Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enthalpies of mixing of liquid systems for lead free soldering: Co–Sb–Sn

Identifieur interne : 000429 ( Pmc/Corpus ); précédent : 000428; suivant : 000430

Enthalpies of mixing of liquid systems for lead free soldering: Co–Sb–Sn

Auteurs : A. Elmahfoudi ; A. Sabbar ; H. Flandorfer

Source :

RBID : PMC:4819022

Abstract

The partial and integral enthalpy of mixing of molten ternary Co–Sb–Sn alloys was determined performing high temperature drop calorimetry in a large compositional range at 1273 K. Measurements have been done along five sections, xSb/xSn ≈ 1:1, xSb/xSn ≈ 1:3, xSb/xSn ≈ 3:1, xCo/xSn ≈ 1:4, and xCo/xSb ≈ 1:5. Additionally, binary alloys of the constituent systems Co–Sb and Co–Sn were investigated at the same temperature. All the binary data were evaluated by means of a standard Redlich–Kister polynomial fit whereas ternary data were fitted on the basis of an extended Redlich–Kister–Muggianu model for substitutional solutions. An iso-enthalpy plot of the ternary system was constructed. In addition, the extrapolation Model of Toop was applied and compared to our data.


Url:
DOI: 10.1016/j.intermet.2011.12.023
PubMed: 27087752
PubMed Central: 4819022

