td align="left" rowspan="1" colspan="1">NMY233_0521</td>
<td align="left" rowspan="1" colspan="1">PilV</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0921</td>
<td align="left" rowspan="1" colspan="1">0.3260</td>
<td align="left" rowspan="1" colspan="1">NMY220_0548</td>
<td align="left" rowspan="1" colspan="1">NMY233_0521</td>
<td align="left" rowspan="1" colspan="1">PilV</td>
<td align="left" rowspan="1" colspan="1">0.0786</td>
<td align="left" rowspan="1" colspan="1">0.5293</td>
<td align="left" rowspan="1" colspan="1">NMY220_1431</td>
<td align="left" rowspan="1" colspan="1">NMY233_1409</td>
<td align="left" rowspan="1" colspan="1">putative permease, YjgP/YjgQ family</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0256</td>
<td align="left" rowspan="1" colspan="1">0.3244</td>
<td align="left" rowspan="1" colspan="1">NMY220_0961</td>
<td align="left" rowspan="1" colspan="1">NMY233_0947</td>
<td align="left" rowspan="1" colspan="1">phosphoribosyl aminoimidazolecarboxylase, ATPase subunit</td>
<td align="left" rowspan="1" colspan="1">0.0754</td>
<td align="left" rowspan="1" colspan="1">0.2449</td>
<td align="left" rowspan="1" colspan="1">NMY220_0822</td>
<td align="left" rowspan="1" colspan="1">NMY233_0800</td>
<td align="left" rowspan="1" colspan="1">conserved hypothetical protein</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0334</td>
<td align="left" rowspan="1" colspan="1">0.3023</td>
<td align="left" rowspan="1" colspan="1">NMY220_1434</td>
<td align="left" rowspan="1" colspan="1">NMY233_1412</td>
<td align="left" rowspan="1" colspan="1">ketol-acid reductoisomerase</td>
<td align="left" rowspan="1" colspan="1">0.0628</td>
<td align="left" rowspan="1" colspan="1">0.1951</td>
<td align="left" rowspan="1" colspan="1">NMY220_1465</td>
<td align="left" rowspan="1" colspan="1">NMY233_1442</td>
<td align="left" rowspan="1" colspan="1">two component sensor kinase</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0239</td>
<td align="left" rowspan="1" colspan="1">0.3011</td>
<td align="left" rowspan="1" colspan="1">NMY220_1869</td>
<td align="left" rowspan="1" colspan="1">NMY233_1848</td>
<td align="left" rowspan="1" colspan="1">cysteinyl-tRNA synthetase</td>
<td align="left" rowspan="1" colspan="1">0.0613</td>
<td align="left" rowspan="1" colspan="1">0.2013</td>
<td align="left" rowspan="1" colspan="1">NMY220_0445</td>
<td align="left" rowspan="1" colspan="1">NMY233_0426</td>
<td align="left" rowspan="1" colspan="1">sel1 repeat protein</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0959</td>
<td align="left" rowspan="1" colspan="1">0.2951</td>
<td align="left" rowspan="1" colspan="1">NMY220_1241</td>
<td align="left" rowspan="1" colspan="1">NMY233_1228</td>
<td align="left" rowspan="1" colspan="1">conserved hypothetical protein</td>
<td align="left" rowspan="1" colspan="1">0.061</td>
<td align="left" rowspan="1" colspan="1">0.2852</td>
<td align="left" rowspan="1" colspan="1">NMY220_0858</td>
<td align="left" rowspan="1" colspan="1">NMY233_0847</td>
<td align="left" rowspan="1" colspan="1">prepilin-type N-terminal cleavage/methylation domain protein</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0107</td>
<td align="left" rowspan="1" colspan="1">0.2890</td>
<td align="left" rowspan="1" colspan="1">NMY220_0977</td>
<td align="left" rowspan="1" colspan="1">NMY233_0981</td>
<td align="left" rowspan="1" colspan="1">conserved hypothetical protein</td>
<td align="left" rowspan="1" colspan="1">0.0544</td>
<td align="left" rowspan="1" colspan="1">0.2142</td>
<td align="left" rowspan="1" colspan="1">NMY220_0600</td>
<td align="left" rowspan="1" colspan="1">NMY233_0574</td>
<td align="left" rowspan="1" colspan="1">septum formation protein Maf</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.0610</td>
<td align="left" rowspan="1" colspan="1">0.2852</td>
<td align="left" rowspan="1" colspan="1">NMY220_0858</td>
<td align="left" rowspan="1" colspan="1">NMY233_0847</td>
<td align="left" rowspan="1" colspan="1">prepilin-type N-terminal cleavage/methylation domain protein</td>
<td align="left" rowspan="1" colspan="1">0.0544</td>
<td align="left" rowspan="1" colspan="1">0.2142</td>
<td align="left" rowspan="1" colspan="1">NMY220_0977</td>
<td align="left" rowspan="1" colspan="1">NMY233_0981</td>
<td align="left" rowspan="1" colspan="1">conserved hypothetical protein</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<fig id="pone-0035699-g001" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0035699.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Circular representation of similarity of late strain type genome to early strain type genome.</title>
<p>Ordered from outermost to innermost, the rims show: rim 1 (plus strand) and rim 2 (minus strand), predicted coding regions, colored by role category; rim 3, SNP density; rim 4, π
<sub>N</sub>
, plotted from 0 (base of rim) to 0.1; rim 5, π
<sub>S</sub>
, plotted 0 (base of rim) to 0.5. Role category colors are: amino acid biosynthesis, violet; biosynthesis of cofactors, prosthetic groups and carriers, light blue; cell envelope, light green; cellular processes, red; central intermediary metabolism, brown; disrupted reading frame, black; DNA metabolism, gold; energy metabolism, light gray; fatty acid and phospholipid metabolism, magenta; hypothetical proteins, black; mobile and extrachromosomal element functions, cyan; protein fate, pink; protein synthesis, pink; purines, pyrimidines, nucleosides and nucleotides, orange; regulatory functions, olive; signal transduction, olive; transcription, dark green; transport and binding proteins, blue-green; unknown function, gray; viral functions, gray. SNP density: pink, 0 SNPs per kbp; yellow, 1–25 SNPs per kbp; red, 26–50 SNPs per kbp; green, 51–75 SNPs per kbp; blue, 76–155 SNPs per kbp.</p>
</caption>
<graphic xlink:href="pone.0035699.g001"></graphic>
</fig>
<fig id="pone-0035699-g002" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0035699.g002</object-id>
<label>Figure 2</label>
<caption>
<title>NeighborNet tree of genetic relatedness of early strain type, late strain type and 20 available sequenced meningococcal genomes using aligned sequence of regions common to all genomes.</title>
<p>Tree produced using SplitsTree. Other genomes include: GB013, 053442, 961–5945, NZ05/33, CU385, M01-240355, M01-240149, M13399, M04-240196, H44/76, N1568, M6190, Z2491, G2136, M0579, FAM18, MC58, OX99-30304, alpha14, and ES14902.</p>
</caption>
<graphic xlink:href="pone.0035699.g002"></graphic>
</fig>
<fig id="pone-0035699-g003" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0035699.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Histograms showing π
<sub>N</sub>
(number of non-synonymous substitutions per non-synonymous site) and π
<sub>S</sub>
(number of synonymous substitutions per synonymous site) in early strain type and late strain type genomes.</title>
<p>π
<sub>N</sub>
and π
<sub>S</sub>
calculated using codeml from the PAML package.</p>
</caption>
<graphic xlink:href="pone.0035699.g003"></graphic>
</fig>
</sec>
<sec id="s3c">
<title>Vaccine Candidates and Conserved Antigens</title>
<p>Three proteins, factor H binding protein (FHbp), neisserial heparin binding antigen (NhbA), and NadA have been investigated as targets for vaccines against serogroup B disease
<xref ref-type="bibr" rid="pone.0035699-Pizza1">[41]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Jiang1">[42]</xref>
. The genes encoding FHbp are identical in the early and late strain types (
<xref ref-type="supplementary-material" rid="pone.0035699.s007">Table S2</xref>
) while the genes for NhbA exhibited 99.8% predicted amino acid identity, with only 2 predicted amino acid changes (
<xref ref-type="supplementary-material" rid="pone.0035699.s008">Table S3</xref>
). In both genomes the gene encoding the protein product NadA is missing and that section of the genome contains the sequence
<named-content content-type="gene">5′-TTTCCATTCCAAACGC-3′</named-content>
. This situation has been described in other NadA deficient strains
<xref ref-type="bibr" rid="pone.0035699-Comanducci1">[43]</xref>
. Lipoprotein prediction based on sequence identified a total of 73 shared lipoprotein ORFs in the early and late strain types. Forty-three of the shared predicted lipoprotein ORFs had 100% nucleotide and amino acid identity between the early and late strain types (
<xref ref-type="supplementary-material" rid="pone.0035699.s007">Table S2</xref>
