Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000430 ( Pmc/Corpus ); précédent : 0004299; suivant : 0004310 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Contribution to the Study of the Relation between Microstructure and Electrochemical Behavior of Iron-Based FeCoC Ternary Alloys</title>
<author>
<name sortKey="Benhalla Haddad, Farida" sort="Benhalla Haddad, Farida" uniqKey="Benhalla Haddad F" first="Farida" last="Benhalla-Haddad">Farida Benhalla-Haddad</name>
<affiliation>
<nlm:aff id="I1">Laboratory of Electrochemistry, Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Amara, Sif Eddine" sort="Amara, Sif Eddine" uniqKey="Amara S" first="Sif Eddine" last="Amara">Sif Eddine Amara</name>
<affiliation>
<nlm:aff id="I1">Laboratory of Electrochemistry, Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Benchettara, Abdelkader" sort="Benchettara, Abdelkader" uniqKey="Benchettara A" first="Abdelkader" last="Benchettara">Abdelkader Benchettara</name>
<affiliation>
<nlm:aff id="I1">Laboratory of Electrochemistry, Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Taibi, Kamel" sort="Taibi, Kamel" uniqKey="Taibi K" first="Kamel" last="Taibi">Kamel Taibi</name>
<affiliation>
<nlm:aff id="I2">Laboratory of Materials Science and Engineering, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kesri, Rafika" sort="Kesri, Rafika" uniqKey="Kesri R" first="Rafika" last="Kesri">Rafika Kesri</name>
<affiliation>
<nlm:aff id="I1">Laboratory of Electrochemistry, Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22448342</idno>
<idno type="pmc">3303192</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303192</idno>
<idno type="RBID">PMC:3303192</idno>
<idno type="doi">10.1155/2012/798043</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">000430</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000430</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Contribution to the Study of the Relation between Microstructure and Electrochemical Behavior of Iron-Based FeCoC Ternary Alloys</title>
<author>
<name sortKey="Benhalla Haddad, Farida" sort="Benhalla Haddad, Farida" uniqKey="Benhalla Haddad F" first="Farida" last="Benhalla-Haddad">Farida Benhalla-Haddad</name>
<affiliation>
<nlm:aff id="I1">Laboratory of Electrochemistry, Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Amara, Sif Eddine" sort="Amara, Sif Eddine" uniqKey="Amara S" first="Sif Eddine" last="Amara">Sif Eddine Amara</name>
<affiliation>
<nlm:aff id="I1">Laboratory of Electrochemistry, Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Benchettara, Abdelkader" sort="Benchettara, Abdelkader" uniqKey="Benchettara A" first="Abdelkader" last="Benchettara">Abdelkader Benchettara</name>
<affiliation>
<nlm:aff id="I1">Laboratory of Electrochemistry, Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Taibi, Kamel" sort="Taibi, Kamel" uniqKey="Taibi K" first="Kamel" last="Taibi">Kamel Taibi</name>
<affiliation>
<nlm:aff id="I2">Laboratory of Materials Science and Engineering, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kesri, Rafika" sort="Kesri, Rafika" uniqKey="Kesri R" first="Rafika" last="Kesri">Rafika Kesri</name>
<affiliation>
<nlm:aff id="I1">Laboratory of Electrochemistry, Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Analytical Methods in Chemistry</title>
<idno type="ISSN">2090-8865</idno>
<idno type="eISSN">2090-8873</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>This work deals with the relation between microstructure and electrochemical behavior of four iron-based FeCoC ternary alloys. First, the arc-melted studied alloys were characterized using differential thermal analyses and scanning electron microscopy. The established solidification sequences of these alloys show the presence of two primary crystallization phases (
<italic>δ</italic>
(Fe) and graphite) as well as two univariante lines : peritectic L +
<italic>δ</italic>
(Fe)↔
<italic>γ</italic>
(Fe) and eutectic L↔
<italic>γ</italic>
(Fe) + C
<sub>graphite</sub>
. The ternary alloys were thereafter studied in nondeaerated solution of 10
<sup>−3</sup>
 M NaHCO3 + 10
