Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions

Identifieur interne : 000433 ( Pmc/Corpus ); précédent : 000432; suivant : 000434

Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions

Auteurs : Ros Gleadow ; Amelia Pegg ; Cecilia K. Blomstedt

Source :

RBID : PMC:5049390

Abstract

Highlights

Cassava tolerates low but not high levels of salinity via ion exclusion and higher foliar cyanide. Mechanisms for resistance are related to the decreasing value of leaves as plants mature.


Url:
DOI: 10.1093/jxb/erw302
PubMed: 27506218
PubMed Central: 5049390

Links to Exploration step

PMC:5049390

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Resilience of cassava (
<italic>Manihot esculenta</italic>
Crantz) to salinity: implications for food security in low-lying regions</title>
<author>
<name sortKey="Gleadow, Ros" sort="Gleadow, Ros" uniqKey="Gleadow R" first="Ros" last="Gleadow">Ros Gleadow</name>
</author>
<author>
<name sortKey="Pegg, Amelia" sort="Pegg, Amelia" uniqKey="Pegg A" first="Amelia" last="Pegg">Amelia Pegg</name>
</author>
<author>
<name sortKey="Blomstedt, Cecilia K" sort="Blomstedt, Cecilia K" uniqKey="Blomstedt C" first="Cecilia K." last="Blomstedt">Cecilia K. Blomstedt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27506218</idno>
<idno type="pmc">5049390</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049390</idno>
<idno type="RBID">PMC:5049390</idno>
<idno type="doi">10.1093/jxb/erw302</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000433</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000433</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Resilience of cassava (
<italic>Manihot esculenta</italic>
Crantz) to salinity: implications for food security in low-lying regions</title>
<author>
<name sortKey="Gleadow, Ros" sort="Gleadow, Ros" uniqKey="Gleadow R" first="Ros" last="Gleadow">Ros Gleadow</name>
</author>
<author>
<name sortKey="Pegg, Amelia" sort="Pegg, Amelia" uniqKey="Pegg A" first="Amelia" last="Pegg">Amelia Pegg</name>
</author>
<author>
<name sortKey="Blomstedt, Cecilia K" sort="Blomstedt, Cecilia K" uniqKey="Blomstedt C" first="Cecilia K." last="Blomstedt">Cecilia K. Blomstedt</name>
</author>
</analytic>
<series>
<title level="j">Journal of Experimental Botany</title>
<idno type="ISSN">0022-0957</idno>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Highlights</title>
<p>Cassava tolerates low but not high levels of salinity via ion exclusion and higher foliar cyanide. Mechanisms for resistance are related to the decreasing value of leaves as plants mature.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ballhorn, Dj" uniqKey="Ballhorn D">DJ Ballhorn</name>
</author>
<author>
<name sortKey="Elias, Dj" uniqKey="Elias D">DJ Elias</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blomstedt, Ck" uniqKey="Blomstedt C">CK Blomstedt</name>
</author>
<author>
<name sortKey="Gleadow, Rm" uniqKey="Gleadow R">RM Gleadow</name>
</author>
<author>
<name sortKey="O Onnell, N" uniqKey="O Onnell N">N O’Donnell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bradbury, Jh" uniqKey="Bradbury J">JH Bradbury</name>
</author>
<author>
<name sortKey="Cliff, J" uniqKey="Cliff J">J Cliff</name>
</author>
<author>
<name sortKey="Denton, Ic" uniqKey="Denton I">IC Denton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burns, Ae" uniqKey="Burns A">AE Burns</name>
</author>
<author>
<name sortKey="Gleadow, Rm" uniqKey="Gleadow R">RM Gleadow</name>
</author>
<author>
<name sortKey="Cliff, J" uniqKey="Cliff J">J Cliff</name>
</author>
<author>
<name sortKey="Zacarias, A" uniqKey="Zacarias A">A Zacarias</name>
</author>
<author>
<name sortKey="Cavagnaro, Tr" uniqKey="Cavagnaro T">TR Cavagnaro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burns, Ae" uniqKey="Burns A">AE Burns</name>
</author>
<author>
<name sortKey="Gleadow, Rm" uniqKey="Gleadow R">RM Gleadow</name>
</author>
<author>
<name sortKey="Woodrow, Ie" uniqKey="Woodrow I">IE Woodrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burns, Ae" uniqKey="Burns A">AE Burns</name>
</author>
<author>
<name sortKey="Gleadow, Rm" uniqKey="Gleadow R">RM Gleadow</name>
</author>
<author>
<name sortKey="Zacarias, A" uniqKey="Zacarias A">A Zacarias</name>
</author>
<author>
<name sortKey="Cuambe, Ce" uniqKey="Cuambe C">CE Cuambe</name>
</author>
<author>
<name sortKey="Miller, Re" uniqKey="Miller R">RE Miller</name>
</author>
<author>
<name sortKey="Cavagnaro, Tr" uniqKey="Cavagnaro T">TR Cavagnaro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cabello, Jv" uniqKey="Cabello J">JV Cabello</name>
</author>
<author>
<name sortKey="Lodeyro, Af" uniqKey="Lodeyro A">AF Lodeyro</name>
</author>
<author>
<name sortKey="Zurbriggen, Md" uniqKey="Zurbriggen M">MD Zurbriggen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carretero, Cl" uniqKey="Carretero C">CL Carretero</name>
</author>
<author>
<name sortKey="Cantos, M" uniqKey="Cantos M">M Cantos</name>
</author>
<author>
<name sortKey="Garcia, Jl" uniqKey="Garcia J">JL García</name>
</author>
<author>
<name sortKey="Azc N, R" uniqKey="Azc N R">R Azcón</name>
</author>
<author>
<name sortKey="Troncoso, A" uniqKey="Troncoso A">A Troncoso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Church, Ja" uniqKey="Church J">JA Church</name>
</author>
<author>
<name sortKey="Clark, Pu" uniqKey="Clark P">PU Clark</name>
</author>
<author>
<name sortKey="Cazenave, A" uniqKey="Cazenave A">A Cazenave</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cliff, J" uniqKey="Cliff J">J Cliff</name>
</author>
<author>
<name sortKey="Nicala, D" uniqKey="Nicala D">D Nicala</name>
</author>
<author>
<name sortKey="Saute, F" uniqKey="Saute F">F Saute</name>
</author>
<author>
<name sortKey="Givragy, R" uniqKey="Givragy R">R Givragy</name>
</author>
<author>
<name sortKey="Azambuja, G" uniqKey="Azambuja G">G Azambuja</name>
</author>
<author>
<name sortKey="Taela, A" uniqKey="Taela A">A Taela</name>
</author>
<author>
<name sortKey="Chavane, L" uniqKey="Chavane L">L Chavane</name>
</author>
<author>
<name sortKey="Howarth, J" uniqKey="Howarth J">J Howarth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Sharkawy, Ma" uniqKey="El Sharkawy M">MA El-Sharkawy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ernesto, M" uniqKey="Ernesto M">M Ernesto</name>
</author>
<author>
<name sortKey="Cardoso, Ap" uniqKey="Cardoso A">AP Cardoso</name>
</author>
<author>
<name sortKey="Nicala, D" uniqKey="Nicala D">D Nicala</name>
</author>
<author>
<name sortKey="Mirione, E" uniqKey="Mirione E">E Mirione</name>
</author>
<author>
<name sortKey="Massaza, F" uniqKey="Massaza F">F Massaza</name>
</author>
<author>
<name sortKey="Cliff, J" uniqKey="Cliff J">J Cliff</name>
</author>
<author>
<name sortKey="Haque, Mr" uniqKey="Haque M">MR Haque</name>
</author>
<author>
<name sortKey="Bradbury, Jh" uniqKey="Bradbury J">JH Bradbury</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gegios, A" uniqKey="Gegios A">A Gegios</name>
</author>
<author>
<name sortKey="Amthor, R" uniqKey="Amthor R">R Amthor</name>
</author>
<author>
<name sortKey="Maziya Dixon, B" uniqKey="Maziya Dixon B">B Maziya-Dixon</name>
</author>
<author>
<name sortKey="Egesi, C" uniqKey="Egesi C">C Egesi</name>
</author>
<author>
<name sortKey="Mallowa, S" uniqKey="Mallowa S">S Mallowa</name>
</author>
<author>
<name sortKey="Nungo, R" uniqKey="Nungo R">R Nungo</name>
</author>
<author>
<name sortKey="Gichuki, S" uniqKey="Gichuki S">S Gichuki</name>
</author>
<author>
<name sortKey="Mbanaso, A" uniqKey="Mbanaso A">A Mbanaso</name>
</author>
<author>
<name sortKey="Manary, Mj" uniqKey="Manary M">MJ Manary</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gleadow, Rm" uniqKey="Gleadow R">RM Gleadow</name>
</author>
<author>
<name sortKey="Rowan, Ks" uniqKey="Rowan K">KS Rowan</name>
</author>
<author>
<name sortKey="Ashton, Dh" uniqKey="Ashton D">DH Ashton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gleadow, Rm" uniqKey="Gleadow R">RM Gleadow</name>
</author>
<author>
<name sortKey="Evans, Jr" uniqKey="Evans J">JR Evans</name>
</author>
<author>
<name sortKey="Mccaffery, S" uniqKey="Mccaffery S">S McCaffery</name>
</author>
<author>
<name sortKey="Cavagnaro, Tr" uniqKey="Cavagnaro T">TR Cavagnaro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gleadow, Rm" uniqKey="Gleadow R">RM Gleadow</name>
</author>
<author>
<name sortKey="M Ller, Bl" uniqKey="M Ller B">BL Møller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gleadow, Rm" uniqKey="Gleadow R">RM Gleadow</name>
</author>
<author>
<name sortKey="Woodrow, Ie" uniqKey="Woodrow I">IE Woodrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hawker, Js" uniqKey="Hawker J">JS Hawker</name>
</author>
<author>
<name sortKey="Smith, Gm" uniqKey="Smith G">GM Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Indira, P" uniqKey="Indira P">P Indira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="J Rgensen, K" uniqKey="J Rgensen K">K Jørgensen</name>
</author>
<author>
<name sortKey="Bak, S" uniqKey="Bak S">S Bak</name>
</author>
<author>
<name sortKey="Busk, Pk" uniqKey="Busk P">PK Busk</name>
</author>
<author>
<name sortKey="Sorensen, C" uniqKey="Sorensen C">C Sorensen</name>
</author>
<author>
<name sortKey="Olsen, Ce" uniqKey="Olsen C">CE Olsen</name>
</author>
<author>
<name sortKey="Puonti Kaerlas, J" uniqKey="Puonti Kaerlas J">J Puonti-Kaerlas</name>
</author>
<author>
<name sortKey="M Ller, Bl" uniqKey="M Ller B">BL Møller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kongsawadworakul, P" uniqKey="Kongsawadworakul P">P Kongsawadworakul</name>
</author>
<author>
<name sortKey="Viboonjun, U" uniqKey="Viboonjun U">U Viboonjun</name>
</author>
<author>
<name sortKey="Romruensukharom, P" uniqKey="Romruensukharom P">P Romruensukharom</name>
</author>
<author>
<name sortKey="Chantuma, P" uniqKey="Chantuma P">P Chantuma</name>
</author>
<author>
<name sortKey="Ruderman, S" uniqKey="Ruderman S">S Ruderman</name>
</author>
<author>
<name sortKey="Chrestin, H" uniqKey="Chrestin H">H Chrestin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Latif, S" uniqKey="Latif S">S Latif</name>
</author>
<author>
<name sortKey="Muller, J" uniqKey="Muller J">J Müller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lobell, Db" uniqKey="Lobell D">DB Lobell</name>
</author>
<author>
<name sortKey="Burke, Mb" uniqKey="Burke M">MB Burke</name>
</author>
<author>
<name sortKey="Tebaldi, C" uniqKey="Tebaldi C">C Tebaldi</name>
</author>
<author>
<name sortKey="Mastrandrea, Md" uniqKey="Mastrandrea M">MD Mastrandrea</name>
</author>
<author>
<name sortKey="Falcon, Wp" uniqKey="Falcon W">WP Falcon</name>
</author>
<author>
<name sortKey="Naylor, Rl" uniqKey="Naylor R">RL Naylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mattius, Fjm" uniqKey="Mattius F">FJM Mattius</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckey, D" uniqKey="Mckey D">D McKey</name>
</author>
<author>
<name sortKey="Cavagnaro, Tr" uniqKey="Cavagnaro T">TR Cavagnaro</name>
</author>
<author>
<name sortKey="Cliff, J" uniqKey="Cliff J">J Cliff</name>
</author>
<author>
<name sortKey="Gleadow, Rm" uniqKey="Gleadow R">RM Gleadow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcmahon, Jm" uniqKey="Mcmahon J">JM McMahon</name>
</author>
<author>
<name sortKey="White, Wlb" uniqKey="White W">WLB White</name>
</author>
<author>
<name sortKey="Sayre, Rt" uniqKey="Sayre R">RT Sayre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="M Ller, Bl" uniqKey="M Ller B">BL Møller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munns, R" uniqKey="Munns R">R Munns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munns, R" uniqKey="Munns R">R Munns</name>
</author>
<author>