) and three others had only synonymous nucleotide changes (
<xref ref-type="supplementary-material" rid="pone.0035699.s008">Table S3</xref>
). Comparison of the amino acid identity of the conserved lipoproteins with 100% nucleotide identity, across the twenty additional genomes which have been completely sequenced, showed that the majority were highly conserved across those genomes. These highly conserved lipoproteins may be of interest as further vaccine candidates should they be found to elicit an appropriate immune response.</p>
</sec>
<sec id="s3d">
<title>Antigenic Differences</title>
<p>The gene encoding the antigenic outer membrane protein PorB had the highest π
<sub>N</sub>
and π
<sub>S</sub>
in the early strain type/late strain type comparison (π
<sub>N</sub>
 = 0.2789, π
<sub>S</sub>
 = 1.2413). Other antigens with relatively high π
<sub>N</sub>
and/or π
<sub>S</sub>
included lactoferrin binding protein B (LbpB) and PilV (
<xref ref-type="table" rid="pone-0035699-t004">Table 4</xref>
).</p>
</sec>
<sec id="s3e">
<title>PorA, PorB, FetA</title>
<p>In a previous study, we demonstrated differences in deduced PorA variable regions (VR1 and VR2), PorB loops V and VII, and FetA VR
<xref ref-type="bibr" rid="pone.0035699-Harrison2">[2]</xref>
. Comparison of entire sequences of these proteins showed additional changes. The predicted amino acid sequence of late strain type PorA contained 6 amino acid changes relative to the early strain type sequence, in addition to those previously reported. PorB sequences exhibited more extensive differences, with the predicted amino acid sequence containing 5 amino acid insertions and 93 amino acid substitutions in addition to those previously reported in loops V and VII (
<xref ref-type="supplementary-material" rid="pone.0035699.s002">Figure S2</xref>
). Late strain type FetA contained 1 amino acid deletion and 20 amino acid substitutions in addition to those previously reported in the variable region
<xref ref-type="bibr" rid="pone.0035699-Harrison2">[2]</xref>
.</p>
</sec>
<sec id="s3f">
<title>Lipoproteins and Proteins with Signal Sequences</title>
<p>The early and late strain type genomes contained 456 shared ORFs which are potential antigens based upon predicted lipoprotein attachment sites and/or predicted signal sequences. Of 73 shared lipoproteins, 27 exhibited amino acid differences (
<xref ref-type="supplementary-material" rid="pone.0035699.s008">Table S3</xref>
). Of the 383 ORFs with signal sequences but no lipoprotein attachment sites, only 68 had ≤99% amino acid identity. The majority of these ORFs were associated with the cell envelope (22) or with transport and binding (17), based on their gene role category. Differences were found in the iron acquisition and uptake lipoproteins LbpB (
<xref ref-type="supplementary-material" rid="pone.0035699.s003">Figure S3</xref>
) and hemoglobin-haptoglobin utilization protein A (HpuA) (
<xref ref-type="supplementary-material" rid="pone.0035699.s004">Figure S4</xref>
). The putative lipoprotein and suggested vaccine target Ag473
<xref ref-type="bibr" rid="pone.0035699-Hsu1">[44]</xref>
contains a 21 nt tandem repeat with a 2 repeat difference between early and late strain type, resulting in a 14 aa insertion in the late strain type predicted protein. Differences were also noted in the non-lipoprotein iron acquisition and uptake proteins transferrin binding protein A (TbpA), transferrin binding protein B (TbpB), and lactoferrin binding protein A (LbpA) (
<xref ref-type="supplementary-material" rid="pone.0035699.s008">Table S3</xref>
).</p>
</sec>
<sec id="s3g">
<title>Pilus Structure and Assembly</title>
<p>
<italic>N. meningitidis</italic>
has type IV pili
<bold>(</bold>
Tfp
<bold>)</bold>
which are polymers whose major subunit is the protein product of the highly variable
<italic>pilE</italic>
gene
<xref ref-type="bibr" rid="pone.0035699-Cehovin1">[45]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Carbonnelle1">[46]</xref>
. Due to the highly repetitive nature of this section of the genomes, initial sequences were fragmentary. Further 454 sequencing of this region indicated that the
<italic>pilS</italic>
regions of the early strain type and the late strain type were nearly identical over part of the sequence. However, the early strain type contained fewer
<italic>pilS</italic>
cassettes (3 cassettes, the late strain type contains 5 cassettes) and the
<italic>pilS</italic>
region of the late strain type contained a putative IS
<italic>1160</italic>
-like transposase between the fourth and fifth
<italic>pilS</italic>
cassettes (GenBank accession numbers JN681263, JN681264). The sequence of the
<italic>pilE</italic>
gene was similar between the early and late strain types over the C-terminal half but highly dissimilar at the N-terminus. The late strain type transposase was only partially resolved and further sequencing was not undertaken.</p>
<p>The predicted pilus adhesin, PilC1 (GenBank accession number JN681261and NMY233_1622) exhibited 84% amino acid similarity between the early strain type and the late strain type (
<xref ref-type="supplementary-material" rid="pone.0035699.s005">Figure S5</xref>
). Minor pilin PilV is encoded in the early and late population strains by the genes NMY220_0548 and NMY233_0521, respectively. The predicted PilV amino acid identity between the early strain type and the late strain type is 91.5%, with differences in 22 of the total 130 amino acids. The genes bounding the
<italic>pilV</italic>
locus have ≥ 98% nucleotide identity and ≥ 99% amino acid identity between the two strain types, indicating that this gene may have participated in horizontal gene transfer.</p>
<p>The early strain type contained the PglB form of the pilin glycosylation B locus (NMY220_1618) while the late strain type contained PglB2 (NMY233_1594). In the late strain type, PglB2 was immediately followed by a conserved hypothetical protein (NMY233_1595) of unknown function
<xref ref-type="bibr" rid="pone.0035699-Kahler1">[47]</xref>
not found in the early strain type.</p>
</sec>
<sec id="s3h">
<title>Genes Found Exclusively in Early or Late Strain Type</title>
<p>The early strain type and late strain type each contained genes not found in the other genome (
<xref ref-type="supplementary-material" rid="pone.0035699.s009">Table S4</xref>
). The majority of these genes encoded hypothetical proteins, putative lipoproteins or putative membrane proteins. The late strain type contained two genes encoding proteins with significant similarity to proteins with experimentally verified functions:
<italic>zitB</italic>
(NMY233_0596), which encodes a predicted cation-efflux facilitator family protein, and a gene encoding a rubredoxin (NMY233_0921).</p>
</sec>
<sec id="s3i">
<title>Serogroup Y Clonal Complex 23 Population Results</title>
<p>To determine whether the differences identified in the single sequenced early and late strain type isolates were characteristic of the larger population of isolates, ten gene targets were investigated in eight early strain type and eight late strain type population isolates. The early strain type and late strain type population isolates were consistent with NM220 and NM233 in gene content for
<italic>pglB</italic>
and
<italic>pglB2</italic>
,
<italic>zitB</italic>
, and rubredoxin (
<xref ref-type="table" rid="pone-0035699-t005">Table 5</xref>
, presence or absence by PCR). The sequenced alleles of
<italic>hpuA</italic>
in the population strains were also identical to the NM220 and NM233 alleles by strain type (all early strain type matched NM220, all late strain type matched NM233), as were the alleles for
<italic>pilV</italic>
. Tandem repeat differences in
<italic>ag473</italic>
were maintained in population isolates, except for one early strain type isolate that had a single tandem repeat, and thus did not match either the early or late strain type. Late strain type population
<italic>lbpB</italic>
alleles were identical to the NM233 allele. Among the early strain type isolates, five
<italic>lbpB</italic>
alleles were identical to the NM220 allele but NM109, NM115 and NM206 had an allele that differed from both NM220 and NM233. All late strain type
<italic>tbpB</italic>
alleles were identical. Early strain type isolates contained three alleles for
<italic>tbpB</italic>
, all of which differed from the alleles found in either NM220 or NM233, and two isolates failed to amplify that locus.</p>
<table-wrap id="pone-0035699-t005" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0035699.t005</object-id>