<sup>−3</sup>
 M Na
<sub>2</sub>
SO
<sub>4</sub>
, at 25°C, by means of the potentiodynamic technique. The results indicate that the corrosion resistance of the FeCoC alloys depends on the carbon amount and the morphology of the phases present in the studied alloys.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Haddad, F" uniqKey="Haddad F">F Haddad</name>
</author>
<author>
<name sortKey="Amara, Se" uniqKey="Amara S">SE Amara</name>
</author>
<author>
<name sortKey="Kesri, R" uniqKey="Kesri R">R Kesri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hawkins, M" uniqKey="Hawkins M">M Hawkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marie, Jl" uniqKey="Marie J">JL MARIÉ</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chengyun, C" uniqKey="Chengyun C">C Chengyun</name>
</author>
<author>
<name sortKey="Zuoxing, G" uniqKey="Zuoxing G">G Zuoxing</name>
</author>
<author>
<name sortKey="Yuhua, L" uniqKey="Yuhua L">L Yuhua</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cleary, Hj" uniqKey="Cleary H">HJ Cleary</name>
</author>
<author>
<name sortKey="Greene, Nd" uniqKey="Greene N">ND Greene</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abdul Azim, Aa" uniqKey="Abdul Azim A">AA Abdul Azim</name>
</author>
<author>
<name sortKey="Anwar, Mm" uniqKey="Anwar M">MM Anwar</name>
</author>
<author>
<name sortKey="Sanad, Sh" uniqKey="Sanad S">SH Sanad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cleary, Hj" uniqKey="Cleary H">HJ Cleary</name>
</author>
<author>
<name sortKey="Greene, Nd" uniqKey="Greene N">ND Greene</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomlinson, Wj" uniqKey="Tomlinson W">WJ Tomlinson</name>
</author>
<author>
<name sortKey="Giles, K" uniqKey="Giles K">K Giles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shreir, Ll" uniqKey="Shreir L">LL Shreir</name>
</author>
<author>
<name sortKey="Jarman, Ra" uniqKey="Jarman R">RA Jarman</name>
</author>
<author>
<name sortKey="Burstein, Gt" uniqKey="Burstein G">GT Burstein</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Anal Methods Chem</journal-id>
<journal-id journal-id-type="publisher-id">JAMC</journal-id>
<journal-title-group>
<journal-title>Journal of Analytical Methods in Chemistry</journal-title>
</journal-title-group>
<issn pub-type="ppub">2090-8865</issn>
<issn pub-type="epub">2090-8873</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22448342</article-id>
<article-id pub-id-type="pmc">3303192</article-id>
<article-id pub-id-type="doi">10.1155/2012/798043</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Contribution to the Study of the Relation between Microstructure and Electrochemical Behavior of Iron-Based FeCoC Ternary Alloys</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Benhalla-Haddad</surname>
<given-names>Farida</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Amara</surname>
<given-names>Sif Eddine</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Benchettara</surname>
<given-names>Abdelkader</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Taibi</surname>
<given-names>Kamel</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kesri</surname>
<given-names>Rafika</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
Laboratory of Electrochemistry, Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria</aff>
<aff id="I2">
<sup>2</sup>
Laboratory of Materials Science and Engineering, University of Science and Technology Houari Boumediene, P.O. Box 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria</aff>
<author-notes>
<corresp id="cor1">*Farida Benhalla-Haddad:
<email>haddad.farida@gmail.com</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Christophe A. Marquette</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>12</day>
<month>1</month>
<year>2012</year>
</pub-date>
<volume>2012</volume>
<elocation-id>798043</elocation-id>
<history>
<date date-type="received">
<day>21</day>
<month>11</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>6</day>
<month>12</month>
<year>2011</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2012 Farida Benhalla-Haddad et al.</copyright-statement>