<name sortKey="Gillman, M" uniqKey="Gillman M">M Gillman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nunn, Pd" uniqKey="Nunn P">PD Nunn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nweke, Fi" uniqKey="Nweke F">FI Nweke</name>
</author>
<author>
<name sortKey="Spencer, Dsc" uniqKey="Spencer D">DSC Spencer</name>
</author>
<author>
<name sortKey="Lynam, Jk" uniqKey="Lynam J">JK Lynam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pi Manova, M" uniqKey="Pi Manova M">M Pičmanová</name>
</author>
<author>
<name sortKey="Neilson, Eh" uniqKey="Neilson E">EH Neilson</name>
</author>
<author>
<name sortKey="Motawia, Ms" uniqKey="Motawia M">MS Motawia</name>
</author>
<author>
<name sortKey="Olsen, Ce" uniqKey="Olsen C">CE Olsen</name>
</author>
<author>
<name sortKey="Agerbirk, N" uniqKey="Agerbirk N">N Agerbirk</name>
</author>
<author>
<name sortKey="Gray, Cj" uniqKey="Gray C">CJ Gray</name>
</author>
<author>
<name sortKey="Flitsch, S" uniqKey="Flitsch S">S Flitsch</name>
</author>
<author>
<name sortKey="Meier, S" uniqKey="Meier S">S Meier</name>
</author>
<author>
<name sortKey="Silvestro, D" uniqKey="Silvestro D">D Silvestro</name>
</author>
<author>
<name sortKey="J Rgensen, K" uniqKey="J Rgensen K">K Jørgensen</name>
</author>
<author>
<name sortKey="Sanchez, Perez R" uniqKey="Sanchez P">Pérez R Sánchez</name>
</author>
<author>
<name sortKey="M Ller, Bl" uniqKey="M Ller B">BL Møller</name>
</author>
<author>
<name sortKey="Bjarnholt, N" uniqKey="Bjarnholt N">N Bjarnholt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, Sj" uniqKey="Roy S">SJ Roy</name>
</author>
<author>
<name sortKey="Negrao, S" uniqKey="Negrao S">S Negrao</name>
</author>
<author>
<name sortKey="Tester, M" uniqKey="Tester M">M Tester</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Selmar, D" uniqKey="Selmar D">D Selmar</name>
</author>
<author>
<name sortKey="Kleinw Chter, M" uniqKey="Kleinw Chter M">M Kleinwächter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sendker, J" uniqKey="Sendker J">J Sendker</name>
</author>
<author>
<name sortKey="Ellendorff, T" uniqKey="Ellendorff T">T Ellendorff</name>
</author>
<author>
<name sortKey="Holzenbein, A" uniqKey="Holzenbein A">A Hölzenbein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Setter, Tl" uniqKey="Setter T">TL Setter</name>
</author>
<author>
<name sortKey="Fregene, Ma" uniqKey="Fregene M">MA Fregene</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shannon, Mc" uniqKey="Shannon M">MC Shannon</name>
</author>
<author>
<name sortKey="Grieve, Cm" uniqKey="Grieve C">CM Grieve</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simon, J" uniqKey="Simon J">J Simon</name>
</author>
<author>
<name sortKey="Gleadow, Rm" uniqKey="Gleadow R">RM Gleadow</name>
</author>
<author>
<name sortKey="Woodrow, Ie" uniqKey="Woodrow I">IE Woodrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vandegeer, R" uniqKey="Vandegeer R">R Vandegeer</name>
</author>
<author>
<name sortKey="Miller, Re" uniqKey="Miller R">RE Miller</name>
</author>
<author>
<name sortKey="Bain, M" uniqKey="Bain M">M Bain</name>
</author>
<author>
<name sortKey="Gleadow, Rm" uniqKey="Gleadow R">RM Gleadow</name>
</author>
<author>
<name sortKey="Cavagnaro, Tr" uniqKey="Cavagnaro T">TR Cavagnaro</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Exp Bot</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Exp. Bot</journal-id>
<journal-id journal-id-type="hwp">jexbot</journal-id>
<journal-id journal-id-type="publisher-id">exbotj</journal-id>
<journal-title-group>
<journal-title>Journal of Experimental Botany</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-0957</issn>
<issn pub-type="epub">1460-2431</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
<publisher-loc>UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27506218</article-id>
<article-id pub-id-type="pmc">5049390</article-id>
<article-id pub-id-type="doi">10.1093/jxb/erw302</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Paper</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Resilience of cassava (
<italic>Manihot esculenta</italic>
Crantz) to salinity: implications for food security in low-lying regions</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Gleadow</surname>
<given-names>Ros</given-names>
</name>
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0003-4756-0411</contrib-id>
<xref rid="c1" ref-type="corresp">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pegg</surname>
<given-names>Amelia</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Blomstedt</surname>
<given-names>Cecilia K.</given-names>
</name>
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0003-1919-6982</contrib-id>
</contrib>
<aff id="AF0001">
<institution>School of Biological Sciences, Monash University</institution>
,
<addr-line>Clayton, Melbourne, Victoria 3800</addr-line>
,
<country>Australia</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">* Correspondence:
<email>ros.gleadow@monash.edu</email>
</corresp>
<fn id="fn0001" fn-type="other">
<p>Editor: Ramanjulu Sunkar, Oklahoma State University</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>10</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>9</day>
<month>8</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>9</day>
<month>8</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>67</volume>
<issue>18</issue>
<fpage>5403</fpage>
<lpage>5413</lpage>
<permissions>
<copyright-statement>© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.</copyright-statement>
<copyright-year>2016</copyright-year>
<license license-type="creative-commons" xlink:href="http://creativecommons.org/licenses/by/3.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/3.0/">http://creativecommons.org/licenses/by/3.0/</ext-link>
), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract abstract-type="precis">
<title>Highlights</title>
<p>Cassava tolerates low but not high levels of salinity via ion exclusion and higher foliar cyanide. Mechanisms for resistance are related to the decreasing value of leaves as plants mature.</p>
</abstract>
<abstract>
<p>Rising sea levels are threatening agricultural production in coastal regions due to inundation and contamination of groundwater. The development of more salt-tolerant crops is essential. Cassava is an important staple, particularly among poor subsistence farmers. Its tolerance to drought and elevated temperatures make it highly suitable for meeting global food demands in the face of climate change, but its ability to tolerate salt is unknown. Cassava stores nitrogen in the form of cyanogenic glucosides and can cause cyanide poisoning unless correctly processed. Previous research demonstrated that cyanide levels are higher in droughted plants, possibly as a mechanism for increasing resilience to oxidative stress. We determined the tolerance of cassava to salt at two different stages of development, and tested the hypothesis that cyanide toxicity would be higher in salt-stressed plants. Cassava was grown at a range of concentrations of sodium chloride (NaCl) at two growth stages: tuber initiation and tuber expansion. Established plants were able to tolerate 100mM NaCl but in younger plants 40mM was sufficient to retard plant growth severely. Nutrient analysis showed that plants were only able to exclude sodium at low concentrations. The foliar cyanogenic glucoside concentration in young plants increased under moderate salinity stress but was lower in plants grown at high salt. Importantly, there was no significant change in the cyanogenic glucoside concentration in the tubers. We propose that the mechanisms for salinity tolerance are age dependent, and that this can be traced to the relative cost of leaves in young and old plants.</p>
</abstract>
<kwd-group>
<title>Key words:</title>
<kwd>Cassava</kwd>
<kwd>cyanogenic glucosides</kwd>
<kwd>food security</kwd>
<kwd>Konzo</kwd>
<kwd>linamarin</kwd>
<kwd>salinity</kwd>
<kwd>sea level.</kwd>
</kwd-group>
<funding-group>
<award-group id="funding-1">
<funding-source>Australian Centre for International Agricultural Research
<named-content content-type="funder-id">http://dx.doi.org/10.13039/501100000974</named-content>
</funding-source>
</award-group>
</funding-group>
<counts>
<page-count count="11"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Rising sea levels and salinization of groundwater is becoming an increasing problem in many parts of the world, reducing the area of land available for agricultural crops (
<xref rid="CIT0010" ref-type="bibr">Church
<italic>et al.</italic>
, 2013</xref>
;
<xref rid="CIT0033" ref-type="bibr">Nunn, 2013</xref>
). Globally, one-fifth of irrigated land is salt affected (450 000 km
<sup>2</sup>
), resulting in huge losses in productivity (
<xref rid="CIT0032" ref-type="bibr">Munns and Gillman, 2015</xref>
). The ablity to tolerate salt varies within and between species. Barley (
<italic>Hordeum vulgare</italic>
), for example, is one of the more salt-tolerant crops, while lupins (
<italic>Lupinus albus</italic>
) is one of the most sensitive (
<xref rid="CIT0031" ref-type="bibr">Munns, 2002</xref>
). Little is known about the impact of salinity on some of the world’s major staples.</p>
<p content-type="indent">Cassava (
<italic>Manihot esculenta</italic>
Crantz) is the most widely grown root crop in the world and the tuberous roots are the principle source of calories for many of the world’s poorest people (
<xref rid="CIT0034" ref-type="bibr">Nweke
<italic>et al.</italic>
, 2002</xref>
;
<xref rid="CIT0014" ref-type="bibr">FAO, 2014</xref>
). Cassava has the ability to cope with a wide range of environmental stresses and continues to produce tubers under poor growing conditions, such as low nutrients and drought (
<xref rid="CIT0012" ref-type="bibr">El-Sharkawy, 1993</xref>
;
<xref rid="CIT0023" ref-type="bibr">Jørgensen
<italic>et al.</italic>
, 2005</xref>
;
<xref rid="CIT0005" ref-type="bibr">Burns
<italic>et al.</italic>
, 2010</xref>
), yet little is known about how it responds to salt stress. Its classification as ‘moderately sensitive’ by the FAO is based on three early studies (
<xref rid="CIT0001" ref-type="bibr">Anon, 1976</xref>
;
<xref rid="CIT0021" ref-type="bibr">Hawker and Smith, 1982</xref>
;
<xref rid="CIT0022" ref-type="bibr">Indira, 1978</xref>
). More recently,
<xref rid="CIT0009" ref-type="bibr">Carretero
<italic>et al.</italic>
(2008)</xref>
, in a study of pre-tuberous plants, found large effects on growth at 68mM sodium chloride (NaCl) and only 30% survival at the highest concentration (136.8mM NaCl).</p>
<p content-type="indent">Even less is known about the impact of salinity on the nutritional value of cassava. Unlike all other staple foods, cassava can be lethal if not correctly processed due to the high levels of the cyanogenic glucosides, linamarin and lotaustralin, that break down to release cyanide when mixed with specific β-glucosidases (
<xref rid="CIT0029" ref-type="bibr">McMahon
<italic>et al.</italic>
, 1995</xref>
;
<xref rid="CIT0028" ref-type="bibr">McKey
<italic>et al.</italic>
, 2010</xref>
). Consumption of cassava that is high in cyanide may cause diseases in humans, such as Konzo (an irreversible paralysis of the lower limbs), tropical ataxia, and even death (
<xref rid="CIT0011" ref-type="bibr">Cliff
<italic>et al.</italic>
, 1997</xref>
;
<xref rid="CIT0005" ref-type="bibr">Burns
<italic>et al.</italic>
, 2010</xref>
;
<xref rid="CIT0004" ref-type="bibr">Bradbury
<italic>et al.</italic>
, 2011</xref>
). There is a strong link between Konzo epidemics and the increase in cyanide concentrations during droughts (
<xref rid="CIT0013" ref-type="bibr">Ernesto
<italic>et al.</italic>
, 2002</xref>
), but there are no published studies on whether salinity-induced physiological droughts also result in higher levels of cyanide, and possible threats to health and food security.