<label>Table 5</label>
<caption>
<title>Early and late strain type population isolates, year of isolation, and results of PCR and Sanger sequencing of target genes.</title>
</caption>
<alternatives>
<graphic id="pone-0035699-t005-5" xlink:href="pone.0035699.t005"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">ID</td>
<td align="left" rowspan="1" colspan="1">Year</td>
<td align="left" rowspan="1" colspan="1">Strain Type
<xref ref-type="table-fn" rid="nt105">1</xref>
</td>
<td colspan="11" align="left" rowspan="1">Gene Targets</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB/pglB2</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>zitB</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>rubredoxin</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>hpuA</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>lbpB</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>tbpB</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>pilV</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>pilH</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>pilI</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>pilJ</italic>
</td>
<td align="left" rowspan="1" colspan="1">
<italic>ag473</italic>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">NM 109</td>
<td align="left" rowspan="1" colspan="1">1996</td>
<td align="left" rowspan="1" colspan="1">Early</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB</italic>
</td>
<td align="left" rowspan="1" colspan="1">NP
<xref ref-type="table-fn" rid="nt106">2</xref>
</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">E
<xref ref-type="table-fn" rid="nt107">3</xref>
</td>
<td align="left" rowspan="1" colspan="1">L
<xref ref-type="table-fn" rid="nt108">4</xref>
</td>
<td align="left" rowspan="1" colspan="1">V
<sup>15</sup>
</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">E</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM 115</td>
<td align="left" rowspan="1" colspan="1">1996</td>
<td align="left" rowspan="1" colspan="1">Early</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB</italic>
</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">V1</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">E</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM 131</td>
<td align="left" rowspan="1" colspan="1">1996</td>
<td align="left" rowspan="1" colspan="1">Early</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB</italic>
</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">V1</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">E</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM 187</td>
<td align="left" rowspan="1" colspan="1">1998</td>
<td align="left" rowspan="1" colspan="1">Early</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB</italic>
</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">F
<xref ref-type="table-fn" rid="nt110">6</xref>
</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM 206</td>
<td align="left" rowspan="1" colspan="1">1999</td>
<td align="left" rowspan="1" colspan="1">Early</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB</italic>
</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">V1</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">E</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM 235</td>
<td align="left" rowspan="1" colspan="1">1999</td>
<td align="left" rowspan="1" colspan="1">Early</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB</italic>
</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">E</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM 271</td>
<td align="left" rowspan="1" colspan="1">2001</td>
<td align="left" rowspan="1" colspan="1">Early</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB</italic>
</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">V
<sup>27</sup>
</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">R
<xref ref-type="table-fn" rid="nt112">8</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM 284</td>
<td align="left" rowspan="1" colspan="1">2001</td>
<td align="left" rowspan="1" colspan="1">Early</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB</italic>
</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">M
<xref ref-type="table-fn" rid="nt113">9</xref>
</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">E</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM 289</td>
<td align="left" rowspan="1" colspan="1">2001</td>
<td align="left" rowspan="1" colspan="1">Early</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB</italic>
</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">NP</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">V2</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
<td align="left" rowspan="1" colspan="1">E</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM51</td>
<td align="left" rowspan="1" colspan="1">1993</td>
<td align="left" rowspan="1" colspan="1">Late</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB2</italic>
</td>
<td align="left" rowspan="1" colspan="1">P
<xref ref-type="table-fn" rid="nt114">10</xref>
</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM101</td>
<td align="left" rowspan="1" colspan="1">1995</td>
<td align="left" rowspan="1" colspan="1">Late</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB2</italic>
</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM119</td>
<td align="left" rowspan="1" colspan="1">1996</td>
<td align="left" rowspan="1" colspan="1">Late</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB2</italic>
</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM145</td>
<td align="left" rowspan="1" colspan="1">1997</td>
<td align="left" rowspan="1" colspan="1">Late</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB2</italic>
</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM165</td>
<td align="left" rowspan="1" colspan="1">1997</td>
<td align="left" rowspan="1" colspan="1">Late</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB2</italic>
</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM203</td>
<td align="left" rowspan="1" colspan="1">1999</td>
<td align="left" rowspan="1" colspan="1">Late</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB2</italic>
</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM249</td>
<td align="left" rowspan="1" colspan="1">2000</td>
<td align="left" rowspan="1" colspan="1">Late</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB2</italic>
</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM261</td>
<td align="left" rowspan="1" colspan="1">2000</td>
<td align="left" rowspan="1" colspan="1">Late</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB2</italic>
</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NM264</td>
<td align="left" rowspan="1" colspan="1">2000</td>
<td align="left" rowspan="1" colspan="1">Late</td>
<td align="left" rowspan="1" colspan="1">
<italic>pglB2</italic>
</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">P</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
<td align="left" rowspan="1" colspan="1">L</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt105">
<label>1</label>
<p>Based upon OMP and PFGE profile
<xref ref-type="bibr" rid="pone.0035699-Harrison2">[2]</xref>
;</p>
</fn>
<fn id="nt106">
<label>2</label>
<p>NP, not present, by PCR;</p>
</fn>
<fn id="nt107">
<label>3</label>
<p>E, early strain type allele;</p>
</fn>
<fn id="nt108">
<label>4</label>
<p>L, late strain type allele;</p>
</fn>
<fn id="nt109">
<label>5</label>
<p>V1,
<italic>tbpB</italic>
variant allele 1;</p>
</fn>
<fn id="nt110">
<label>6</label>
<p>F, failed PCR;</p>
</fn>
<fn id="nt111">
<label>7</label>
<p>V2,
<italic>tbpB</italic>
variant allele 2;</p>
</fn>
<fn id="nt112">
<label>8</label>
<p>R, repeat difference;</p>
</fn>
<fn id="nt113">
<label>9</label>
<p>M, mosaic allele;</p>
</fn>
<fn id="nt114">
<label>10</label>
<p>P, present, by PCR.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>NM220 and NM233 contained different alleles for three pilin-associated genes
<italic>pilH</italic>
,
<italic>pilI</italic>
, and
<italic>pilJ</italic>
. The population of early strain type isolates contained the late strain type allele except for 2 isolates (isolated in 1998 and 2001), which contained the early strain type alleles.</p>
</sec>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>Some studies have compared whole neisserial genomes in an attempt to elucidate the basis for differences in invasiveness and pathogenicity