<copyright-year>2012</copyright-year>
<license license-type="open-access">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>This work deals with the relation between microstructure and electrochemical behavior of four iron-based FeCoC ternary alloys. First, the arc-melted studied alloys were characterized using differential thermal analyses and scanning electron microscopy. The established solidification sequences of these alloys show the presence of two primary crystallization phases (
<italic>δ</italic>
(Fe) and graphite) as well as two univariante lines : peritectic L +
<italic>δ</italic>
(Fe)↔
<italic>γ</italic>
(Fe) and eutectic L↔
<italic>γ</italic>
(Fe) + C
<sub>graphite</sub>
. The ternary alloys were thereafter studied in nondeaerated solution of 10
<sup>−3</sup>
 M NaHCO3 + 10
<sup>−3</sup>
 M Na
<sub>2</sub>
SO
<sub>4</sub>
, at 25°C, by means of the potentiodynamic technique. The results indicate that the corrosion resistance of the FeCoC alloys depends on the carbon amount and the morphology of the phases present in the studied alloys.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Cobalt is one of the first transition series of elements. It lays between Fe and Ni and close to Cu in the periodic table. In nature, it shows a strong spatial association with these metals. Cobalt is a critical metal and it has many strategic and irreplaceable industrial uses (supperalloys, magnets, corrosion- and wear-resistant alloys, high-speed steels, cemented carbides, diamond tool, etc.) [
<xref ref-type="bibr" rid="B1">2</xref>
<xref ref-type="bibr" rid="B3">4</xref>
]. Since cobalt shows great application potential, it has been widely studied.</p>
<p>This work is an academic study. It deals with the relation between the microstructure and electrochemical behavior of four iron-based FeCoC ternary alloys.</p>
<p>The solidification behavior of these alloys was studied in an earlier work [
<xref ref-type="bibr" rid="B4">1</xref>
]. This latter leads to the liquidus surface projection plot. In this paper, we undertake a study on electrochemical behavior of these alloys in nondeaerated solution of 10
<sup>−3</sup>
 M NaHCO
<sub>3</sub>
+ 10
<sup>−3</sup>
 M Na
<sub>2</sub>
SO
<sub>4</sub>
, at 25°C.</p>
</sec>
<sec id="sec2">
<title>2. Experiment </title>
<p>The studied alloys were arc melted in an argon gas atmosphere from pure elements (iron at 99.98 pct and cobalt at 99.5 pct from Aldrich Chemical Co.) and graphite. The solid-liquid and the solid-solid transformation temperatures were followed by a DTA-Netzsch 404S differential thermal analysis (cooling rate of 10 K/min) under argon atmosphere. The observation of the phases was performed using an optical microscope (ZEISSICM405) and a scanning electron microscope (SEM-JEOL). </p>
<p>The electrochemical tests were conducted using a VoltaLAB PGZ301 potentiostat. The corrosive medium consisted of neutral aqueous solution containing 10
<sup>−3</sup>
 M NaHCO
<sub>3</sub>
and 10
<sup>−3</sup>
 M Na
<sub>2</sub>
SO
<sub>4</sub>
. The polarisation curves are plotted in potentiodynamic mode. Potential was scanned from −0.8 V/SCE to +1 V/SCE in the direction of the increasing potentials at a scanning rate of 1 mV/s. Before each polarisation, the working electrodes were immersed in the test solution for 45 min. The electrochemical experiments were carried out at 25°C with agitation in presence of oxygen. </p>
</sec>
<sec id="sec3">
<title>3. Results and Discussion </title>
<p>In an earlier study [
<xref ref-type="bibr" rid="B4">1</xref>
], the compilation of the differential thermal analysis results in relation to the observed microstructures as well as the analysis of different phases allows us to establish the solidification paths of the studied alloys. Thus, the primary crystallization phases and the univariant reactions have been identified. The obtained results are summarized in
<xref ref-type="table" rid="tab1">Table 1</xref>
. The proposed liquidus surface projection of Fe-Co-C system in the iron-rich corner, presented in
<xref ref-type="fig" rid="fig1">Figure 1</xref>