Links to Exploration step

PMC:4819022

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enthalpies of mixing of liquid systems for lead free soldering: Co–Sb–Sn</title>
<author>
<name sortKey="Elmahfoudi, A" sort="Elmahfoudi, A" uniqKey="Elmahfoudi A" first="A." last="Elmahfoudi">A. Elmahfoudi</name>
<affiliation>
<nlm:aff id="aff1">Faculté des Sciences, Université Mohammed V-Agdal, Laboratoire de Chimie Physique Générale, Av. Ibn Batouta, B.P. 1014, Rabat, Morocco</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">University of Vienna, Department of Inorganic Chemistry / Materials Chemistry, Währinger Str. 42, A-1090 Wien, Austria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sabbar, A" sort="Sabbar, A" uniqKey="Sabbar A" first="A." last="Sabbar">A. Sabbar</name>
<affiliation>
<nlm:aff id="aff1">Faculté des Sciences, Université Mohammed V-Agdal, Laboratoire de Chimie Physique Générale, Av. Ibn Batouta, B.P. 1014, Rabat, Morocco</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Flandorfer, H" sort="Flandorfer, H" uniqKey="Flandorfer H" first="H." last="Flandorfer">H. Flandorfer</name>
<affiliation>
<nlm:aff id="aff2">University of Vienna, Department of Inorganic Chemistry / Materials Chemistry, Währinger Str. 42, A-1090 Wien, Austria</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27087752</idno>
<idno type="pmc">4819022</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819022</idno>
<idno type="RBID">PMC:4819022</idno>
<idno type="doi">10.1016/j.intermet.2011.12.023</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">000429</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000429</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Enthalpies of mixing of liquid systems for lead free soldering: Co–Sb–Sn</title>
<author>
<name sortKey="Elmahfoudi, A" sort="Elmahfoudi, A" uniqKey="Elmahfoudi A" first="A." last="Elmahfoudi">A. Elmahfoudi</name>
<affiliation>
<nlm:aff id="aff1">Faculté des Sciences, Université Mohammed V-Agdal, Laboratoire de Chimie Physique Générale, Av. Ibn Batouta, B.P. 1014, Rabat, Morocco</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">University of Vienna, Department of Inorganic Chemistry / Materials Chemistry, Währinger Str. 42, A-1090 Wien, Austria</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sabbar, A" sort="Sabbar, A" uniqKey="Sabbar A" first="A." last="Sabbar">A. Sabbar</name>
<affiliation>
<nlm:aff id="aff1">Faculté des Sciences, Université Mohammed V-Agdal, Laboratoire de Chimie Physique Générale, Av. Ibn Batouta, B.P. 1014, Rabat, Morocco</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Flandorfer, H" sort="Flandorfer, H" uniqKey="Flandorfer H" first="H." last="Flandorfer">H. Flandorfer</name>
<affiliation>
<nlm:aff id="aff2">University of Vienna, Department of Inorganic Chemistry / Materials Chemistry, Währinger Str. 42, A-1090 Wien, Austria</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Intermetallics</title>
<idno type="ISSN">0966-9795</idno>
<idno type="eISSN">1879-0216</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The partial and integral enthalpy of mixing of molten ternary Co–Sb–Sn alloys was determined performing high temperature drop calorimetry in a large compositional range at 1273 K. Measurements have been done along five sections,
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:1,
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:3,
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 3:1,
<italic>x</italic>
<sub>Co</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:4, and
<italic>x</italic>
<sub>Co</sub>
/
<italic>x</italic>
<sub>Sb</sub>
 ≈ 1:5. Additionally, binary alloys of the constituent systems Co–Sb and Co–Sn were investigated at the same temperature. All the binary data were evaluated by means of a standard Redlich–Kister polynomial fit whereas ternary data were fitted on the basis of an extended Redlich–Kister–Muggianu model for substitutional solutions. An iso-enthalpy plot of the ternary system was constructed. In addition, the extrapolation Model of Toop was applied and compared to our data.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Puttlitz, K J" uniqKey="Puttlitz K">K.J. Puttlitz</name>
</author>
<author>
<name sortKey="Galyon, G T" uniqKey="Galyon G">G.T. Galyon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jendrzejczyk Handzlik, D" uniqKey="Jendrzejczyk Handzlik D">D. Jendrzejczyk-Handzlik</name>
</author>
<author>
<name sortKey="Rechchach, M" uniqKey="Rechchach M">M. Rechchach</name>
</author>
<author>
<name sortKey="Gierlotka, W" uniqKey="Gierlotka W">W. Gierlotka</name>
</author>
<author>
<name sortKey="Ipser, H" uniqKey="Ipser H">H. Ipser</name>
</author>
<author>
<name sortKey="Flandorfer, H" uniqKey="Flandorfer H">H. Flandorfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ivanov, M I" uniqKey="Ivanov M">M.I. Ivanov</name>
</author>
<author>
<name sortKey="Tedenac, J C" uniqKey="Tedenac J">J.C. Tedenac</name>
</author>
<author>
<name sortKey="Bulanova, M V" uniqKey="Bulanova M">M.V. Bulanova</name>
</author>
<author>
<name sortKey="Berezutskii, V V" uniqKey="Berezutskii V">V.V. Berezutskii</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y B" uniqKey="Zhang Y">Y.B. Zhang</name>
</author>
<author>
<name sortKey="Li, C R" uniqKey="Li C">C.R. Li</name>
</author>
<author>
<name sortKey="Du, Z M" uniqKey="Du Z">Z.M. Du</name>
</author>
<author>
<name sortKey="Geng, T" uniqKey="Geng T">T. Geng</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Esin, Y O" uniqKey="Esin Y">Y.O. Esin</name>
</author>
<author>