<xref ref-type="bibr" rid="pone.0035699-Schoen1">[26]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Bennett1">[48]</xref>
. Other than the presence of a capsule and the production of endotoxin, no definitive requirements for virulence and pathogenicity have been found. All sequenced genomes differ in gene content from each other; the absolute number of differences is understandably greater in strains from different clonal complexes. Even within a clonal complex, some genes are present in some strains but not in all. Some of these variably present genes are phage-related and their presence/absence may reflect evolutionary distance since the time of phage acquisition. Many other variably present genes are annotated as encoding hypothetical proteins, with insufficient similarity to well-characterized genes to allow prediction of function.</p>
<p>A phylogenetic tree of genetic relatedness of early strain type, late strain type and 20 available sequenced meningococcal genomes indicates that the serogroup Y strains are most closely related to each other and they cluster in a branch not closely related to other sequenced genomes. The serogroup Y strains in this study differ in gene content from other sequenced genomes in the same way as other sequenced genomes differ from each other, that is, mainly in phage-related genes and in gene encoding hypothetical proteins. Most notably, the serogroup Y genomes are missing the genes located in the putative islands of horizontal transfer PNM1, IHT-C and IHT-E, all of which appear to be of phage origin. It has been suggested that these genes contribute to virulence and pathogenicity, but their actual roles are currently unknown
<xref ref-type="bibr" rid="pone.0035699-DunningHotopp2">[40]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Joseph1">[49]</xref>
.</p>
<p>Closely related strains that differ in their ability to cause disease are ideal for investigating the genetic factors that contribute to that ability to cause disease
<xref ref-type="bibr" rid="pone.0035699-Didelot1">[50]</xref>
. An analogous situation is presented in the case of replacement of one invasive strain by another over time, where the analysis involves determination of factors responsible for the decrease in incidence of the earlier strain and increase in incidence of the later strain. In this study, we used pyrosequencing to obtain draft genomes of two closely related clonal complex 23 meningococcal strains from Maryland: one whose ST, OMP profile and PFGE profile were representative of a strain causing disease in the early 1990s and one with a different OMP and PFGE profile which was responsible for disease later in that decade
<xref ref-type="bibr" rid="pone.0035699-Harrison2">[2]</xref>
. The early and late strains exhibited antigenic differences which can be postulated to have contributed to the decline of the early strain type and the emergence of the late strain type.</p>
<p>The majority of ORFs in the two genomes had few or no mutations, leading to an overall low level of π
<sub>N</sub>
and π
<sub>S.</sub>
The highest value of both π
<sub>N</sub>
and π
<sub>S</sub>
was found in the gene encoding PorB, which is known to be both immunogenic and highly variable. Other genes with relatively high π
<sub>N</sub>
and π
<sub>S</sub>
included those encoding PorA, FetA, PilV, LbpB, and HpuA. A number of housekeeping genes were represented among those with high π
<sub>N</sub>
and π
<sub>S</sub>
, including shikimate 5-dehydrogenase (
<italic>aroE</italic>
), one of the seven genes used for MLST. The late strain type is a single locus variant of ST-23; single locus variants are considered to have arisen by horizontal gene transfer if the variant allele exhibits extensive differences from the allele found in the parent sequence type. Therefore, the π
<sub>N</sub>
and π
<sub>S</sub>
values for shikimate 5-dehydrogenase can be used as a marker for horizontal gene transfer. Genes in the early and late genomes whose π
<sub>N</sub>
and π
<sub>S</sub>
are similar to that of
<italic>aroE</italic>
have likely been involved in horizontal gene transfer.</p>
<p>In addition to the overall low values of π
<sub>N</sub>
and π
<sub>S</sub>
, loci which differed between the early and late strain type genomes exhibited a surplus of π
<sub>S</sub>
over π
<sub>N</sub>
. This phenomenon has been documented in methicillin-resistant
<italic>Staphylococcus aureus</italic>
and
<italic>Clostridium difficile</italic>
<xref ref-type="bibr" rid="pone.0035699-CastilloRamirez1">[51]</xref>
. Recent mutations show an excess of non-synonymous changes, which will be modified over time by the effects of selection. Alleles which result from horizontal gene transfer have a relative surplus of synonymous changes because in them, selection has already purged deleterious non-synonymous changes. The relative abundance of synonymous over non-synonymous changes in genes which differ between the early and late strains is another indication that these genes have been involved in horizontal gene transfer.</p>
<p>Given that both strain types caused similar rates of disease in the same population during different periods of the same decade, we did not expect major differences in virulence between them. Accordingly, our principal hypothesis was that emergence of the late strain type was primarily due to antigenic changes that allowed escape from population immunity. A number of proteins are known to be immunogenic in
<italic>N. meningitidis</italic>
and many others can be predicted to be immunogenic based upon their structure or their function. Our comparison of whole genomes found a preponderance of antigens unchanged but also found differences in a number of loci that contribute to the antigenic profile and these differences may have been instrumental in disease emergence. Genes exhibiting differences include antigenic outer membrane proteins, genes involved in pilus structure, function and glycosylation, and genes involved in iron acquisition and uptake. Differences in the genes encoding the antigens PorA, PorB, and FetA are more extensive than previously described
<xref ref-type="bibr" rid="pone.0035699-Harrison2">[2]</xref>
. Additional antigens differing between the early and late strain types included putative lipoproteins and the vaccine target Ag473. Neisserial type IV pili
<bold>(</bold>
Tfp
<bold>)</bold>
are necessary for adhesion of bacterial cells to human mucosal cells and are major antigens
<xref ref-type="bibr" rid="pone.0035699-Nassif1">[52]</xref>
. Differences were found in genes that can be expected to affect the Tfp antigen profile, including the major structural subunit PilE and in the pilus tip adhesin PilC
<xref ref-type="bibr" rid="pone.0035699-Rudel1">[53]</xref>
. The
<italic>pilH/I/J</italic>
loci differed between early and late strains but most strains within the population tested contained the late strain type alleles. These loci may not have been involved in emergence of the late strain type. Alternatively, the late strain type alleles may have been acquired early in the genetic transformation of the early to late strain type. The presence of the early strain type alleles in isolates obtained in three different years (1998, 1999, and 2001) may imply persistence of a sub-population possessing those alleles or multiple instances of horizontal transfer. Pilin glycosylation is believed to be an important mechanism for decreasing immunogenicity of the pilin subunits by masking exposed areas of the protein. In
<italic>N. meningitidis</italic>
, the gene encoding pilin glycosylation protein B (PglB) has been documented to exist in 2 forms,
<italic>pglB</italic>
and
<italic>pglB2</italic>
<xref ref-type="bibr" rid="pone.0035699-Kahler1">[47]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Power1">[54]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Power2">[55]</xref>
. The early strain type contains
<italic>pglB</italic>
, while the late strain type contains
<italic>pglB2</italic>
. Based upon the number and extent of differences in genes affecting the structure and function of the pilus, it can be theorized that these differences contributed to the change in disease epidemiology.</p>
<p>Iron acquisition and uptake are necessary for survival of
<italic>N. meningitidis</italic>
in the human host and iron is sequestered in a variety of forms, including lactoferrin, transferrin, and hemoglobin/haptoglobin.