, shows, for the studied alloys, the presence of two primary crystallization phases (
<italic>δ</italic>
(Fe) and graphite) as well as two univariante lines: eutectic L
<italic>↔γ</italic>
(Fe) + C
<sub>graphite</sub>
and peritectic L +
<italic>δ</italic>
(Fe)
<italic>↔γ</italic>
(Fe). The studied alloys considered in this work are also shown in
<xref ref-type="fig" rid="fig1">Figure 1</xref>
(encircled). </p>
<p>Potentiodynamic polarisation curves of the studied alloys in nondeaerated solution containing 10
<sup>−3</sup>
 M NaHCO
<sub>3</sub>
and 10
<sup>−3</sup>
 M Na
<sub>2</sub>
SO
<sub>4</sub>
at 25°C are presented in
<xref ref-type="fig" rid="fig2">Figure 2</xref>
. The corresponding electrochemical parameters are given in
<xref ref-type="table" rid="tab2">Table 2</xref>
. </p>
<p>We gathered in
<xref ref-type="table" rid="tab3">Table 3</xref>
corrosion current densities (
<italic>i</italic>
<sub>cor</sub>
) of the ternary FeCoC alloys with, respectively, the Fe/C ratio for each alloy. The results obtained for these alloys show that the corrosion current densities increase with the diminution of the Fe/C ratio.</p>
<p>Co6 and Co8 steels have a better corrosion resistance than Co3 and Co2 cast iron. This would be allotted to more important carbon content in cast iron. </p>
<p>The Co8 alloy corrosion current density is slightly lower than that of Co6. For these two alloys, the effect of carbon and cobalt content does not appear. However, the microstructures of these alloys (Figures
<xref ref-type="fig" rid="fig3">3</xref>
and
<xref ref-type="fig" rid="fig4">4</xref>
) present the same phases except that the pearlite structure is finer in Co6 alloy. This could explain the light increase of Co6 alloy corrosion current density. </p>
<p>In fact, it was reported that pearlitic structures corrode faster than spheroidized materials and steels containing fine pearlite corrode rapidly than those with coarse pearlite. In addition, the degree of dispersion of the carbide is quantitatively characterized by the total amount of interfacial contact between the ferrite and cementite phases [
<xref ref-type="bibr" rid="B5">5</xref>
<xref ref-type="bibr" rid="B8">8</xref>
]. </p>
<p>In addition, Co2 alloy is more resistant than Co3 alloy in the experimental conditions of this study. The examination of the microstructures of these two samples (Figures
<xref ref-type="fig" rid="fig5">5</xref>
and
<xref ref-type="fig" rid="fig6">6</xref>
) shows that the structure of carbon graphite is finer in Co3 alloy. This would lead to an increase of corrosion current density [
<xref ref-type="bibr" rid="B9">9</xref>
]. </p>
</sec>
<sec id="sec4">
<title>4. Conclusion </title>
<p>This work follows the study concerning the solidification behavior of iron-based FeCoC ternary alloys. The electrochemical behavior of some of these alloys is reported to solidification observed microstructures. </p>
<p>The results show the presence of two primary crystallization phases (
<italic>δ</italic>
(Fe) and graphite) as well as two univariante lines: peritectic L +
<italic>δ</italic>
(Fe)
<italic>↔γ</italic>
(Fe) and eutectic L
<italic>↔γ</italic>
(Fe) + C
<sub>graphite</sub>
. </p>
<p>The interpretation of the electrochemical results in relation with the observed microstructures leads to conclude that Co6 and Co8 steels have better corrosion resistant than Co2 and Co3 cast iron because of the more important carbon content in cast iron. Moreover, the corrosion current density increases with the decrease of in the Fe/C ratio. In addition, it was noted that the corrosion current density increases when the morphology is finer. </p>
</sec>
</body>
<back>
<ref-list>
<ref id="B4">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haddad</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Amara</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Kesri</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Liquidus surface projection of the Fe-Co-C ternary system in the iron-rich corner</article-title>
<source>
<italic>International Journal of Materials Research</italic>