<xref rid="CIT0002" ref-type="bibr">Ballhorn and Elias (2014)</xref>
, in the only published study on the effect of salinity on the production of cyanogenic glucosides, found for
<italic>Trifolium repens</italic>
that the cyanogenic glucoside concentration did increase in proportion to increasing salinity. Salinity is also known to affect the micronutrient concentration in plants. Given that children consuming cassava as a staple food are at risk for micronutrient deficiencies, particularly zinc, iron, and vitamin A (
<xref rid="CIT0016" ref-type="bibr">Gegios
<italic>et al.</italic>
, 2010</xref>
), it is important to assess the possible impact of salinity on their availability in cassava food products.</p>
<p content-type="indent">Cyanogenic glucosides are an effective defence again herbivores (
<xref rid="CIT0020" ref-type="bibr">Gleadow and Woodrow, 2002</xref>
), but they represent a significant drain on resources that might otherwise be used for growth (e.g.
<xref rid="CIT0041" ref-type="bibr">Simon
<italic>et al.</italic>
, 2010</xref>
). This is balanced by the alternative roles they may play in primary metabolism, such as the transport and storage of nitrogen and mitigation of oxidative stress (
<xref rid="CIT0020" ref-type="bibr">Gleadow and Woodrow, 2002</xref>
;
<xref rid="CIT0024" ref-type="bibr">Kongsawadworakul
<italic>et al.</italic>
, 2009</xref>
;
<xref rid="CIT0037" ref-type="bibr">Selmar and Kleinwächeter, 2013</xref>
;
<xref rid="CIT0019" ref-type="bibr">Gleadow and Møller, 2014</xref>
). Thus the partitioning of resources is a balance between defence, particuarly when growth is limited, and, for example, stress tolerance and nitrogen turnover.</p>
<p content-type="indent">The aim of this study was, therefore, to determine the effect that salinity had on biomass and nutritional composition at two different life stages of cassava. We tested the tolerance of established plants, with well-developed tubers, to a wide range of NaCl solutions. The second experiment involved a detailed study on young clonally propagated plantlets through to tuber initiation. Photosynthetic parameters, growth indices, mineral nutrient composition, and cyanogenic glucoside concentration were determined and used to estimate the impact of salinity on plant production and nutritional value.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and methods</title>
<sec id="s3">
<title>Plant material and growing conditions</title>
<p>Cassava (
<italic>Manihot esculenta</italic>
Cranz) cv. MAus7 was grown in a greenhouse at the School of Biological Sciences complex Monash University, Clayton. Average temperature was 25 °C/23.5 °C day/night with a relative humidity of 75%. Glasshouses received natural light. The photoperiod was extended to 14h from May to September 2014 using sodium lamps (MK-1 Just-a-shade, Ablite Australia, Sunnfield Enterprises, Allambie Heights, NSW, Australia). Plants were rotated weekly to reduce microenvironment effects.</p>
<sec id="s4">
<title>Experiment 1: effect of a range of salt concentrations on established cassava plants</title>
<p>The effect of salt on cassava plants with established tuberous roots (‘tubers’, hereafter) was tested. Cassava (one plant per pot) was grown in 8 litre pots containing commercial potting mix with slow-release fertilizer (Osmocote
<sup>®</sup>
) for 8 months (June 2013–January 2014) and then treated with four different concentrations of NaCl for 4 weeks. Eight-month-old cassava plants were matched according to height and leaf number to form five sets with seven plants in individual pots in each group. One group was harvested for initial biomass determination (
<italic>n</italic>
=7 plants). The other groups were assigned to one of four different salt treatments (0, 50, 100, or 150mM NaCl) (
<xref rid="CIT0021" ref-type="bibr">Hawker and Smith, 1982</xref>
;
<xref rid="CIT0009" ref-type="bibr">Carretero
<italic>et al.</italic>
, 2008</xref>
) in a randomized matched-pair design. Plants were watered with 1.4 litres of solution two times per week, such that the solution ran through the pots. Pots were flushed weekly with 2 litres of water to prevent the build-up of salt in the soil. All plants were destructively harvested after 28 d for biomass determination and chemical analysis.</p>
</sec>
<sec id="s5">
<title>Experiment 2: long-term effects of salinity on growth and tuber initiation</title>
<p>In the second experiment, longer term effects of salt on plants prior to tuber initiation were tested. In this experiment, young plants were established from cuttings (January 2014) and transplanted after 2 months (~15cm tall, three leaves) into 2 litre pots containing potting mix (as above) and mixed 5:1 (v/v) with soil containing mycorrhizal colonies, from the Jock Marshall Reserve, Monash University following
<xref rid="CIT0042" ref-type="bibr">Vandegeer
<italic>et al.</italic>
(2013)</xref>
. During this time, they were watered twice a week, once with a commercial full nutrient solution (Aquasol
<sup>®</sup>
, 10ml l
<sup>−1</sup>
H
<sub>2</sub>
O), and once with plain water. Before treatments were imposed, a set of 10 plants were harvested for dry mass determination. Plants were then watered with three different concentrations of salt [0, 40, and 80mM NaCl (
<italic>n</italic>
=10) based on the results of Experiment 1]. In order to avoid a shock response, the salt concentration was increased gradually, starting at 20mM and increasing by 20mM every 3 d until the levels of 40mM and 80mM were reached. These levels were then maintained for the remainder of the experiment, a total of 70 d. The plants were watered with 300ml of their appropriate solution twice a week. This volume was enough to saturate the soil. Pots were flushed weekly with 500ml of water to prevent accumulation of salt in the soil. To ensure plants did not become nutrient limited, they were watered with Aquasol
<sup>®</sup>
on days 49, 52, and 56 of the study at a rate of 10ml l
<sup>−1</sup>
.</p>
<p content-type="indent">The stem height and leaf number of each plant were recorded each week. Stem height was measured from the soil surface to the point where the newest leaf was expanding. The number of lobes of the third fully expanded leaf and the length of the middle lobe of that leaf was also recorded weekly. The lobe length was the distance from the point where the leaf blade was attached to the petiole to the tip of the lobe. All plants (
<italic>n</italic>
=30) were destructively harvested after 70 d (see below).</p>
</sec>
</sec>
<sec id="s6">
<title>Harvesting protocol</title>
<p>The biomass of plants was separated into above-ground (stem, petioles, leaves) and below-ground (cutting, roots, tubers). The above-ground biomass of plants was removed by cutting the stem at the soil surface. Leaves were removed from the plant and separated into three classes: fully expanded, unexpanded, or senescent. Expanded leaves were defined as fully developed leaves, unexpanded leaves were young, soft leaves, and senescent leaves were defined as leaves that were yellow or brown in colour on >50% of the leaf surface. Leaf fresh weight was recorded for all classes and leaf area was taken for expanded and unexpanded leaves using a leaf area meter (LI-3000 Portable Area Meter, Li-Cor, Lincoln, NE, USA). Three leaf discs (diameter=5mm) were taken from the third fully expanded leaf and one disc from tubers and frozen at –20 °C for later analysis for cyanogenic glucosides. Height, and stem and petiole weight were recorded. Roots and tubers were washed and all soil removed where possible. For Experiment 1, tubers and roots were weighed separately, oven-dried at 60 °C for 14 d, and dry weights determined. For Experiment 2, roots were separated into fine roots and thick roots (tuberous roots). Thick roots were defined as roots that were white in appearance and >2mm in diameter. All leaf and root tissue was frozen in liquid nitrogen and freeze-dried for 5 d, and weighed. The remaining biomass (stems and petioles) was oven-dried at 60 °C for 14 d and dry weights determined.</p>
</sec>
<sec id="s7">
<title>Growth indices</title>
<p>The root:shoot ratio was calculated by dividing the total below-ground biomass (DW) by the total above-ground biomass (DW). The relative growth rate (RGR) was calculated as follows: RGR=log(W
<sub>2</sub>
)–log(W
<sub>1</sub>
)/(
<italic>t</italic>
<sub>2</sub>
<italic>t</italic>
<sub>1</sub>
), where W
<sub>1</sub>
and W
<sub>2</sub>
are the initial and final dry mass at time 1 (
<italic>t</italic>
<sub>1</sub>
) and time 2 (
<italic>t</italic>
<sub>2</sub>
). The specific leaf area (SLA) of fully expanded leaves was calculated as leaf area per g dry leaf mass.</p>
</sec>
<sec id="s8">
<title>Photosynthetic parameters: assimilation rates,
<italic>F</italic>
<sub>v</sub>
'/
<italic>F</italic>
<sub>m</sub>
', greenness, and chlorophyll</title>
<p>Light-saturated measurements of the photosynthetic rate and light-adapted chlorophyll fluorescence,
<italic>F</italic>
<sub>v</sub>
'/
<italic>F</italic>
<sub>m</sub>
', were made using a Li-Cor 6400 gas exchange system on all living plants in Experiment 2 in the week before harvesting (20 August 2014). Three concordant measurements were made on the third fully expanded leaf from each living plant at 700 µmol m
<sup>−2</sup>
s
<sup>−2</sup>
PAR; 400ppm CO
<sub>2</sub>
, 25 °C (growth temperature), and a relative humidity of 50%, following
<xref rid="CIT0018" ref-type="bibr">Gleadow
<italic>et al.</italic>
(2009)</xref>
.</p>
<p content-type="indent">Total chlorophyll concentration was measured following
<xref rid="CIT0017" ref-type="bibr">Gleadow
<italic>et al.</italic>
(1983)</xref>
as modified by
<xref rid="CIT0006" ref-type="bibr">Burns
<italic>et al.</italic>
(2002)</xref>
. Freeze-dried leaf tissue (100mg) was extracted twice in 2ml of 80% acetone and the absorbance measured at 647, 665, and 750nm using a FLUOstar Galaxy plate reader (BMG, Australia). Greenness measurement readings were made of the third fully expanded leaf using the GreenIndex+ Ap (Spectrum Technologies Inc.