<italic>N. meningitidis</italic>
has evolved mechanisms for obtaining iron from these sources using several two component systems. These systems are antigenic, as they require surface exposure to bind their substrates. In addition, they are highly variable, with different alleles found in otherwise similar strains during epidemics, invoking the concept of a “genocloud”, a combination of a dominant strain and its close relatives
<xref ref-type="bibr" rid="pone.0035699-Zhu1">[56]</xref>
. The early and late strain type differed at genes encoding the main iron acquisition systems for lactoferrin, transferrin, and hemoglobin/haptoglobin. The alleles for these genes were consistent in a population of late strain type isolates. However, some early strain type isolates contained the late strain type allele for
<italic>lbpB</italic>
and the early strain type isolates contained multiple variants of
<italic>tbpB</italic>
, which did not match either the early or late allele. These results may indicate selection for recombinants at these loci in a population of isolates against which human immunity has developed.</p>
<p>We also identified genes encoding known and predicted lipoproteins that were highly similar or identical in the two genomes. Factor H binding protein (
<italic>fHbp</italic>
), neisserial heparin binding antigen (
<italic>nhbA</italic>
) and
<italic>nadA</italic>
have been identified as encoding possible targets for vaccines for prevention of serogroup B meningococcal disease as well as that caused by other serogroups
<xref ref-type="bibr" rid="pone.0035699-Pizza1">[41]</xref>
,
<xref ref-type="bibr" rid="pone.0035699-Jiang1">[42]</xref>
. The gene
<italic>nadA</italic>
was absent in the early and late strain type genomes, but
<italic>fHbp</italic>
and
<italic>nhbA</italic>
were highly conserved. This study found 46 other genes encoding predicted lipoproteins that were identical in amino acid sequence between the early and late strain types and an additional 20 with greater than 99% amino acid identity. The majority of the identical lipoproteins were also highly conserved across 20 sequenced genomes, suggesting that some of them may be appropriate for investigation as vaccine targets. Conservation of antigens may indicate that structural constraints based upon function limit variation in those proteins. Conserved antigens are superior vaccine candidates, since highly variable vaccine targets complicate vaccine formulation, requiring the inclusion of many variants. However, highly conserved antigens may be a disadvantage to the bacteria, since their conservation predicts that any immunity they engender will be broad and will therefore limit spread of many strains.</p>
<p>Only a few genes were found in one of the genomes sequenced in this study but not the other. The majority of these were hypothetical proteins, but some are predicted to be membrane associated and therefore possibly antigenic. The exact function and importance of these genes will require further investigation.</p>
<p>Sequencing of a single genome provides a complete picture of that particular genome but does not provide information on variations among a population of closely related strains. While some studies have sequenced multiple strains, the relationship of a sequenced genome to a wider population of similar strains is still relatively unexplored. Our results indicate that some genes differ even within isolates from a closely related population. The identity of these genes gives important insights into the ways in which
<italic>N. meningitidis</italic>
adapts to the immune response. Allelic variation of known antigens has been demonstrated by targeted Sanger sequencing, but this method requires prior knowledge of the targeted genes. The whole genome approach allows investigation of known targets but also facilitates identification of novel genes whose importance and even function has not previously been determined.</p>
<p>The existence of two strains that are close temporally and geographically, with a majority of genes identical but still some genes highly variant, accentuates the mosaic nature of the meningococcal genome and the ability of this bacterium to acquire new gene variants through horizontal gene transfer and to continue to cause invasive disease. The results of this study suggest that specific genes, mostly encoding antigens, were associated with and were potentially responsible for the expansion of serogroup Y disease. However, this study represents an ecological analysis which makes causality difficult to prove. Additional studies involving multiple examples of clonal emergence of
<italic>N. meningitidis</italic>
are needed to determine whether there are consistent antigenic features associated with meningococcal disease emergence.</p>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0035699.s001">
<label>Figure S1</label>
<caption>
<p>
<bold>Percent identity plots from Mugsy alignments of early strain type, late strain type, MC58, Z2491, 053442, FAM18, and alpha14 visualized using the GMAJ alignment viewer, with the early strain type genome as the reference.</bold>
The horizontal axis shows nucleotide positions in the sequence. The vertical axis shows percentage of matching nucleotides at each position. Percent identity ranges from 50 (bottom) to 100 (top) percent in each row.</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0035699.s001.tif" mimetype="image" mime-subtype="tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0035699.s002">
<label>Figure S2</label>
<caption>
<p>
<bold>Alignment of predicted amino acid sequence of early strain type (upper sequence) and late strain type (lower sequence) PorB (NMY220_1828 and NMY233_1807) showing non-conserved amino acids.</bold>
Boxes outline loops V (*) and VII (+), which were previously reported.</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0035699.s002.tif" mimetype="image" mime-subtype="tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0035699.s003">
<label>Figure S3</label>
<caption>
<p>
<bold>Alignment of predicted protein lactoferrin binding protein B (LbpB) showing non-conserved amino acids.</bold>
Upper sequence early clone (NM220), lower sequence late strain type (NM233).</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0035699.s003.tif" mimetype="image" mime-subtype="tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0035699.s004">
<label>Figure S4</label>
<caption>
<p>
<bold>Alignment of predicted protein hemoglobin-haptoglobin utilization protein A (hpuA) showing non-conserved amino acids.</bold>
Upper sequence early strain type (NM220), lower sequence late strain type (NM233).</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0035699.s004.tif" mimetype="image" mime-subtype="tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0035699.s005">
<label>Figure S5</label>
<caption>
<p>
<bold>Alignment of predicted protein PilC1, showing non-conserved amino acids.</bold>
Upper sequence early strain type (NM220), lower sequence late strain type (NM233).</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0035699.s005.tif" mimetype="image" mime-subtype="tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0035699.s006">
<label>Table S1</label>
<caption>
<p>
<bold>Available sequenced genomes.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0035699.s006.docx" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0035699.s007">
<label>Table S2</label>
<caption>
<p>
<bold>Lipoproteins exhibiting identical nucleotide and amino acid sequence in early and late clones and their amino acid identity across sequenced genomes.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0035699.s007.docx" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0035699.s008">
<label>Table S3</label>
<caption>
<p>
<bold>Early clone (NM220) and late clone (NM233) differences in predicted outer membrane proteins, lipoproteins, proteins involved in pilus biogenesis and non-lipoproteins involved in iron acquisition and uptake.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0035699.s008.docx" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0035699.s009">
<label>Table S4</label>
<caption>
<p>
<bold>Proteins encoded by genes found in only one of the clones.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0035699.s009.docx" mimetype="application" mime-subtype="msword">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We thank Samuel V. Angiuoli for the pre-publication use of MugsyAnnotator and Joana C. Silva for valuable advice and comments. We thank David Blythe, Rosemary Hollick, and the staff of the Maryland Active Bacterial Core surveillance (ABCs) site for assistance with meningococcal disease surveillance.</p>
</ack>
<fn-group>
<fn fn-type="conflict">
<p>
<bold>Competing Interests: </bold>
Dr. Harrison receives research support from Sanofi Pasteur and has served as a consultant to GlaxoSmithKline, Novartis Vaccines, Merck, Sanofi Pasteur, and Pfizer. Dr. Krauland and Dr. Marsh receive research support from Sanofi Pasteur. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials.</p>
</fn>
<fn fn-type="financial-disclosure">
<p>
<bold>Funding: </bold>
This study was supported by a cooperative agreement from the Centers for Disease Control and Prevention and a grant from Sanofi Pasteur. Sanofi Pasteur had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="pone.0035699-Harrison1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harrison</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Trotter</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Ramsay</surname>
<given-names>ME</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Global epidemiology of meningococcal disease.</article-title>
<source>Vaccine</source>
<volume>27</volume>
<issue>Suppl 2</issue>
<fpage>B51</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">19477562</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Harrison2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harrison</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Jolley</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Shutt</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Marsh</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>O'Leary</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2006</year>
<article-title>Antigenic shift and increased incidence of meningococcal disease.</article-title>
<source>J Infect Dis</source>
<volume>193</volume>
<fpage>1266</fpage>
<lpage>1274</lpage>
<pub-id pub-id-type="pmid">16586364</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Jackson1">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jackson</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Wenger</surname>