</source>
<year>2008</year>
<volume>99</volume>
<issue>9</issue>
<fpage>942</fpage>
<lpage>946</lpage>
</element-citation>
</ref>
<ref id="B1">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hawkins</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Why we need cobalt</article-title>
<source>
<italic>Transactions of the Institutions of Mining and Metallurgy B</italic>
</source>
<year>2001</year>
<volume>110, may/aug</volume>
<fpage>B66</fpage>
<lpage>B70</lpage>
</element-citation>
</ref>
<ref id="B2">
<label>3</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>MARIÉ</surname>
<given-names>JL</given-names>
</name>
</person-group>
<comment>Tiré à part de Travail & Sécurité, juillet-août no 609 ED 5011-5000ex, ISSN 0373-1944, p.p. 1–4, 2001</comment>
</element-citation>
</ref>
<ref id="B3">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chengyun</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zuoxing</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Yuhua</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characteristics of cobalt-based alloy coating on tool steel prepared by powder feeding laser cladding</article-title>
<source>
<italic>Optics & Laser Technology</italic>
</source>
<year>2007</year>
<volume>39</volume>
<issue>8</issue>
<fpage>1544</fpage>
<lpage>1550</lpage>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cleary</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Greene</surname>
<given-names>ND</given-names>
</name>
</person-group>
<article-title>Corrosion properties of iron and steel</article-title>
<source>
<italic>Corrosion Science</italic>
</source>
<year>1967</year>
<volume>7</volume>
<issue>12</issue>
<fpage>821</fpage>
<lpage>831</lpage>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdul Azim</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Anwar</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Sanad</surname>
<given-names>SH</given-names>
</name>
</person-group>
<article-title>Potentiokinetic study of the effect of C on corrosion of some steels in alkaline solutions</article-title>
<source>
<italic>Corrosion Science</italic>
</source>
<year>1969</year>
<volume>9</volume>
<issue>6</issue>
<fpage>405</fpage>
<lpage>412</lpage>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cleary</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Greene</surname>
<given-names>ND</given-names>
</name>
</person-group>
<article-title>Electrochemical properties of Fe and steel</article-title>
<source>
<italic>Corrosion Science</italic>
</source>
<year>1969</year>
<volume>9</volume>
<issue>1</issue>
<fpage>3</fpage>
<lpage>13</lpage>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tomlinson</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Giles</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>The microstructures and corrosion of a 0.79C steel tempered in the range 100-700°C</article-title>
<source>
<italic>Corrosion Science</italic>
</source>
<year>1983</year>
<volume>23</volume>
<issue>12</issue>
<fpage>1353</fpage>
<lpage>1359</lpage>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Shreir</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Jarman</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Burstein</surname>
<given-names>GT</given-names>
</name>
</person-group>
<source>
<italic>Corrosion</italic>
</source>
<year>2000</year>
<volume>1</volume>
<publisher-loc>Oxford, UK</publisher-loc>
<publisher-name>Butterworth Heinemann</publisher-name>
<series>Metal/Environment Reactions</series>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>Liquidus surface projection of the Fe-Co-C system in the iron-rich corner (metastable system) [
<xref ref-type="bibr" rid="B4">1</xref>
] showing the studied alloys (encircled).</p>
</caption>
<graphic xlink:href="JAMC2012-798043.001"></graphic>
</fig>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>Potentiodynamic polarisation curves of Co2, Co3, Co6, and Co8 alloys in nondeaerated solution NaHCO
<sub>3</sub>
 10
<sup>−3</sup>
 M + Na
<sub>2</sub>
SO
<sub>4</sub>
10
<sup>−3</sup>
 M, at 25°C.</p>
</caption>