<sup>®</sup>
) by taking a photograph of the middle lobe against a background of known colour and using in-built algorithms. To our knowledge, this is the first time GreenIndex+ measurements have been made on cassava.</p>
</sec>
<sec id="s9">
<title>Plant composition: cyanogenic glucosides, total nitrogen, and micro- and macronutrients</title>
<p>The cyanogenic glucoside concentration was measured by the evolved cyanide method. Freeze-dried tissue (three leaf discs diameter=1cm
<sup>2;</sup>
or one tuber disc, 2mm thick) was placed into sealed vials with 270 µl of 0.1M pH 6.4 phosphate buffer, and a separate 0.2ml inner tube containing 200 µl of 1M NaOH. Vials were then frozen and thawed at room temperature twice to disrupt the cells, and incubated for ~19h at 37 °C. The cyanide evolved from the cyanogenic glucosides trapped in the NaOH was assayed colorimetrically following
<xref rid="CIT0003" ref-type="bibr">Blomstedt
<italic>et al.</italic>
(2012)</xref>
. To ensure complete conversion of the cyanogenic glucosides to cyanide, latex [30 µl, in 0.1M phosphate buffer pH 6.4, 1:100 (v/v)] was added to the reaction vial, as latex contains the degradative β-glucosidases and α-hydoxynitrile lyases necessary to degrade both linamarin and lotaustralin (
<xref rid="CIT0023" ref-type="bibr">Jørgensen
<italic>et al.</italic>
, 2005</xref>
). Tissue in vials was rinsed, dried, and weighed for biomass determination to allow the calculation of the hydrogen cyanide potential (HCNp) of the tissue analysed.</p>
<p content-type="indent">Total elemental nitrogen and carbon were measured on finely ground, freeze-dried leaf and tuber samples using a LECO CNS2000 analyser. The remaining nutrient analyses were performed using inductively coupled plasma (ICP)-MS on microwave-digested samples (Environmental Analysis Laboratory, Southern Cross University, NSW, Australia).</p>
</sec>
<sec id="s10">
<title>Statistical analysis</title>
<p>Data were analysed with Prism Graphpad 6
<sup>®</sup>
using ANOVA and
<italic>t</italic>
-tests. Matched-pair ANOVAs were used for analysis of Experiment 1 as plants were grouped according to size. Means were compared using post-hoc Tukey’s tests (
<italic>P</italic>
<0.05) where a statistical significance was detected between groups. Data were log transformed if required in order to satisfy the assumptions of normality.</p>
</sec>
</sec>
<sec id="s11">
<title>Results</title>
<sec id="s12">
<title>Experiment 1: effect of a range of salt concentrations on established cassava plants</title>
<p>Plants were grown at four concentrations of salt for 28 d. Above-ground biomass decreased with increasing salinity and was significantly lower in plants grown at 100mM and 150mM NaCl (
<xref ref-type="fig" rid="F1">Fig. 1A</xref>
) compared with controls. Mean above-ground dry weight in control plants was 169±14.5g, but was only 67.9±8.9g in plants grown at 150mM NaCl (
<italic>F</italic>
<sub>3,24</sub>
=20.35,
<italic>P</italic>
<0.0001;
<xref ref-type="fig" rid="F1">Fig. 1A</xref>
). The root:shoot ratio was higher as a consequence of increased salinity, driven by the difference in above-ground biomass, as there was no significant difference in tuber biomass between treatments (
<italic>F</italic>
<sub>6,18</sub>
=3.7,
<italic>P</italic>
=0.85;
<xref ref-type="fig" rid="F1">Fig. 1B</xref>
,
<xref ref-type="fig" rid="F1">C</xref>
). Leaf area of plants decreased as the salinity level increased, primarily through plants shedding leaves, with significant differences detected between control and 100mM, control and 150mM, and 50mM and 150mM NaCl treatment groups (
<italic>F</italic>
<sub>3,24</sub>
=16.64,
<italic>P</italic>
=0.021, 0.003, and 0.005, respectively;
<xref ref-type="fig" rid="F1">Fig. 1D</xref>
).</p>
<fig fig-type="figure" id="F1" orientation="portrait" position="float">
<label>Fig. 1.</label>
<caption>
<p>Biomass, growth measurements, and tissue hydrogen cyanide potential (HCNp) of 6-month-old cassava plants grown at 0, 50, 100, and 150mM NaCl for 28 d (Experiment 1;
<italic>n</italic>
=7 for each treatment). (A) Above-ground biomass; (B) tuber biomass; (C) root:shoot ratio; (D) total leaf area; (E) foliar and tuber HCNp. Means (±SE) with different letters are significantly different at
<italic>P</italic>
<0.05.</p>
</caption>
<graphic xlink:href="exbotj_erw302_f0001"></graphic>
</fig>
<p content-type="indent">The HCNp in the leaves decreased with increasing salt concentration (
<xref ref-type="fig" rid="F1">Fig. 1E</xref>
). In the tubers, HCNp initially increased and was significantly higher at 50mM and 100mM NaCl (
<italic>F</italic>
<sub>3,22</sub>
=6.46,
<italic>P</italic>
=0.006 and 0.015, respectively). At the highest salt treatment, the HCNp decreased in the tubers, but there was no significant difference compared with any other treatment.</p>
</sec>
<sec id="s13">
<title>Experiment 2: long-term effects of salinity on young cassava plants and tuber initiation</title>
<sec id="s14">
<title>Plant growth, biomass, and phenology</title>
<p>The number of leaves present on each plant was recorded once a week for the duration of the study. After 5 weeks, plants in the 80mM NaCl group began to lose leaves at a steady rate, whereas plants in the control and 40mM NaCl groups had steady increases in their number of leaves over the course of the experiment (
<xref rid="F2" ref-type="fig">Fig. 2A</xref>
). Six of the 10 plants grown at 80mM NaCl died (i.e. all leaves abscised and there was no subsequent sign of recovery), four at day 56 and the other two at day 60 of the study. Surviving plants were shorter (
<xref rid="F2" ref-type="fig">Fig. 2B</xref>
), had fewer fully expanded leaves, and had more senescent leaves than plants grown at 40mM NaCl (
<xref rid="F2" ref-type="fig">Fig. 2</xref>
;
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw302/-/DC1">Supplementary Table S1</ext-link>
at
<italic>JXB</italic>
online). There was a significant decrease in leaf area of plants grown at both 40 mM and 80mM NaCl (
<xref rid="F2" ref-type="fig">Fig. 2C</xref>
). Total biomass was highest in plants grown without salt, with an average mass of 7.68±0.42g compared with the plants grown at 40mM (5.73±0.32g) and 80mM NaCl 2.09±0.43g, respectively (
<italic>F</italic>
<sub>2.27</sub>
=52.24,
<italic>P</italic>
<0.0001;
<xref rid="F2" ref-type="fig">Fig. 2D</xref>
). Control plants had greater above-ground biomass than plants from either of the salt treatments (
<italic>F</italic>
<sub>2.27</sub>
=72.40,
<italic>P</italic>
<0.0001,
<xref rid="F2" ref-type="fig">Fig. 2D</xref>
), but the below-ground biomass was not significantly different between the control and 40mM NaCl groups. Thus, the higher root:shoot ratio in the 80mM plants of 2.98±0.64 compared with 1.33±0.08 in the 40 mM-grown plants (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw302/-/DC1">Supplementary Table S1</ext-link>
;
<italic>F</italic>
<sub>2,27</sub>
=7.58,
<italic>P</italic>
=0.0038) was driven primarily by the lower above-ground biomass, as the fine root mass was small and only one plant produced a tuber (
<xref rid="F2" ref-type="fig">Fig. 2D</xref>
;
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw302/-/DC1">Supplementary Table S1</ext-link>
). There was no significant difference in the RGR between plants grown at 0mM and 40mM NaCl, but there was a significant decrease in plants at 80mM salt (
<xref rid="F2" ref-type="fig">Fig. 2E</xref>
).</p>
<fig fig-type="figure" id="F2" orientation="portrait" position="float">
<label>Fig. 2.</label>
<caption>
<p>Phenology and final size of cassava plants grown for 9 weeks with nutrient solutions containing different concentrations of salt (0, 40, and 80mM NaCl) (Experiment 2;
<italic>n</italic>
=10 for each treatment). (A) Leaf number and (B) height of plants measured weekly; (C) final total leaf area (all leaf classes); (D) total above- and below-ground biomass; (E) relative growth rate. Values are means (±SE) of 10 replicates. Columns with different letters represent significant differences at
<italic>P</italic>
<0.05 (Tukey’s test).</p>
</caption>
<graphic xlink:href="exbotj_erw302_f0002"></graphic>
</fig>
</sec>
<sec id="s15">
<title>Photosynthetic parameters: assimilation rate, stomatal conductance,
<italic>F</italic>
<sub>v</sub>
'/
<italic>F</italic>
<sub>m</sub>
', and chlorophyll</title>
<p>Assimilation, stomatal conductance, and
<italic>F</italic>
<sub>v</sub>
'/
<italic>F</italic>
<sub>m</sub>
' were measured on the third fully expanded leaf. The assimilation rate of control plants was 4.57±0.82 mmol m
<sup>−2</sup>
s
<sup>−1</sup>
, 2-fold greater than that of plants grown at 40mM (2.24±0.27 mmol m
<sup>−2</sup>
s
<sup>−1</sup>
) and nearly 5-fold higher than plants from the highest 80mM (1.24±0.51 mmol m
<sup>−2</sup>
s
<sup>−1</sup>
) salt treatment (
<italic>F</italic>
<sub>2,21</sub>
=7.53,
<italic>P</italic>
=0.0182 and 0.0055, respectively;
<xref ref-type="fig" rid="F3">Fig. 3A</xref>
). Stomatal conductance followed a similar pattern to that of the photosynthetic rate; however, there was only a significant difference between control (0.04±0.01 mmol m
<sup>−2</sup>
s
<sup>−1</sup>
) and 80 mM- (0.01±0.005 mmol m
<sup>−2</sup>
s
<sup>−1</sup>
) treated plants (
<italic>F</italic>
<sub>2,21</sub>
=3.54,
<italic>P</italic>
=0.0420;
<xref ref-type="fig" rid="F3">Fig. 3B</xref>
). Internal CO
<sub>2</sub>
concentrations were similar in all treatments (
<xref ref-type="fig" rid="F3">Fig. 3D</xref>
). There was no significant difference in
<italic>F</italic>
<sub>v</sub>
'/
<italic>F</italic>
<sub>m</sub>
' between control and 40mM plants, with an overall mean of 0.59±0.01.
<italic>F</italic>
<sub>v</sub>
'/
<italic>F</italic>
<sub>m</sub>
' was much lower in plants grown under 80mM NaCl, with a mean of 0.33±12 (
<italic>F</italic>
<sub>2,21</sub>
=8.77,
<italic>P</italic>
=0.0017), indicating severe stress (
<xref ref-type="fig" rid="F3">Fig. 3E</xref>
).</p>
<fig fig-type="figure" id="F3" orientation="portrait" position="float">
<label>Fig. 3.</label>
<caption>
<p>Photosynthetic parameters for young cassava plants grown at 0, 40, and 80mM NaCl treatments for 9 weeks (
<italic>n</italic>
=10 except at 80 mM where
<italic>n</italic>
=4.) (A) Carbon assimilation (
<italic>A</italic>
); (B) leaf conductance (
<italic>g</italic>
<sub>s</sub>
); (C) total chlorophyll; (D) internal CO
<sub>2</sub>
concentration (
<italic>C</italic>
<sub>i</sub>
); (E) light-adapted fluorescence (
<italic>F</italic>
<sub>v</sub>
'/
<italic>F</italic>
<sub>m</sub>
'); (F) Chl
<italic>a</italic>
/Chl
<italic>b</italic>
ratio. Means (±SE) with different letters represent significant differences at
<italic>P</italic>
<0.05 (Tukey’s test).</p>
</caption>
<graphic xlink:href="exbotj_erw302_f0003"></graphic>
</fig>
<p content-type="indent">Total chlorophyll concentration also decreased with increasing salt concentration. Plants grown under 40mM NaCl had a lower chlorophyll concentration than control plants but the difference was not significant (F
<sub>2,23</sub>
=411.10,
<italic>P</italic>
=0.0036;
<xref ref-type="fig" rid="F3">Fig. 3C</xref>
) and the concentration of chlorophyll in leaves from 80 mM-grown plants was significantly lower than that of both the control plants and plants at 40mM NaCl (
<italic>F</italic>
<sub>2,23</sub>
=411.10,
<italic>P</italic>
<0.0001). The Chl
<italic>a</italic>
/
<italic>b</italic>
ratio was significantly higher for 40mM and 80mM plants compared with control plants (
<italic>F</italic>
<sub>2,23</sub>
=7.23,
<italic>P</italic>
=0.0095 and 0.0110, respectively;
<xref ref-type="fig" rid="F3">Fig. 3F</xref>
). Measurement of leaf greenness was to approximate total chlorophyll concentration, with a highly significant Pearson’s correlation coefficient of 0.67 (
<italic>P</italic>
<0.001) (
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw302/-/DC1">Supplementary Table S1</ext-link>
).</p>
</sec>
<sec id="s16">
<title>Cyanogenic glucoside and nutrient analysis</title>
<p>Cyanide assays were performed on freeze-dried leaf and tuber tissue. HCNp was highest in the leaves of plants grown at 40mM, with lower levels in control plants and those grown at 80mM NaCl (
<italic>F</italic>
<sub>2,26</sub>
=9.32,
<italic>P</italic>
=0.0149 and 0.0008, respectively,
<xref ref-type="fig" rid="F4">Fig. 4A</xref>
). There was no difference between control and 40mM groups in the amount of HCNp found in tubers (
<xref ref-type="fig" rid="F4">Fig. 4A</xref>
). Statistical tests on HCNp were unable to be performed for tubers grown at 80mM NaCl as only one plant grown at this salt level contained tuberous roots. Overall, there was no significant difference in the HCNp:total biomass ratio between treatments (
<italic>F</italic>
<sub>2, 27</sub>
=0.43,
<italic>P</italic>
=0.6536), indicating that observed changes in HCNp were not driven by changes in biomass.</p>
<fig fig-type="figure" id="F4" orientation="portrait" position="float">
<label>Fig. 4.</label>
<caption>
<p>Concentration of (A) cyanogenic glucosides (measured as evolved cyanide, HCNp), (B) total elementary nitrogen, (C) iron (Fe), and (D) zinc (Zn) of leaves and tubers of young cassava plants after 9 weeks treatment with nutrient solution containing three different concentrations of salt. No tubers were present in the 80mM NaCl treatment. Values are means ±SE.