<given-names>JD</given-names>
</name>
</person-group>
<year>1993</year>
<article-title>Laboratory-based surveillance for meningococcal disease in selected areas, United States, 1989–1991.</article-title>
<source>MMWR CDC Surveill Summ</source>
<volume>42</volume>
<fpage>21</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">8510639</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Rosenstein1">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenstein</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Perkins</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Stephens</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Lefkowitz</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cartter</surname>
<given-names>ML</given-names>
</name>
<etal></etal>
</person-group>
<year>1999</year>
<article-title>The changing epidemiology of meningococcal disease in the United States, 1992–1996.</article-title>
<source>J Infect Dis</source>
<volume>180</volume>
<fpage>1894</fpage>
<lpage>1901</lpage>
<pub-id pub-id-type="pmid">10558946</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-McEllistrem1">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McEllistrem</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Kolano</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Pass</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Caugant</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Mendelsohn</surname>
<given-names>AB</given-names>
</name>
<etal></etal>
</person-group>
<year>2004</year>
<article-title>Correlating epidemiologic trends with the genotypes causing meningococcal disease, Maryland.</article-title>
<source>Emerg Infect Dis</source>
<volume>10</volume>
<fpage>451</fpage>
<lpage>456</lpage>
<pub-id pub-id-type="pmid">15109412</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Achtman1">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Achtman</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>1995</year>
<article-title>Epidemic spread and antigenic variability of
<italic>Neisseria meningitidis</italic>
.</article-title>
<source>Trends Microbiol</source>
<volume>3</volume>
<fpage>186</fpage>
<lpage>192</lpage>
<pub-id pub-id-type="pmid">7627456</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Leimkugel1">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leimkugel</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hodgson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Forgor</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Pfluger</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Dangy</surname>
<given-names>JP</given-names>
</name>
<etal></etal>
</person-group>
<year>2007</year>
<article-title>Clonal waves of
<italic>Neisseria</italic>
colonisation and disease in the African meningitis belt: eight- year longitudinal study in northern Ghana.</article-title>
<source>PLoS Med</source>
<volume>4</volume>
<fpage>e101</fpage>
<pub-id pub-id-type="pmid">17388665</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Moore1">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>PS</given-names>
</name>
</person-group>
<year>1992</year>
<article-title>Meningococcal meningitis in sub-Saharan Africa: a model for the epidemic process.</article-title>
<source>Clin Infect Dis</source>
<volume>14</volume>
<fpage>515</fpage>
<lpage>525</lpage>
<pub-id pub-id-type="pmid">1554841</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Chiou1">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chiou</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Andrade</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Almeida</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Zanella</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Andrade</surname>
<given-names>AL</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Molecular assessment of invasive
<italic>Streptococcus pneumoniae</italic>
serotype 1 in Brazil: evidence of clonal replacement.</article-title>
<source>J Med Microbiol</source>
<volume>57</volume>
<fpage>839</fpage>
<lpage>844</lpage>
<pub-id pub-id-type="pmid">18566141</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Gupta1">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Maiden</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Feavers</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Nee</surname>
<given-names>S</given-names>
</name>
<name>
<surname>May</surname>
<given-names>RM</given-names>
</name>
<etal></etal>
</person-group>
<year>1996</year>
<article-title>The maintenance of strain structure in populations of recombining infectious agents.</article-title>
<source>Nat Med</source>
<volume>2</volume>
<fpage>437</fpage>
<lpage>442</lpage>
<pub-id pub-id-type="pmid">8597954</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Schuchat1">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schuchat</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hilger</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zell</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Farley</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Reingold</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<year>2001</year>
<article-title>Active bacterial core surveillance of the emerging infections program network.</article-title>
<source>Emerg Infect Dis</source>
<volume>7</volume>
<fpage>92</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="pmid">11266299</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Salzberg1">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salzberg</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Delcher</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Fasman</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>1998</year>
<article-title>A decision tree system for finding genes in DNA.</article-title>
<source>J Comput Biol</source>
<volume>5</volume>
<fpage>667</fpage>
<lpage>680</lpage>
<pub-id pub-id-type="pmid">10072083</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Delcher1">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Delcher</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Harmon</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kasif</surname>
<given-names>S</given-names>
</name>
<name>
<surname>White</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Salzberg</surname>
<given-names>SL</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>Improved microbial gene identification with GLIMMER.</article-title>
<source>Nucleic Acids Res</source>
<volume>27</volume>
<fpage>4636</fpage>
<lpage>4641</lpage>
<pub-id pub-id-type="pmid">10556321</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Lowe1">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lowe</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Eddy</surname>
<given-names>SR</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence.</article-title>
<source>Nucleic Acids Res</source>
<volume>25</volume>
<fpage>955</fpage>
<lpage>964</lpage>
<pub-id pub-id-type="pmid">9023104</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Lagesen1">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lagesen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hallin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rodland</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Staerfeldt</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Rognes</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<year>2007</year>
<article-title>RNAmmer: consistent and rapid annotation of ribosomal RNA genes.</article-title>
<source>Nucleic Acids Res</source>
<volume>35</volume>
<fpage>3100</fpage>
<lpage>3108</lpage>
<pub-id pub-id-type="pmid">17452365</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Eddy1">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eddy</surname>
<given-names>SR</given-names>
</name>
</person-group>
<year>1998</year>
<article-title>Profile hidden Markov models.</article-title>
<source>Bioinformatics</source>
<volume>14</volume>
<fpage>755</fpage>
<lpage>763</lpage>
<pub-id pub-id-type="pmid">9918945</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Krogh1">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krogh</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mian</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Haussler</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>1994</year>
<article-title>A hidden Markov model that finds genes in
<italic>E. coli</italic>
DNA.</article-title>
<source>Nucleic Acids Res</source>
<volume>22</volume>
<fpage>4768</fpage>
<lpage>4778</lpage>
<pub-id pub-id-type="pmid">7984429</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Altschul1">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Altschul</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Gish</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Lipman</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<year>1990</year>
<article-title>Basic local alignment search tool.</article-title>
<source>J Mol Biol</source>
<volume>215</volume>
<fpage>403</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="pmid">2231712</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Bendtsen1">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bendtsen</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Improved prediction of signal peptides: SignalP 3.0.</article-title>
<source>J Mol Biol</source>
<volume>340</volume>
<fpage>783</fpage>
<lpage>795</lpage>
<pub-id pub-id-type="pmid">15223320</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Falquet1">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Falquet</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Pagni</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bucher</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hulo</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Sigrist</surname>
<given-names>CJ</given-names>
</name>
<etal></etal>
</person-group>
<year>2002</year>
<article-title>The PROSITE database, its status in 2002.</article-title>
<source>Nucleic Acids Res</source>
<volume>30</volume>
<fpage>235</fpage>
<lpage>238</lpage>
<pub-id pub-id-type="pmid">11752303</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Juncker1">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Juncker</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Willenbrock</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Von Heijne</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>Prediction of lipoprotein signal peptides in Gram-negative bacteria.</article-title>
<source>Protein Sci</source>
<volume>12</volume>
<fpage>1652</fpage>
<lpage>1662</lpage>