<graphic xlink:href="JAMC2012-798043.002"></graphic>
</fig>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>Optical micrograph (×200) showing the matrix (1) and pearlite (2).</p>
</caption>
<graphic xlink:href="JAMC2012-798043.003"></graphic>
</fig>
<fig id="fig4" position="float">
<label>Figure 4</label>
<caption>
<p>Co8 optical micrograph (×200) showing the matrix (1) and pearlite (2).</p>
</caption>
<graphic xlink:href="JAMC2012-798043.004"></graphic>
</fig>
<fig id="fig5" position="float">
<label>Figure 5</label>
<caption>
<p>Co2 electron micrograph showing graphite (1) and
<italic>γ</italic>
Fe/C eutectic (2).</p>
</caption>
<graphic xlink:href="JAMC2012-798043.005"></graphic>
</fig>
<fig id="fig6" position="float">
<label>Figure 6</label>
<caption>
<p>Co3 electron micrograph showing graphite (1) and
<italic>γ</italic>
Fe/C eutectic (2).</p>
</caption>
<graphic xlink:href="JAMC2012-798043.006"></graphic>
</fig>
<table-wrap id="tab1" position="float">
<label>Table 1</label>
<caption>
<p>Compositions, transformation temperatures, and solidification sequences of FeCoC studied alloys. (*Temperature not detected by our differential thermal analysis apparatus limited to temperature lower than 1550°C).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2" colspan="1"> Alloy</th>
<th align="center" colspan="3" rowspan="1">Compositions (wt. %)</th>
<th align="center" rowspan="2" colspan="1">Temperatures/(°C)</th>
<th align="center" rowspan="2" colspan="1">Solidification sequences</th>
</tr>
<tr>
<th align="center" rowspan="1" colspan="1">Fe</th>
<th align="center" rowspan="1" colspan="1">Co</th>
<th align="center" rowspan="1" colspan="1">C</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="4" colspan="1">Co2</td>
<td align="center" rowspan="4" colspan="1">90.96</td>
<td align="center" rowspan="4" colspan="1">4.84</td>
<td align="center" rowspan="4" colspan="1">4.20</td>
<td align="center" rowspan="1" colspan="1">*</td>
<td align="center" rowspan="1" colspan="1">L
<italic></italic>
C
<sub>graphite</sub>
</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">1163</td>
<td align="center" rowspan="1" colspan="1">L
<italic>↔γ</italic>
(Fe)</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">1150</td>
<td align="center" rowspan="1" colspan="1">L
<italic>↔γ</italic>
(Fe) + C
<sub>graphite</sub>
</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">753</td>
<td align="center" rowspan="1" colspan="1">Pearlite</td>
</tr>
<tr>
<td align="left" rowspan="4" colspan="1">Co3</td>
<td align="center" rowspan="4" colspan="1">89.37</td>
<td align="center" rowspan="4" colspan="1">6.50</td>
<td align="center" rowspan="4" colspan="1">4.13</td>
<td align="center" rowspan="1" colspan="1">*</td>
<td align="center" rowspan="1" colspan="1">L
<italic></italic>
C
<sub>graphite</sub>
</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">1170</td>
<td align="center" rowspan="1" colspan="1">L
<italic>↔γ</italic>
(Fe)</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">1153</td>
<td align="center" rowspan="1" colspan="1">L
<italic>↔γ</italic>
(Fe) + C
<sub>graphite</sub>
</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">763</td>
<td align="center" rowspan="1" colspan="1">Pearlite</td>
</tr>
<tr>
<td align="left" rowspan="4" colspan="1">Co6</td>
<td align="center" rowspan="4" colspan="1">90.90</td>
<td align="center" rowspan="4" colspan="1">8.45</td>
<td align="center" rowspan="4" colspan="1">0.65</td>
<td align="center" rowspan="1" colspan="1">1496</td>
<td align="center" rowspan="1" colspan="1">L
<italic>↔δ</italic>
(Fe)</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">1416</td>
<td align="center" rowspan="1" colspan="1">L +
<italic>δ</italic>
(Fe)
<italic>↔γ</italic>
(Fe)</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">830</td>
<td align="center" rowspan="1" colspan="1">
<italic>γ</italic>
(Fe)
<italic>↔α</italic>
(Fe)</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">756</td>
<td align="center" rowspan="1" colspan="1">Pearlite</td>
</tr>
<tr>
<td align="left" rowspan="4" colspan="1">Co8</td>
<td align="center" rowspan="4" colspan="1">89.52</td>