<italic>n</italic>
=10, except at 80mM NaCl where final
<italic>n</italic>
=4 for analysis. Significant differences are indicated on the line over each group of means. ***
<italic>P</italic>
<0.001; **
<italic>P</italic>
<0.01; n.s.=not significant. A full list of macro- and micronutrients is given in
<xref rid="T1" ref-type="table">Table 1</xref>
.</p>
</caption>
<graphic xlink:href="exbotj_erw302_f0004"></graphic>
</fig>
<p content-type="indent">Total nitrogen concentration was higher in the leaves of control plants compared with 40mM plants (
<italic>F</italic>
<sub>2,22</sub>
=8.14,
<italic>P</italic>
=0.0019;
<xref ref-type="table" rid="T1">Table 1</xref>
;
<xref ref-type="fig" rid="F4">Fig. 4B</xref>
), although no difference between control and 80mM plants or 40mM and 80mM plants was found. Carbon was lower in leaves of 80 mM-grown plants so there was no overall difference in the C:N ratio between control and 80 mM-grown plants. However, the leaves of plants grown at 40mM NaCl had a higher C:N ratio compared with control and 80mM plants (
<italic>F</italic>
<sub>2,22</sub>
=14.86,
<italic>P</italic>
=0.0014 and 0.0002, respectively;
<xref ref-type="table" rid="T1">Table 1</xref>
).</p>
<table-wrap id="T1" orientation="portrait" position="float">
<label>Table 1.</label>
<caption>
<p>Nutrient analysis of leaves and tubers of cassava plants (
<italic>n</italic>
=4) grown at three concentrations of salt (0, 40, and 80mM NaCl)</p>
</caption>
<table frame="vsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1"></th>
<th align="left" colspan="3" rowspan="1">Leaves</th>
<th align="left" colspan="2" rowspan="1">Tubers</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">Nutrient\NaCl</th>
<th align="left" rowspan="1" colspan="1">0 mM</th>
<th align="left" rowspan="1" colspan="1">40 mM</th>
<th align="left" rowspan="1" colspan="1">80 mM</th>
<th align="left" rowspan="1" colspan="1">0 mM</th>
<th align="left" rowspan="1" colspan="1">40 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">N (% DW)</td>
<td rowspan="1" colspan="1">3.85±0.06 a</td>
<td rowspan="1" colspan="1">3.45±0.04 b</td>
<td rowspan="1" colspan="1">3.56±0.19 ab</td>
<td rowspan="1" colspan="1">1.250±0.198</td>
<td rowspan="1" colspan="1">1.273±0.013</td>
</tr>
<tr>
<td rowspan="1" colspan="1">C (% DW)</td>
<td rowspan="1" colspan="1">44.64±0.09 a</td>
<td rowspan="1" colspan="1">43.85±0.20 a</td>
<td rowspan="1" colspan="1">39.32±1.83 b</td>
<td rowspan="1" colspan="1">41.13±0.20</td>
<td rowspan="1" colspan="1">40.63±0.15</td>
</tr>
<tr>
<td rowspan="1" colspan="1">C:N</td>
<td rowspan="1" colspan="1">11.63±0.17 a</td>
<td rowspan="1" colspan="1">12.74±0.19 b</td>
<td rowspan="1" colspan="1">11.08±0.34 a</td>
<td rowspan="1" colspan="1">34.80±6.17</td>
<td rowspan="1" colspan="1">31.90±0.36</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na (% DW)</td>
<td rowspan="1" colspan="1">0.01±0.00 a</td>
<td rowspan="1" colspan="1">0.02±0.01 a</td>
<td rowspan="1" colspan="1">1.78±0.72 b</td>
<td rowspan="1" colspan="1">0.04±0.02 a</td>
<td rowspan="1" colspan="1">0.80±0.05 b</td>
</tr>
<tr>
<td rowspan="1" colspan="1">K (% DW)</td>
<td rowspan="1" colspan="1">2.96±0.07</td>
<td rowspan="1" colspan="1">2.82±0.07</td>
<td rowspan="1" colspan="1">2.88±0.11</td>
<td rowspan="1" colspan="1">1.14±0.07 a</td>
<td rowspan="1" colspan="1">1.60±0.08 b</td>
</tr>
<tr>
<td rowspan="1" colspan="1">P (% DW)</td>
<td rowspan="1" colspan="1">0.30±0.01 a</td>
<td rowspan="1" colspan="1">0.31±0.01 a</td>
<td rowspan="1" colspan="1">0.39±0.02 b</td>
<td rowspan="1" colspan="1">0.02±0.00</td>
<td rowspan="1" colspan="1">0.22±0.03</td>
</tr>
<tr>
<td rowspan="1" colspan="1">S (% DW)</td>
<td rowspan="1" colspan="1">0.32±0.01 a</td>
<td rowspan="1" colspan="1">0.30±0.01 b</td>
<td rowspan="1" colspan="1">0.44±0.09 a</td>
<td rowspan="1" colspan="1">0.51±0.33</td>
<td rowspan="1" colspan="1">0.15±0.03</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mg (% DW)</td>
<td rowspan="1" colspan="1">0.24±0.01 a</td>
<td rowspan="1" colspan="1">0.31±0.01 b</td>
<td rowspan="1" colspan="1">0.38±0.03 c</td>
<td rowspan="1" colspan="1">0.18±0.01</td>
<td rowspan="1" colspan="1">0.15±0.05</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mn (mg kg
<sup>–1</sup>
)</td>
<td rowspan="1" colspan="1">42.70±1.79 a</td>
<td rowspan="1" colspan="1">84.80±5.56 b</td>
<td rowspan="1" colspan="1">107.00±6.09 c</td>
<td rowspan="1" colspan="1">23.33±1.76</td>
<td rowspan="1" colspan="1">14.00±6.43</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cu (mg kg
<sup>–1</sup>
)</td>
<td rowspan="1" colspan="1">3.30±0.21 a</td>
<td rowspan="1" colspan="1">4.20±0.20 a</td>
<td rowspan="1" colspan="1">7.00±1.00 b</td>
<td rowspan="1" colspan="1">6.67±0.33</td>
<td rowspan="1" colspan="1">6.33±3.93</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Zn (mg kg
<sup>–1</sup>
)</td>
<td rowspan="1" colspan="1">68.40±2.20 a</td>
<td rowspan="1" colspan="1">135.70±8.31 b</td>
<td rowspan="1" colspan="1">209.20 c</td>
<td rowspan="1" colspan="1">49.00±1.53</td>
<td rowspan="1" colspan="1">30.33±7.36</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Fe (mg kg
<sup>–1</sup>
)</td>
<td rowspan="1" colspan="1">152.60±6.88 a</td>
<td rowspan="1" colspan="1">163.80±8.49 a</td>
<td rowspan="1" colspan="1">300.80±41.13 b</td>
<td rowspan="1" colspan="1">196.00±26.54</td>
<td rowspan="1" colspan="1">124.00±46.97</td>
</tr>
<tr>
<td rowspan="1" colspan="1">B (mg kg
<sup>–1</sup>
)</td>
<td rowspan="1" colspan="1">51.60±1.54</td>
<td rowspan="1" colspan="1">59.50±2.54</td>
<td rowspan="1" colspan="1">53.60±4.41</td>
<td rowspan="1" colspan="1">9.00±0.58</td>
<td rowspan="1" colspan="1">6.33±3.53</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo (mg kg
<sup>–1</sup>
)</td>
<td rowspan="1" colspan="1">0.29±0.02</td>
<td rowspan="1" colspan="1">0.57±0.26</td>
<td rowspan="1" colspan="1">1.96±1.39</td>
<td rowspan="1" colspan="1">0.57±0.12</td>
<td rowspan="1" colspan="1">0.37±0.17</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co (mg kg
<sup>–1</sup>
)</td>
<td rowspan="1" colspan="1">0.10±0.00 a</td>
<td rowspan="1" colspan="1">0.11±0.01 a</td>
<td rowspan="1" colspan="1">0.24±0.04 b</td>
<td rowspan="1" colspan="1">0.23±0.03</td>
<td rowspan="1" colspan="1">0.13±0.03</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Si (mg kg
<sup>–1</sup>
)</td>
<td rowspan="1" colspan="1">528.90±31.11</td>
<td rowspan="1" colspan="1">451.40±21.24</td>
<td rowspan="1" colspan="1">562.00±31.16</td>
<td rowspan="1" colspan="1">310.00±21.70</td>
<td rowspan="1" colspan="1">239.70±40.27</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="fn-01" fn-type="other">
<p>Means (±SE) followed by different letters within tissue types are significantly different at
<italic>P</italic>
<0.05 (Tukey’s test).</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p content-type="indent">Analysis of leaves (all treatments) and tubers (0 and 40mM NaCl treatment only due to lack of tuber initiation at 80mM NaCl) showed that there were significant differences in concentrations of key nutrients and trace elements between treatments (
<xref ref-type="table" rid="T1">Table 1</xref>
;
<xref ref-type="fig" rid="F4">Fig. 4C</xref>
,
<xref ref-type="fig" rid="F4">D</xref>
). The most striking difference is seen in the concentration of sodium. Plants at 80mM NaCl had higher amounts of sodium in their leaves (1.80%) compared with control (0.01%) and 40mM (0.02%) plants (
<italic>F</italic>
<sub>2,22</sub>
=50.58,
<italic>P</italic>
<0.0001 and 0.0073, respectively;
<xref ref-type="table" rid="T1">Table 1</xref>
). The sodium concentration in the tubers in plants grown at 40mM NaCl was nearly 20 times higher than in control plants (
<italic>P</italic>
=0.0022). The amount of potassium was also significantly higher in the tubers of plants grown at 40mM salt, but the magnitude of the increase was much less, with a 1.4-fold increase (
<xref ref-type="table" rid="T1">Table 1</xref>
).</p>
<p content-type="indent">Iron and zinc concentrations were significantly higher in leaves of plants grown at 80mM NaCl (
<xref ref-type="fig" rid="F4">Fig. 4C</xref>
,
<xref ref-type="fig" rid="F4">D</xref>
). Concentrations of these two nutrients were somewhat lower in the tubers of salt-stressed plants, but the differences were not significant. Of the remaining macronutrients, the concentration of manganese in leaves also increased with rises in salinity levels and ranged from 43mg kg
<sup>−1</sup>
in control plants to 107mg kg
<sup>−1</sup>
in 80mM plants (
<italic>F</italic>
<sub>2,22</sub>
=47.13,
<italic>P</italic>
<0.0001, <0.0001, and 0.0146, respectively;
<xref ref-type="table" rid="T1">Table 1</xref>
). The amount of magnesium increased with increasing NaCl concentration in leaf tissue, and was significantly different between all treatments. Leaf phosphorus was marginally higher in the leaf tissue of plants grown at 80mM NaCl and also 10-fold higher in the tubers of 40mM plants (
<xref ref-type="table" rid="T1">Table 1</xref>
). Leaf sulphur levels in 40mM plants were lower than in control and 80 mM-grown plants. The levels of trace elements in addition to iron and zinc, such as copper and cobalt, increased in leaf tissue with increasing salt (
<xref ref-type="table" rid="T1">Table 1</xref>
). In general, salt stress results in an increase in the nutrient levels in leaves and a decrease in the tubers (
<xref ref-type="table" rid="T1">Table 1</xref>
).</p>
</sec>
</sec>
</sec>
<sec id="s17">
<title>Discussion</title>
<p>The impact of salinity on growth and nutritional value (i.e. the cyanogenic glucoside and micronutrient concentrations) depended on the age of the plant. Older plants that had already developed tubers were more salt tolerant than younger, pre-tuberous plants in terms of survival and growth. The key effect of salinity on cassava was a reduction in biomass, leaf area, and photosynthetic rate. There was an increase in HCNp in the leaves of young cassava plants under moderate stress (
<xref ref-type="fig" rid="F4">Fig. 4</xref>
), but in the leaves of mature cassava plants, HCNp decreased step-wise with increases in salinity (
<xref ref-type="fig" rid="F1">Fig. 1</xref>
). The age-affected differences may be related to: (i) the propensity for cassava to shed leaves in response to abiotic stress; (ii) the relatively high costs involved in excluding sodium; and (iii) relatively higher investment by younger plants in leaves compared with older plants.</p>
<sec id="s18">
<title>Growth and photosynthesis</title>
<p>We found that tuberous plants were able to tolerate fairly high concentrations of salt, up to 150mM NaCl (
<xref ref-type="fig" rid="F1">Fig. 1</xref>
). In contrast, growth and survival of pre-tuberous plants was severely retarded at 80mM NaCl, with only one plant developing a tuber (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
). In both experiments, there was a decrease in mass of ~1% for every 1mM NaCl increase, relative to the initial biomass (
<italic>y</italic>
=–1.0197
<italic>x</italic>
+456.6;
<italic>R</italic>
<sup>2</sup>
=0.20; Experiment 1;
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw302/-/DC1">Supplementary Fig. S1</ext-link>
) and (
<italic>y</italic>
=–0.0699
<italic>x</italic>
+7.966;
<italic>R</italic>
<sup>2</sup>
=0.77; Experiment 2;
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw302/-/DC1">Supplementary Fig. S2</ext-link>
). These results are broadly consistent with earlier studies that report severe stunting and death of cassava plants between 50mM and 135mM, depending on variety, length of treatment, and soil environment, with older plants and those with mycorrhizae generally being more tolerant (
<xref rid="CIT0022" ref-type="bibr">Indira, 1978</xref>
;
<xref rid="CIT0021" ref-type="bibr">Hawker and Smith, 1982</xref>
;
<xref rid="CIT0009" ref-type="bibr">Carretero
<italic>et al.</italic>
, 2008</xref>
).</p>
<p content-type="indent">The large reduction in biomass in both pre- and post-tuberous plants can be attributed to the loss of photosynthetic area and reduced rates of carbon assimilation. Weekly phenological measurements allowed us to track individual plants over the entire treatment period. In young plants, there was no significant reduction in leaf number until nearly 8 weeks in plants grown at 40mM NaCl and even in the 80mM treatment leaves were retained until 4 weeks after treatments commenced. This is consistent with the characteristic shedding of older leaves when plants are under stress, for example when droughted (
<xref rid="CIT0039" ref-type="bibr">Setter and Fregene, 2007</xref>
;
<xref rid="CIT0042" ref-type="bibr">Vandegeer
<italic>et al.</italic>
, 2013</xref>
). Final harvest data showed that leaf area was even more sensitive to salt than leaf number, with a significant reduction in pre- and post-tuberous plants at 40mM and 100mM NaCl, respectively, (
<xref ref-type="fig" rid="F2">Figs 2</xref>
and 1, respectively).</p>
<p content-type="indent">The concentration of chlorophyll, greenness, and
<italic>F</italic>
<sub>v</sub>
'/
<italic>F</italic>
<sub>m</sub>
' (measured on the third fully expanded leaf) were not significantly lower in plants grown at 40mM, indicating that these leaves were not under severe stress. Plants from the 80mM treatment, on the other hand, did show signs of stress with a lower
<italic>F</italic>
<sub>v</sub>
'/
<italic>F</italic>
<sub>m</sub>
', and decreased chlorophyll concentration.