<pub-id pub-id-type="pmid">12876315</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Krogh2">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krogh</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Larsson</surname>
<given-names>B</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sonnhammer</surname>
<given-names>EL</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.</article-title>
<source>J Mol Biol</source>
<volume>305</volume>
<fpage>567</fpage>
<lpage>580</lpage>
<pub-id pub-id-type="pmid">11152613</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Delcher2">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Delcher</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Salzberg</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Phillippy</surname>
<given-names>AM</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Using MUMmer to identify similar regions in large sequence sets.</article-title>
<source>Curr Protoc Bioinformatics Chapter 10: Unit 10</source>
<volume>13</volume>
</element-citation>
</ref>
<ref id="pone.0035699-Tettelin1">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tettelin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Saunders</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Heidelberg</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jeffries</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>KE</given-names>
</name>
<etal></etal>
</person-group>
<year>2000</year>
<article-title>Complete genome sequence of
<italic>Neisseria meningitidis</italic>
serogroup B strain MC58.</article-title>
<source>Science</source>
<volume>287</volume>
<fpage>1809</fpage>
<lpage>1815</lpage>
<pub-id pub-id-type="pmid">10710307</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Angiuoli1">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Angiuoli</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Dunning Hotopp</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Salzberg</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Tettelin</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Improving pan-genome annotation using whole genome multiple alignment.</article-title>
<source>BMC Bioinformatics</source>
<volume>12</volume>
<fpage>272</fpage>
<pub-id pub-id-type="pmid">21718539</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Schoen1">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schoen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Blom</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Claus</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Schramm-Gluck</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brandt</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in
<italic>Neisseria meningitidis</italic>
.</article-title>
<source>Proc Natl Acad Sci U S A</source>
<volume>105</volume>
<fpage>3473</fpage>
<lpage>3478</lpage>
<pub-id pub-id-type="pmid">18305155</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Parkhill1">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parkhill</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Achtman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>James</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Bentley</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Churcher</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<year>2000</year>
<article-title>Complete DNA sequence of a serogroup A strain of
<italic>Neisseria meningitidis</italic>
Z2491.</article-title>
<source>Nature</source>
<volume>404</volume>
<fpage>502</fpage>
<lpage>506</lpage>
<pub-id pub-id-type="pmid">10761919</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Peng1">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Characterization of ST-4821 complex, a unique
<italic>Neisseria meningitidis</italic>
clone.</article-title>
<source>Genomics</source>
<volume>91</volume>
<fpage>78</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="pmid">18031983</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Budroni1">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Budroni</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Siena</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hotopp</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Seib</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Serruto</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<year>2011</year>
<article-title>
<italic>Neisseria meningitidis</italic>
is structured in clades associated with restriction modification systems that modulate homologous recombination.</article-title>
<source>Proc Natl Acad Sci U S A</source>
<volume>108</volume>
<fpage>4494</fpage>
<lpage>4499</lpage>
<pub-id pub-id-type="pmid">21368196</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Crabtree1">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crabtree</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Angiuoli</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Wortman</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>White</surname>
<given-names>OR</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Sybil: methods and software for multiple genome comparison and visualization.</article-title>
<source>Methods Mol Biol</source>
<volume>408</volume>
<fpage>93</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="pmid">18314579</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Riley1">
<label>31</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Riley</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Angiuoli</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Crabtree</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dunning Hotopp</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Tettelin</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Using Sybil for interactive comparative genomics of microbes on the web.</article-title>
<publisher-name>Bioinformatics</publisher-name>
</element-citation>
</ref>
<ref id="pone.0035699-DunningHotopp1">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dunning Hotopp</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Madupu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Crabtree</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Angiuoli</surname>
<given-names>SV</given-names>
</name>
<etal></etal>
</person-group>
<year>2006</year>
<article-title>Comparative genomics of emerging human ehrlichiosis agents.</article-title>
<source>PLoS Genet</source>
<volume>2</volume>
<fpage>e21</fpage>
<pub-id pub-id-type="pmid">16482227</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Tettelin2">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tettelin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Masignani</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Cieslewicz</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Donati</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Medini</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>Genome analysis of multiple pathogenic isolates of
<italic>Streptococcus agalactiae</italic>
: implications for the microbial "pan-genome".</article-title>
<source>Proc Natl Acad Sci U S A</source>
<volume>102</volume>
<fpage>13950</fpage>
<lpage>13955</lpage>
<pub-id pub-id-type="pmid">16172379</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Chenna1">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chenna</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Sugawara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Koike</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lopez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gibson</surname>
<given-names>TJ</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>Multiple sequence alignment with the Clustal series of programs.</article-title>
<source>Nucleic Acids Res</source>
<volume>31</volume>
<fpage>3497</fpage>
<lpage>3500</lpage>
<pub-id pub-id-type="pmid">12824352</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Huson1">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huson</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Bryant</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Application of phylogenetic networks in evolutionary studies.</article-title>
<source>Mol Biol Evol</source>
<volume>23</volume>
<fpage>254</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="pmid">16221896</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Yang1">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>PAML 4: phylogenetic analysis by maximum likelihood.</article-title>
<source>Mol Biol Evol</source>
<volume>24</volume>
<fpage>1586</fpage>
<lpage>1591</lpage>
<pub-id pub-id-type="pmid">17483113</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Egan1">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Egan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mahurkar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Crabtree</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Badger</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Carlton</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>IDEA: Interactive Display for Evolutionary Analyses.</article-title>
<source>BMC Bioinformatics</source>
<volume>9</volume>
<fpage>524</fpage>
<pub-id pub-id-type="pmid">19061522</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Rice1">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rice</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Longden</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Bleasby</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>EMBOSS: the European Molecular Biology Open Software Suite.</article-title>
<source>Trends Genet</source>
<volume>16</volume>
<fpage>276</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="pmid">10827456</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Edgar1">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edgar</surname>
<given-names>RC</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>MUSCLE: multiple sequence alignment with high accuracy and high throughput.</article-title>
<source>Nucleic Acids Res</source>
<volume>32</volume>
<fpage>1792</fpage>
<lpage>1797</lpage>
<pub-id pub-id-type="pmid">15034147</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-DunningHotopp2">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dunning Hotopp</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Grifantini</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tzeng</surname>
<given-names>YL</given-names>
</name>
<name>
<surname>Fouts</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<year>2006</year>
<article-title>Comparative genomics of
<italic>Neisseria meningitidis</italic>
: core genome, islands of horizontal transfer and pathogen-specific genes.</article-title>
<source>Microbiology</source>