<td align="center" rowspan="4" colspan="1">10.00</td>
<td align="center" rowspan="4" colspan="1">0.48</td>
<td align="center" rowspan="1" colspan="1">1477</td>
<td align="center" rowspan="1" colspan="1">L
<italic>↔δ</italic>
(Fe)</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">1463</td>
<td align="center" rowspan="1" colspan="1">L +
<italic>δ</italic>
(Fe)
<italic>↔γ</italic>
(Fe)</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">812</td>
<td align="center" rowspan="1" colspan="1">
<italic>γ</italic>
(Fe)
<italic>↔α</italic>
(Fe)</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">772</td>
<td align="center" rowspan="1" colspan="1">Pearlite</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab2" position="float">
<label>Table 2</label>
<caption>
<p>Electrochemical parameters of FeCoC ternary alloys corrosion (immersed in 10
<sup>−3</sup>
 M NaHCO
<sub>3</sub>
+ 10
<sup>−3</sup>
 M Na
<sub>2</sub>
SO
<sub>4</sub>
, at 25°C).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Alloy</th>
<th align="center" rowspan="1" colspan="1">
<italic>E</italic>
<sub>cor</sub>
/(mV/ECS)</th>
<th align="center" rowspan="1" colspan="1">
<italic>i</italic>
<sub>cor</sub>
/(
<italic>μ</italic>
A/cm
<sup>2</sup>
)</th>
<th align="center" rowspan="1" colspan="1">
<italic>R</italic>
<sub>
<italic>p</italic>
</sub>
/(kΩ·cm²)</th>
<th align="center" rowspan="1" colspan="1">
<italic>β</italic>
<sub>
<italic>a</italic>
</sub>
/(mV/dec)</th>
<th align="center" rowspan="1" colspan="1">
<italic>β</italic>
<sub>
<italic>c</italic>
</sub>
/(mV/dec)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Co2</td>
<td align="center" rowspan="1" colspan="1">−395</td>
<td align="center" rowspan="1" colspan="1">16.8</td>
<td align="center" rowspan="1" colspan="1">1.7</td>
<td align="center" rowspan="1" colspan="1">169</td>
<td align="center" rowspan="1" colspan="1">−179</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Co3</td>
<td align="center" rowspan="1" colspan="1">−390</td>
<td align="center" rowspan="1" colspan="1">18.2</td>
<td align="center" rowspan="1" colspan="1">1.3</td>
<td align="center" rowspan="1" colspan="1">99</td>
<td align="center" rowspan="1" colspan="1">−178</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Co6</td>
<td align="center" rowspan="1" colspan="1">−347</td>
<td align="center" rowspan="1" colspan="1">1.8</td>
<td align="center" rowspan="1" colspan="1">9.3</td>
<td align="center" rowspan="1" colspan="1">111</td>
<td align="center" rowspan="1" colspan="1">−82</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Co8</td>
<td align="center" rowspan="1" colspan="1">−337</td>
<td align="center" rowspan="1" colspan="1">1.7</td>
<td align="center" rowspan="1" colspan="1">9.8</td>
<td align="center" rowspan="1" colspan="1">110</td>
<td align="center" rowspan="1" colspan="1">−88</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab3" position="float">
<label>Table 3</label>
<caption>
<p>Variation of
<italic>i</italic>
<sub>cor</sub>
according to the Fe/C ratio.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1"> Alloy</th>
<th align="center" rowspan="1" colspan="1">Co8</th>
<th align="center" rowspan="1" colspan="1">Co6</th>
<th align="center" rowspan="1" colspan="1">Co2</th>
<th align="center" rowspan="1" colspan="1">Co3</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>i</italic>
<sub>cor</sub>
(
<italic>μ</italic>
A·cm
<sup>−2</sup>
)</td>
<td align="center" rowspan="1" colspan="1">1.7</td>
<td align="center" rowspan="1" colspan="1">1.8</td>
<td align="center" rowspan="1" colspan="1">16.8</td>
<td align="center" rowspan="1" colspan="1">18.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fe/C</td>
<td align="center" rowspan="1" colspan="1">186.5</td>
<td align="center" rowspan="1" colspan="1">184.5</td>
<td align="center" rowspan="1" colspan="1">21.66</td>
<td align="center" rowspan="1" colspan="1">21.64</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000430  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000430  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024