<xref rid="CIT0042" ref-type="bibr">Vandegeer
<italic>et al.</italic>
(2013)</xref>
showed that the health of these highly productive, expanded leaves is maintained well after drought has affected other parts of the plant metabolism, and leaves are only discarded after prolonged drought. The significant leaf loss after 4 weeks growth and the reduction in photosynthetic capacity suggest that at 80mM salt cassava is severely stressed.</p>
</sec>
<sec id="s19">
<title>Nutrient analysis and evidence for ionic exclusion at low salinity</title>
<p>Evidence that cassava is able to tolerate low to moderate concentrations of salt comes from the ionic composition of the tissues. Foliar sodium concentration was the same at 40mM NaCl as in plants grown under control conditions, indicating that survival is from ionic exclusion, rather than tissue tolerance. This ability to exclude sodium breaks down at the higher concentrations, with a 100-fold increase in foliar sodium in plants grown at 80mM. This type of response is typical of plants that are sensitive to salt. Salt-tolerant species, in contrast, are able to tolerate quite high concentrations of tissue salt (
<xref rid="CIT0032" ref-type="bibr">Munns and Gillman, 2015</xref>
). Some plants cope with excess available Na by accumulating K as a balancing cation and this may influence K
<sup>+</sup>
uptake (
<xref rid="CIT0027" ref-type="bibr">Mattius, 2014</xref>
;
<xref rid="CIT0032" ref-type="bibr">Munns and Gillman, 2015</xref>
). We found no evidence for a change in ionic balance in salt-stressed cassava in the leaves. However, in the tubers, there was a significant increase in both Na and K with salt stress, though the relative increase was much greater for Na. This agrees with the results of
<xref rid="CIT0009" ref-type="bibr">Carretero
<italic>et al.</italic>
(2008)</xref>
for roots/tubers but not leaves where it was unchanged (
<xref rid="CIT0009" ref-type="bibr">Carretero
<italic>et al.</italic>
, 2008</xref>
), and there are also reports of potassium being lower (
<xref rid="CIT0021" ref-type="bibr">Hawker and Smith, 1982</xref>
) than controls due to salt stress. It is not clear why there is such a difference in the effect of salinity on potassium concentration reported in these experiments, but it may be the result of plant age or that particular leaves were tested, rather than pooling material, as we did here.</p>
<p content-type="indent">While tubers are an excellent source of carbohydrates, they are very poor in nutrients (
<xref rid="CIT0005" ref-type="bibr">Burns
<italic>et al.</italic>
, 2010</xref>
). On the other hand, leaves are an important source of protein and micronutrients for many subsistence farmers in Africa (
<xref rid="CIT0025" ref-type="bibr">Latif and Müller, 2015</xref>
). The concentration of foliar and tuber micro- and macronutrients measured here were in the same range of concentrations as plants grown in the field in Africa (
<xref rid="CIT0007" ref-type="bibr">Burns
<italic>et al.</italic>
, 2012</xref>
). Any change in foliar nutrients, therefore, could have a major impact on human health. In this study, there was a significant reduction in above-ground biomass in both young and old plants, and nutrient analysis of the young plants shows a significant change in important nutrients, such as iron and zinc. The concentration of these increase in leaf tissue but in terms of total nutrients available for food there is a major reduction due to salt stress. In tubers grown under moderate salt stress, there is a reduction in the concentration of macro- and micronutrients, indicating that cassava under even moderate salt stress is not a nutritious food source. There was also a small but significant decrease in foliar nitrogen concentration.</p>
</sec>
<sec id="s20">
<title>Impact of salinity on cyanogenic glucosides and nutritional status</title>
<p>Changes in the concentration of cyanogenic glucosides in our study were very different in both magnitude and direction in old and young plants. In established plants, foliar cyanogenic glucoside concentration decreased with each increment of salt from 0 to 150mM. In contrast, in pre-tuberous plants, the cyanogenic glucoside concentration was somewhat higher in the leaves of plants grown at 40mM than in those of the control plants, but much lower in plants grown at 80mM NaCl (
<xref ref-type="fig" rid="F4">Fig. 4A</xref>
). One explanation for this difference is to consider the relative cost of the investment in defence and leaf infrastructure in the two age groups. The primary mechanism for coping with salinity stress in older plants is to discard leaves and rely on the tubers for storage, thus any investment in foliar defence is unnecessary. The significant increase in cyanogenic glucosides in the tubers of these plants is consistent with this hypothesis and also the fact that in cassava cyanogenic glucosides are synthesized in the leaves and transported to the tubers (
<xref rid="CIT0023" ref-type="bibr">Jorgensen
<italic>et al.</italic>
, 2005</xref>
). On the other hand, in younger plants, the leaves represent a relatively large proportion of total plant biomass. Moreover, as there are no tubers, there is no sink for the storage of cyanogenic glucosides and little prospect of recovery should the shoots die. In younger plants, therefore, it is to the plant’s advantage to protect and maintain the leaves that it has already produced. Further detailed analysis of plants over time based on the hypotheses illustrated in the schematic in
<xref ref-type="fig" rid="F5">Fig. 5</xref>
are required.</p>
<fig fig-type="figure" id="F5" orientation="portrait" position="float">
<label>Fig. 5.</label>
<caption>
<p>Proposed schema detailing the responses of cassava to salinity stress. During growth and development, cyanogenic glucosides (CNglcs) are synthesized in the leaves and transported to the roots and appear to play crucial roles in defence, nitrogen storage, and turnover, particularly during early plant establishment, and in mitigating oxidative stress (
<xref rid="CIT0023" ref-type="bibr">Jørgensen
<italic>et al.</italic>
, 2005</xref>
;
<xref rid="CIT0037" ref-type="bibr">Selmar and Kleinwächter, 2013</xref>
;
<xref rid="CIT0019" ref-type="bibr">Gleadow and Møller, 2014</xref>
;
<xref rid="CIT0038" ref-type="bibr">Sendker
<italic>et al.</italic>
, 2016</xref>
). (A) Under optimal growing conditions, light energy is converted to ATP and NAPDH+ and used to drive carbon fixation and other reducing reactions, such as nitrate reductase. (B) Under stress, plants shift the balance; the Calvin cycle is reduced, the xanthophyll cycle and photorespiration increase, and there is an increase in the production of secondary metabolites, such as CNglcs (
<xref rid="CIT0037" ref-type="bibr">Selmar and Kleinwächter, 2013</xref>
. Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant and Cell Physiology 54, 817–826, by permission of the Japanese Society of Plant Physiologist). The CNglcs can be turned over to release the N as ammonia or amino acids and also has been shown to be involved in the detoxification of reactive oxygen species (ROS), which also increase during stress.</p>
</caption>
<graphic xlink:href="exbotj_erw302_f0005"></graphic>
</fig>
<p content-type="indent">The higher concentration of cyanogenic glucosides in the young plants from the 40mM treatment and the significant decrease in HCNp in severely salt stressed (80mM NaCl) plants may also be directly linked to the plant’s ability to tolerate stress. Salt stress promotes the production of reactive oxygen species (ROS), such as H
<sub>2</sub>
O
<sub>2</sub>
and superoxide anions, which are toxic (
<xref rid="CIT0027" ref-type="bibr">Mattius, 2014</xref>
;
<xref rid="CIT0036" ref-type="bibr">Roy
<italic>et al.</italic>
, 2014</xref>
). One way to deal with stress is to have a ROS-scavenging system, for example via the up-regulation of antioxidant enzymes such as superoxide dismutase. Such enzymes are induced within minutes of salt being applied—mainly in the form of H
<sub>2</sub>
O
<sub>2</sub>
(
<xref rid="CIT0008" ref-type="bibr">Cabello
<italic>et al.</italic>
, 2012</xref>
;
<xref rid="CIT0027" ref-type="bibr">Mattius, 2014</xref>
). It has been proposed that the synthesis of cyanogenic glucosides may also act to mitigate oxidative stress: NADPH
<sup>+</sup>
is essential for the conversion of precursor amino acids to the intermediate oxime, plus the putative
<italic>in vivo</italic>
cyanogenic glucoside turnover pathway consumes H
<sub>2</sub>
O
<sub>2</sub>
(
<xref rid="CIT0030" ref-type="bibr">Møller, 2010</xref>
;
<xref rid="CIT0019" ref-type="bibr">Gleadow and Møller, 2014</xref>
;
<xref rid="CIT0035" ref-type="bibr">Pičmanová
<italic>et al.</italic>
, 2015</xref>
). The nitrogen levels in the leaves of plants at both moderate and severe salt stress do not differ significantly but the levels of HCNp do. We hypothesize that at moderate stress cyanogenic glucosides are acting in defence whilst at the higher salinity levels the cyanogenic glucosides are turned over and protect the plant from oxidative stress and ROS scavenging (
<xref rid="F5" ref-type="fig">Fig. 5B</xref>
). However, details of the putative pathway need to be elucidated before this hypothesis can be confirmed.</p>
</sec>
<sec id="s21">
<title>Conclusions and implications for food security</title>
<p>The study of climatic variables and the consequences for cassava growth is key to evaluating the effect of global change on food security. Cassava is able to tolerate a wide range of conditions and so it is often assumed that the impact of climate change on cassava will be minimal (e.g.