<volume>152</volume>
<fpage>3733</fpage>
<lpage>3749</lpage>
<pub-id pub-id-type="pmid">17159225</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Pizza1">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pizza</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Scarlato</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Masignani</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Giuliani</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Arico</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<year>2000</year>
<article-title>Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing.</article-title>
<source>Science</source>
<volume>287</volume>
<fpage>1816</fpage>
<lpage>1820</lpage>
<pub-id pub-id-type="pmid">10710308</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Jiang1">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>HQ</given-names>
</name>
<name>
<surname>Hoiseth</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>McNeil</surname>
<given-names>LK</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<year>2010</year>
<article-title>Broad vaccine coverage predicted for a bivalent recombinant factor H binding protein based vaccine to prevent serogroup B meningococcal disease.</article-title>
<source>Vaccine</source>
<volume>28</volume>
<fpage>6086</fpage>
<lpage>6093</lpage>
<pub-id pub-id-type="pmid">20619376</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Comanducci1">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Comanducci</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bambini</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Brunelli</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Adu-Bobie</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Arico</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<year>2002</year>
<article-title>NadA, a novel vaccine candidate of
<italic>Neisseria meningitidis</italic>
.</article-title>
<source>J Exp Med</source>
<volume>195</volume>
<fpage>1445</fpage>
<lpage>1454</lpage>
<pub-id pub-id-type="pmid">12045242</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Hsu1">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsu</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>YL</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>YT</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Immunoproteomic identification of the hypothetical protein NMB1468 as a novel lipoprotein ubiquitous in
<italic>Neisseria meningitidis</italic>
with vaccine potential.</article-title>
<source>Proteomics</source>
<volume>8</volume>
<fpage>2115</fpage>
<lpage>2125</lpage>
<pub-id pub-id-type="pmid">18491322</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Cehovin1">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cehovin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Winterbotham</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lucidarme</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Borrow</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>CM</given-names>
</name>
<etal></etal>
</person-group>
<year>2010</year>
<article-title>Sequence conservation of pilus subunits in
<italic>Neisseria meningitidis</italic>
.</article-title>
<source>Vaccine</source>
<volume>28</volume>
<fpage>4817</fpage>
<lpage>4826</lpage>
<pub-id pub-id-type="pmid">20457291</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Carbonnelle1">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carbonnelle</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Helaine</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nassif</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Pelicic</surname>
<given-names>V</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>A systematic genetic analysis in
<italic>Neisseria meningitidis</italic>
defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili.</article-title>
<source>Mol Microbiol</source>
<volume>61</volume>
<fpage>1510</fpage>
<lpage>1522</lpage>
<pub-id pub-id-type="pmid">16968224</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Kahler1">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kahler</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Blum</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>YK</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Popovic</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<year>2001</year>
<article-title>exl, an exchangeable genetic island in
<italic>Neisseria meningitidis</italic>
.</article-title>
<source>Infect Immun</source>
<volume>69</volume>
<fpage>1687</fpage>
<lpage>1696</lpage>
<pub-id pub-id-type="pmid">11179344</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Bennett1">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bennett</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Bentley</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Vernikos</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Quail</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Cherevach</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<year>2010</year>
<article-title>Independent evolution of the core and accessory gene sets in the genus
<italic>Neisseria</italic>
: insights gained from the genome of
<italic>Neisseria lactamica</italic>
isolate 020–06.</article-title>
<source>BMC Genomics</source>
<volume>11</volume>
<fpage>652</fpage>
<pub-id pub-id-type="pmid">21092259</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Joseph1">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joseph</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Schwarz</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Linke</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Blom</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<year>2011</year>
<article-title>Virulence evolution of the human pathogen
<italic>Neisseria meningitidis</italic>
by recombination in the core and accessory genome.</article-title>
<source>PLoS One</source>
<volume>6</volume>
<fpage>e18441</fpage>
<pub-id pub-id-type="pmid">21541312</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Didelot1">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Didelot</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Urwin</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Maiden</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Falush</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Genealogical typing of
<italic>Neisseria meningitidis</italic>
.</article-title>
<source>Microbiology</source>
<volume>155</volume>
<fpage>3176</fpage>
<lpage>3186</lpage>
<pub-id pub-id-type="pmid">19643763</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-CastilloRamirez1">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castillo-Ramirez</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Holden</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>He</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Parkhill</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<year>2011</year>
<article-title>The Impact of Recombination on dN/dS within Recently Emerged Bacterial Clones.</article-title>
<source>PLoS Pathog</source>
<volume>7</volume>
<fpage>e1002129</fpage>
<pub-id pub-id-type="pmid">21779170</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Nassif1">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nassif</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Lowy</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Stenberg</surname>
<given-names>P</given-names>
</name>
<name>
<surname>O'Gaora</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ganji</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<year>1993</year>
<article-title>Antigenic variation of pilin regulates adhesion of
<italic>Neisseria meningitidis</italic>
to human epithelial cells.</article-title>
<source>Mol Microbiol</source>
<volume>8</volume>
<fpage>719</fpage>
<lpage>725</lpage>
<pub-id pub-id-type="pmid">8332064</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Rudel1">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rudel</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Scheurerpflug</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>TF</given-names>
</name>
</person-group>
<year>1995</year>
<article-title>
<italic>Neisseria</italic>
PilC protein identified as type-4 pilus tip-located adhesin.</article-title>
<source>Nature</source>
<volume>373</volume>
<fpage>357</fpage>
<lpage>359</lpage>
<pub-id pub-id-type="pmid">7830772</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Power1">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Power</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Roddam</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Dieckelmann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Srikhanta</surname>
<given-names>YN</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>YC</given-names>
</name>
<etal></etal>
</person-group>
<year>2000</year>
<article-title>Genetic characterization of pilin glycosylation in
<italic>Neisseria meningitidis</italic>
.</article-title>
<source>Microbiology 146 ( Pt</source>
<volume>4)</volume>
<fpage>967</fpage>
<lpage>979</lpage>
</element-citation>
</ref>
<ref id="pone.0035699-Power2">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Power</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Roddam</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Rutter</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Fitzpatrick</surname>
<given-names>SZ</given-names>
</name>
<name>
<surname>Srikhanta</surname>
<given-names>YN</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>Genetic characterization of pilin glycosylation and phase variation in
<italic>Neisseria meningitidis</italic>
.</article-title>
<source>Mol Microbiol</source>
<volume>49</volume>
<fpage>833</fpage>
<lpage>847</lpage>
<pub-id pub-id-type="pmid">12864863</pub-id>
</element-citation>
</ref>
<ref id="pone.0035699-Zhu1">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>van der Ende</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Falush</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Brieske</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Morelli</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<year>2001</year>
<article-title>Fit genotypes and escape variants of subgroup III
<italic>Neisseria meningitidis</italic>
during three pandemics of epidemic meningitis.</article-title>
<source>Proc Natl Acad Sci U S A</source>
<volume>98</volume>
<fpage>5234</fpage>
<lpage>5239</lpage>
<pub-id pub-id-type="pmid">11287631</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000446  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000446  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024