<xref rid="CIT0026" ref-type="bibr">Lobell
<italic>et al.</italic>
, 2008</xref>
;
<xref rid="CIT0005" ref-type="bibr">Burns
<italic>et al.</italic>
, 2010</xref>
). Rising sea levels and reliance on saline irrigation water in increasingly hot, dry climates poses risks that have not been previously explored for many crops.</p>
<p content-type="indent">Changes in cassava tissue chemistry in response to salinity reflect a combination of factors, including differences in the balance in trade-offs in resource allocation between growth and defence in plants at different stages of development and the possible reduction in oxygen radicals. This is summarized in the model presented in
<xref ref-type="fig" rid="F5">Fig. 5</xref>
. This model presents a number of testable hypotheses. It is noteworthy that all the measurements of cyanogenic glucosides are above the
<xref rid="CIT0015" ref-type="bibr">FAO/WHO Codex (1989)</xref>
standard for edible cassava flour of 10ppm cyanide, underscoring again the importance of processing before consumption</p>
<p content-type="indent">We conclude cassava to be sensitive to low to moderate concentrations of salt, particularly at early stages of development and, therefore, that cassava is not suitable for planting in regions contaminated with even relatively low levels of salt. In coastal areas, impacts may be minimized by irrigating with less saline water, or during periods of high rainfall to allow time for plants to become established before they are exposed to higher concentrations of salt. Given that alternative tuberous crops such as sweet potatoes are even more salt sensitive than cassava (
<xref rid="CIT0040" ref-type="bibr">Shannon and Grieve, 1999</xref>
), breeding for more salt-tolerant varieties is necessary if cassava is to continue to expand its role as a staple in a future, more saline world.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="s22">
<title>Supplementary data</title>
<p>Supplementary data are available at
<italic>JXB</italic>
online.</p>
<p>
<bold>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw302/-/DC1">Table S1</ext-link>
. </bold>
Height, leaf area, biomass, growth indices, and chlorophyll measurements of cassava plants grown at three levels of salinity (0, 40, and 80mM NaCl) for 70 d.</p>
<p>
<bold>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw302/-/DC1">Figure S1</ext-link>
. </bold>
Total biomass of 6-month-old, tuberous cassava plants after 4 weeks of treatment with different concentrations of salt (Experiment 1).</p>
<p>
<bold>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw302/-/DC1">Figure S2</ext-link>
. </bold>
Total biomass of young, pre-tuberous cassava plants plotted versus salinity (Experiment 2).</p>
<p>
<bold>
<ext-link ext-link-type="uri" xlink:href="http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erw302/-/DC1">Figure S3</ext-link>
. </bold>
Correlation between total chlorophyll and greenness measured using the GreenIndex Ap.</p>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>Supplementary Data</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="supp_67_18_5403__index.html"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="pdf" xlink:href="supp_erw302_supplementary_table_S1_figures_S1_S3.pdf"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>We thank Alicia Brown for technical assistance. This project (HORT 2012/011) was funded in part through an
<funding-source>Australian Centre for International Agricultural Research</funding-source>
and
<funding-source>CSIRO Agriculture and Food.</funding-source>
</p>
</ack>
<glossary>
<def-list>
<title>Abbreviations:</title>
<def-item>
<term>HCNp</term>
<def>
<p>hydrogen cyanide potential</p>
</def>
</def-item>
<def-item>
<term>NaCl</term>
<def>
<p>sodium chloride</p>
</def>
</def-item>
<def-item>
<term>RGR</term>
<def>
<p>relative growth rate</p>
</def>
</def-item>
<def-item>
<term>SLA</term>
<def>
<p>specific leaf area.</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list>
<title>References</title>
<ref id="CIT0001">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<collab>Anon</collab>
</person-group>
<year>1976</year>
<source>Annual Report</source>
,
<volume>Vol. B63-6</volume>
<publisher-name>Centro Internacional de Agricultura Tropical</publisher-name>
.</mixed-citation>
</ref>
<ref id="CIT0002">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Ballhorn</surname>
<given-names>DJ</given-names>
</name>
<name name-style="western">
<surname>Elias</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Salinity-mediated cyanogenesis in white clover (
<italic>Trifolium repens</italic>
) affects trophic interactions</article-title>
.
<source>Annals of Botany</source>
<volume>114</volume>
,
<fpage>357</fpage>
<lpage>366</lpage>
.
<pub-id pub-id-type="pmid">25006176</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0003">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Blomstedt</surname>
<given-names>CK</given-names>
</name>
<name name-style="western">
<surname>Gleadow</surname>
<given-names>RM</given-names>
</name>
<name name-style="western">
<surname>O’Donnell</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<year>2012</year>
<article-title>A combined biochemical screen and TILLING approach identifies mutations in
<italic>Sorghum bicolor</italic>
L. Moench resulting in acyanogenic forage production</article-title>
.
<source>Plant Biotechnology Journal</source>
<volume>10</volume>
,
<fpage>54</fpage>
<lpage>66</lpage>
.
<pub-id pub-id-type="pmid">21880107</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0004">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Bradbury</surname>
<given-names>JH</given-names>
</name>
<name name-style="western">
<surname>Cliff</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Denton</surname>
<given-names>IC</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Uptake of wetting method in Africa to reduce cyanide poisoning and konzo from cassava</article-title>
.
<source>Food and Chemical Toxicology</source>
.
<volume>49</volume>
,
<fpage>539</fpage>
<lpage>542</lpage>
.
<pub-id pub-id-type="pmid">20510334</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0005">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Burns</surname>
<given-names>AE</given-names>
</name>
<name name-style="western">
<surname>Gleadow</surname>
<given-names>RM</given-names>
</name>
<name name-style="western">
<surname>Cliff</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Zacarias</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Cavagnaro</surname>
<given-names>TR</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Cassava: the drought, war and famine crop in a changing world</article-title>
.
<source>Sustainability</source>
<volume>2</volume>
,
<fpage>3572</fpage>
<lpage>3607</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0006">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Burns</surname>
<given-names>AE</given-names>
</name>
<name name-style="western">
<surname>Gleadow</surname>
<given-names>RM</given-names>
</name>
<name name-style="western">
<surname>Woodrow</surname>
<given-names>IE</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Light alters the allocation of nitrogen to cyanogenic glycosides in
<italic>Eucalyptus cladocalyx</italic>
</article-title>
.
<source>Oecologia</source>
<volume>133</volume>
,
<fpage>288</fpage>
<lpage>294</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0007">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Burns</surname>
<given-names>AE</given-names>
</name>
<name name-style="western">
<surname>Gleadow</surname>
<given-names>RM</given-names>
</name>
<name name-style="western">
<surname>Zacarias</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Cuambe</surname>
<given-names>CE</given-names>
</name>
<name name-style="western">
<surname>Miller</surname>
<given-names>RE</given-names>
</name>
<name name-style="western">
<surname>Cavagnaro</surname>
<given-names>TR</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Variations in the chemical composition of cassava (
<italic>Manihot esculenta</italic>
Crantz) leaves and roots as affected by genotypic and environmental variation</article-title>
.
<source>Journal of Agricultural and Food Chemistry</source>
<volume>60</volume>
,
<fpage>4946</fpage>
<lpage>4956</lpage>
.
<pub-id pub-id-type="pmid">22515684</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0008">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Cabello</surname>
<given-names>JV</given-names>
</name>
<name name-style="western">
<surname>Lodeyro</surname>
<given-names>AF</given-names>
</name>
<name name-style="western">
<surname>Zurbriggen</surname>
<given-names>MD</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Novel perspectives for the engineering of abiotic stress tolerance in plants</article-title>
.
<source>Current Opinion in Biotechnology</source>
<volume>26</volume>
,
<fpage>62</fpage>
<lpage>70</lpage>
.
<pub-id pub-id-type="pmid">24679260</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0009">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Carretero</surname>
<given-names>CL</given-names>
</name>
<name name-style="western">
<surname>Cantos</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>García</surname>
<given-names>JL</given-names>
</name>
<name name-style="western">
<surname>Azcón</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Troncoso</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Arbuscular-mycorrhizal contributes to alleviation of salt damage in cassava clones</article-title>
.
<source>Journal of Plant Nutrition</source>
<volume>31</volume>
,
<fpage>959</fpage>
<lpage>971</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0010">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name name-style="western">
<surname>Church</surname>
<given-names>JA</given-names>
</name>
<name name-style="western">
<surname>Clark</surname>
<given-names>PU</given-names>
</name>
<name name-style="western">
<surname>Cazenave</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<year>2013</year>
<article-title>Sea level change</article-title>
. In:
<person-group person-group-type="editor">
<name name-style="western">
<surname>Stocker</surname>
<given-names>TF</given-names>
</name>
<name name-style="western">
<surname>Qin</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Plattner</surname>
<given-names>G-K</given-names>
</name>
<name name-style="western">
<surname>Tignor</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Allen</surname>
<given-names>SK</given-names>
</name>
<name name-style="western">
<surname>Boschung</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Nauels</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Xia</surname>
<given-names>Y</given-names>
</name>
<name name-style="western">
<surname>Bex</surname>
<given-names>V</given-names>
</name>
<name name-style="western">
<surname>Midgley</surname>
<given-names>PM</given-names>
</name>
</person-group>
, eds.
<source>Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change</source>
.
<publisher-loc>Cambridge, UK and New York, USA</publisher-loc>
:
<publisher-name>Cambridge University Press</publisher-name>
.</mixed-citation>
</ref>
<ref id="CIT0011">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Cliff</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Nicala</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Saute</surname>
<given-names>F</given-names>
</name>
<name name-style="western">
<surname>Givragy</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Azambuja</surname>
<given-names>G</given-names>
</name>
<name name-style="western">
<surname>Taela</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Chavane</surname>
<given-names>L</given-names>
</name>
<name name-style="western">
<surname>Howarth</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>Konzo associated with war in Mozambique</article-title>
.
<source>Tropical Medicine and International Health</source>
<volume>2</volume>
,
<fpage>1068</fpage>
<lpage>1074</lpage>
.
<pub-id pub-id-type="pmid">9391509</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0012">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>El-Sharkawy</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>1993</year>
<article-title>Drought-tolerant cassava for Africa, Asia, and Latin America</article-title>
.
<source>BioScience</source>
<volume>43</volume>
,
<fpage>441</fpage>
<lpage>451</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0013">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Ernesto</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Cardoso</surname>
<given-names>AP</given-names>
</name>
<name name-style="western">
<surname>Nicala</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Mirione</surname>
<given-names>E</given-names>
</name>
<name name-style="western">
<surname>Massaza</surname>
<given-names>F</given-names>
</name>
<name name-style="western">
<surname>Cliff</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Haque</surname>
<given-names>MR</given-names>
</name>
<name name-style="western">
<surname>Bradbury</surname>
<given-names>JH</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Persistent konzo and cyanogen toxicity from cassava in northern Mozambique</article-title>
.
<source>Acta Tropica</source>
<volume>22</volume>
,
<fpage>357</fpage>
<lpage>362</lpage>
.
<pub-id pub-id-type="pmid">12039675</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0014">
<mixed-citation publication-type="other">
<person-group person-group-type="author">
<collab>FAO</collab>
</person-group>
<year>2014</year>
<comment>Why cassava?</comment>
<uri xlink:href="http://www.fao.org/ag/agp/agpc/gcds/index_en.html">http://www.fao.org/ag/agp/agpc/gcds/index_en.html</uri>
, last accessed
<comment>6 July 2016</comment>
.</mixed-citation>
</ref>
<ref id="CIT0015">
<mixed-citation publication-type="other">
<person-group person-group-type="author">
<collab>FAO/WHO Codex</collab>
</person-group>
<year>1989</year>
<article-title>Codex standard for edible cassava flour. Joint FAO/WHO Food Standards Programme, Codex Alimentarius Commission</article-title>
. Food and Agriculture Organisation and World Health Organisation of the United Nations: Rome, Italy, 1995; Codex Standard 176-1989.</mixed-citation>
</ref>
<ref id="CIT0016">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Gegios</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Amthor</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Maziya-Dixon</surname>
<given-names>B</given-names>
</name>
<name name-style="western">
<surname>Egesi</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Mallowa</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Nungo</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Gichuki</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Mbanaso</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Manary</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Children consuming cassava as a staple food are at risk for inadequate zinc, iron, and vitamin A intake</article-title>
.
<source>Plant Foods for Human Nutrition</source>
<volume>65</volume>
,
<fpage>64</fpage>
<lpage>70</lpage>
.
<pub-id pub-id-type="pmid">20165984</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0017">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Gleadow</surname>
<given-names>RM</given-names>
</name>
<name name-style="western">
<surname>Rowan</surname>
<given-names>KS</given-names>
</name>
<name name-style="western">
<surname>Ashton</surname>
<given-names>DH</given-names>
</name>
</person-group>
<year>1983</year>
<article-title>Invasion by
<italic>Pittosporum undulatum</italic>
of the forests of central Victoria. IV</article-title>
.
<source>Shade tolerance Australian Journal of Botany</source>
<volume>31</volume>
,
<fpage>51</fpage>
<lpage>60</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0018">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Gleadow</surname>
<given-names>RM</given-names>
</name>
<name name-style="western">
<surname>Evans</surname>
<given-names>JR</given-names>
</name>
<name name-style="western">
<surname>McCaffery</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Cavagnaro</surname>
<given-names>TR</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Growth and nutritive value of cassava (
<italic>Manihot esculenta</italic>
Cranz) are reduced when grown in elevated CO
<sub>2</sub>
</article-title>
.
<source>Plant Biology</source>
<volume>11</volume>
,
<fpage>76</fpage>
<lpage>82</lpage>
.
<pub-id pub-id-type="pmid">19778371</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0019">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Gleadow</surname>
<given-names>RM</given-names>
</name>
<name name-style="western">
<surname>Møller</surname>
<given-names>BL</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Cyanogenic glucosides: synthesis, function and plasticity</article-title>
.
<source>Annual Review of Plant Biology</source>
<volume>65</volume>
,
<fpage>155</fpage>
<lpage>185</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0020">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Gleadow</surname>
<given-names>RM</given-names>
</name>
<name name-style="western">
<surname>Woodrow</surname>
<given-names>IE</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Mini-review: constraints on effectiveness of cyanogenic glycosides in herbivore defense</article-title>
.
<source>Journal of Chemical Ecology</source>
<volume>28</volume>
,
<fpage>1301</fpage>
<lpage>1313</lpage>
.
<pub-id pub-id-type="pmid">12199497</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0021">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Hawker</surname>
<given-names>JS</given-names>
</name>
<name name-style="western">
<surname>Smith</surname>
<given-names>GM</given-names>
</name>
</person-group>
<year>1982</year>
<article-title>Salt tolerance and regulation of enzymes of starch synthesis in cassava (
<italic>Manihot esculenta</italic>
Crantz)</article-title>
.
<source>Australian Journal of Plant Physiology</source>
<volume>9</volume>
,
<fpage>509</fpage>
<lpage>518</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0022">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Indira</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>1978</year>
<article-title>Salinity effects on plant growth and tuberization in cassava</article-title>
.
<source>Journal of Root Crops</source>
<volume>4</volume>
,
<fpage>19</fpage>
<lpage>23</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0023">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Jørgensen</surname>
<given-names>K</given-names>
</name>
<name name-style="western">
<surname>Bak</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Busk</surname>
<given-names>PK</given-names>
</name>
<name name-style="western">
<surname>Sorensen</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Olsen</surname>
<given-names>CE</given-names>
</name>
<name name-style="western">
<surname>Puonti-Kaerlas</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Møller</surname>
<given-names>BL</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology</article-title>
.
<source>Plant Physiology</source>
<volume>139</volume>
,
<fpage>363</fpage>
<lpage>374</lpage>
.
<pub-id pub-id-type="pmid">16126856</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0024">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Kongsawadworakul</surname>
<given-names>P</given-names>
</name>
<name name-style="western">
<surname>Viboonjun</surname>
<given-names>U</given-names>
</name>
<name name-style="western">
<surname>Romruensukharom</surname>
<given-names>P</given-names>
</name>
<name name-style="western">
<surname>Chantuma</surname>
<given-names>P</given-names>
</name>
<name name-style="western">
<surname>Ruderman</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Chrestin</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>The leaf, inner bark and latex cyanide potential of
<italic>Hevea brasiliensis</italic>
: evidence for involvement of cyanogenic glucosides in rubber yield</article-title>
.
<source>Phytochemistry</source>
<volume>70</volume>
,
<fpage>730</fpage>
<lpage>739</lpage>
.
<pub-id pub-id-type="pmid">19409582</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0025">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Latif</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Müller</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Potential of cassava leaves in human nutrition: a review</article-title>
.
<source>Trends in Food Science and Technology</source>
<volume>44</volume>
,
<fpage>147</fpage>
<lpage>158</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0026">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lobell</surname>
<given-names>DB</given-names>
</name>
<name name-style="western">
<surname>Burke</surname>
<given-names>MB</given-names>
</name>
<name name-style="western">
<surname>Tebaldi</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Mastrandrea</surname>
<given-names>MD</given-names>
</name>
<name name-style="western">
<surname>Falcon</surname>
<given-names>WP</given-names>
</name>
<name name-style="western">
<surname>Naylor</surname>
<given-names>RL</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Prioritizing climate change adaptation needs for food security in 2030</article-title>
.
<source>Science</source>
<volume>319</volume>
,
<fpage>607</fpage>
<lpage>610</lpage>
.
<pub-id pub-id-type="pmid">18239122</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0027">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Mattius</surname>
<given-names>FJM</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Sodium in plants: perception, signalling, and regulation of sodium fluxes</article-title>
.
<source>Journal of Experimental Botany</source>
<volume>65</volume>
,
<fpage>849</fpage>
<lpage>858</lpage>
.
<pub-id pub-id-type="pmid">24151301</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0028">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>McKey</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Cavagnaro</surname>
<given-names>TR</given-names>
</name>
<name name-style="western">
<surname>Cliff</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Gleadow</surname>
<given-names>RM</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Chemical ecology in coupled human and natural systems: people, manioc, multitrophic interactions and global change</article-title>
.
<source>Chemoecology</source>
<volume>20</volume>
,
<fpage>109</fpage>
<lpage>133</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0029">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>McMahon</surname>
<given-names>JM</given-names>
</name>
<name name-style="western">
<surname>White</surname>
<given-names>WLB</given-names>
</name>
<name name-style="western">
<surname>Sayre</surname>
<given-names>RT</given-names>
</name>
</person-group>
<year>1995</year>
<article-title>Cyanogenesis in cassava (
<italic>Manihot esculenta</italic>
Crantz)</article-title>
.
<source>Journal of Experimental Botany</source>
<volume>46</volume>
,
<fpage>731</fpage>
<lpage>741</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0030">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Møller</surname>
<given-names>BL</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Functional diversifications of cyanogenic glucosides</article-title>
.
<source>Current Opinion in Plant Biology</source>
<volume>13</volume>
,
<fpage>337</fpage>
<lpage>346</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0031">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Munns</surname>
<given-names>R</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Comparative physiology of salt and water stress</article-title>
.
<source>Plant, Cell and Environment</source>
<volume>25</volume>
,
<fpage>239</fpage>
<lpage>250</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0032">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Munns</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Gillman</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Salinity tolerance of crops—what is the cost?</article-title>
<source>New Phytologist</source>
<volume>208</volume>
,
<fpage>668</fpage>
<lpage>673</lpage>
.
<pub-id pub-id-type="pmid">26108441</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0033">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Nunn</surname>
<given-names>PD</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>The end of the Pacific? Effects of sea level rise on Pacific Island livelihoods</article-title>
.
<source>Singapore Journal of Tropical Geography</source>
<volume>34</volume>
,
<fpage>143</fpage>
<lpage>171</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0034">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name name-style="western">
<surname>Nweke</surname>
<given-names>FI</given-names>
</name>
<name name-style="western">
<surname>Spencer</surname>
<given-names>DSC</given-names>
</name>
<name name-style="western">
<surname>Lynam</surname>
<given-names>JK</given-names>
</name>
</person-group>
<year>2002</year>
<source>The cassava transormation: Africa’s best kept secret</source>
.
<publisher-loc>Lansing, MI</publisher-loc>
:
<publisher-name>Michigan State University Press</publisher-name>
.</mixed-citation>
</ref>
<ref id="CIT0035">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Pičmanová</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Neilson</surname>
<given-names>EH</given-names>
</name>
<name name-style="western">
<surname>Motawia</surname>
<given-names>MS</given-names>
</name>
<name name-style="western">
<surname>Olsen</surname>
<given-names>CE</given-names>
</name>
<name name-style="western">
<surname>Agerbirk</surname>
<given-names>N</given-names>
</name>
<name name-style="western">
<surname>Gray</surname>
<given-names>CJ</given-names>
</name>
<name name-style="western">
<surname>Flitsch</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Meier</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Silvestro</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Jørgensen</surname>
<given-names>K</given-names>
</name>
<name name-style="western">
<surname>Sánchez</surname>
<given-names>Pérez R</given-names>
</name>
<name name-style="western">
<surname>Møller</surname>
<given-names>BL</given-names>
</name>
<name name-style="western">
<surname>Bjarnholt</surname>
<given-names>N</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species</article-title>
.
<source>Biochemical Journal</source>
<volume>469</volume>
,
<fpage>375</fpage>
<lpage>389</lpage>
<pub-id pub-id-type="pmid">26205491</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0036">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Roy</surname>
<given-names>SJ</given-names>
</name>
<name name-style="western">
<surname>Negrao</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Tester</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Salt resistant crop plants</article-title>
.
<source>Current Opinion in Biotechnology</source>
<volume>26</volume>
,
<fpage>115</fpage>
<lpage>124</lpage>
.
<pub-id pub-id-type="pmid">24679267</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0037">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Selmar</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Kleinwächter</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products</article-title>
.
<source>Plant and Cell Physiology</source>
<volume>54</volume>
,
<fpage>817</fpage>
<lpage>826</lpage>
.
<pub-id pub-id-type="pmid">23612932</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0038">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Sendker</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Ellendorff</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Hölzenbein</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Occurrence of benzoic acid esters as putative catabolites of prunasin in senescent leaves of
<italic>Prunus laurocerasus</italic>
</article-title>
.
<source>Journal of Natural Products</source>
<volume>79</volume>
,
<fpage>1724</fpage>
<lpage>1729</lpage>
.
<pub-id pub-id-type="pmid">27331617</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0039">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name name-style="western">
<surname>Setter</surname>
<given-names>TL</given-names>
</name>
<name name-style="western">
<surname>Fregene</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Recent advances in molecular breeding of cassava for improved drought stress tolerance</article-title>
. In:
<person-group person-group-type="editor">
<name name-style="western">
<surname>Jenks</surname>
<given-names>MA</given-names>
</name>
<name name-style="western">
<surname>Hasegawa</surname>
<given-names>PM</given-names>
</name>
<name name-style="western">
<surname>Jain</surname>
<given-names>SM</given-names>
</name>
</person-group>
, eds.
<source>Advances in molecular breeding toward drought and salt tolerant crops</source>
.
<publisher-loc>Dordrecht, The Netherlands</publisher-loc>
:
<publisher-name>Springer</publisher-name>
.</mixed-citation>
</ref>
<ref id="CIT0040">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Shannon</surname>
<given-names>MC</given-names>
</name>
<name name-style="western">
<surname>Grieve</surname>
<given-names>CM</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>Tolerance of vegetable crops to salinity</article-title>
.
<source>Scientia Horticulturae</source>
<volume>78</volume>
,
<fpage>5</fpage>
<lpage>38</lpage>
.</mixed-citation>
</ref>
<ref id="CIT0041">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Simon</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Gleadow</surname>
<given-names>RM</given-names>
</name>
<name name-style="western">
<surname>Woodrow</surname>
<given-names>IE</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Allocation of nitrogen to chemical defence and plant functional traits is constrained by soil N</article-title>
.
<source>Tree Physiology</source>
<volume>30</volume>
,
<fpage>1111</fpage>
<lpage>1117</lpage>
.
<pub-id pub-id-type="pmid">20573780</pub-id>
</mixed-citation>
</ref>
<ref id="CIT0042">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Vandegeer</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Miller</surname>
<given-names>RE</given-names>
</name>
<name name-style="western">
<surname>Bain</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Gleadow</surname>
<given-names>RM</given-names>
</name>
<name name-style="western">
<surname>Cavagnaro</surname>
<given-names>TR</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Drought adversely affects tuber development and nutritional quality of the staple crop cassava (
<italic>Manihot esculenta</italic>
Crantz)</article-title>
.
<source>Functional Plant Biology</source>
<volume>40</volume>
,
<fpage>195</fpage>
<lpage>200</lpage>
.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000433 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000433 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5049390
   |texte=   Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27506218" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024