<name sortKey="Valishev, M G" uniqKey="Valishev M">M.G. Valishev</name>
</author>
<author>
<name sortKey="Baev, V M" uniqKey="Baev V">V.M. Baev</name>
</author>
<author>
<name sortKey="Geld, P V" uniqKey="Geld P">P.V. Geld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eremenko, V N" uniqKey="Eremenko V">V.N. Eremenko</name>
</author>
<author>
<name sortKey="Lukashen, Gm" uniqKey="Lukashen G">Gm Lukashen</name>
</author>
<author>
<name sortKey="Pritula, V L" uniqKey="Pritula V">V.L. Pritula</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luck, R" uniqKey="Luck R">R. Luck</name>
</author>
<author>
<name sortKey="Tomiska, J" uniqKey="Tomiska J">J. Tomiska</name>
</author>
<author>
<name sortKey="Predel, B" uniqKey="Predel B">B. Predel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vassilev, G P" uniqKey="Vassilev G">G.P. Vassilev</name>
</author>
<author>
<name sortKey="Lilova, K I" uniqKey="Lilova K">K.I. Lilova</name>
</author>
<author>
<name sortKey="Gachon, J C" uniqKey="Gachon J">J.C. Gachon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawakami, M" uniqKey="Kawakami M">M. Kawakami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frantik, R O" uniqKey="Frantik R">R.O. Frantik</name>
</author>
<author>
<name sortKey="Mcdonald, H J" uniqKey="Mcdonald H">H.J. Mcdonald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kleppa, O J" uniqKey="Kleppa O">O.J. Kleppa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wittig, F E" uniqKey="Wittig F">F.E. Wittig</name>
</author>
<author>
<name sortKey="Gehring, E" uniqKey="Gehring E">E. Gehring</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sommer, F" uniqKey="Sommer F">F. Sommer</name>
</author>
<author>
<name sortKey="Luck, R" uniqKey="Luck R">R. Luck</name>
</author>
<author>
<name sortKey="Rupfbolz, N" uniqKey="Rupfbolz N">N. Rupfbolz</name>
</author>
<author>
<name sortKey="Predel, B" uniqKey="Predel B">B. Predel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azzaoui, M" uniqKey="Azzaoui M">M. Azzaoui</name>
</author>
<author>
<name sortKey="Notin, M" uniqKey="Notin M">M. Notin</name>
</author>
<author>
<name sortKey="Hertz, J" uniqKey="Hertz J">J. Hertz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vassiliev, V" uniqKey="Vassiliev V">V. Vassiliev</name>
</author>
<author>
<name sortKey="Lelaurain, M" uniqKey="Lelaurain M">M. Lelaurain</name>
</author>
<author>
<name sortKey="Hertz, J" uniqKey="Hertz J">J. Hertz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, S W" uniqKey="Chen S">S.W. Chen</name>
</author>
<author>
<name sortKey="Chen, C C" uniqKey="Chen C">C.C. Chen</name>
</author>
<author>
<name sortKey="Gierlotka, W" uniqKey="Gierlotka W">W. Gierlotka</name>
</author>
<author>
<name sortKey="Zi, A R" uniqKey="Zi A">A.R. Zi</name>
</author>
<author>
<name sortKey="Chen, P Y" uniqKey="Chen P">P.Y. Chen</name>
</author>
<author>
<name sortKey="Wu, H J" uniqKey="Wu H">H.J. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flandorfer, H" uniqKey="Flandorfer H">H. Flandorfer</name>
</author>
<author>
<name sortKey="Gehringer, F" uniqKey="Gehringer F">F. Gehringer</name>
</author>
<author>
<name sortKey="Hayer, E" uniqKey="Hayer E">E. Hayer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dinsdale, A T" uniqKey="Dinsdale A">A.T. Dinsdale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Massalski, T B" uniqKey="Massalski T">T.B. Massalski</name>
</author>
<author>
<name sortKey="Okamoto, H" uniqKey="Okamoto H">H. Okamoto</name>
</author>
<author>
<name sortKey="Asm International" uniqKey="Asm International">ASM International</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Redlich, O" uniqKey="Redlich O">O. Redlich</name>
</author>
<author>
<name sortKey="Kister, A T" uniqKey="Kister A">A.T. Kister</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muggianu, Y M" uniqKey="Muggianu Y">Y.M. Muggianu</name>
</author>
<author>
<name sortKey="Gambino, M" uniqKey="Gambino M">M. Gambino</name>
</author>
<author>
<name sortKey="Bros, J P" uniqKey="Bros J">J.P. Bros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toop, G W" uniqKey="Toop G">G.W. Toop</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Intermetallics (Barking)</journal-id>
<journal-id journal-id-type="iso-abbrev">Intermetallics (Barking)</journal-id>
<journal-title-group>
<journal-title>Intermetallics</journal-title>
</journal-title-group>
<issn pub-type="ppub">0966-9795</issn>
<issn pub-type="epub">1879-0216</issn>
<publisher>
<publisher-name>Elsevier Applied Science</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27087752</article-id>
<article-id pub-id-type="pmc">4819022</article-id>
<article-id pub-id-type="publisher-id">S0966-9795(11)00411-0</article-id>
<article-id pub-id-type="doi">10.1016/j.intermet.2011.12.023</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Enthalpies of mixing of liquid systems for lead free soldering: Co–Sb–Sn</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Elmahfoudi</surname>
<given-names>A.</given-names>
</name>
<xref rid="aff1" ref-type="aff">a</xref>
<xref rid="aff2" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sabbar</surname>
<given-names>A.</given-names>
</name>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Flandorfer</surname>
<given-names>H.</given-names>
</name>
<email>hans.flandorfer@univie.ac.at</email>
<xref rid="aff2" ref-type="aff">b</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>a</label>
Faculté des Sciences, Université Mohammed V-Agdal, Laboratoire de Chimie Physique Générale, Av. Ibn Batouta, B.P. 1014, Rabat, Morocco</aff>
<aff id="aff2">
<label>b</label>
University of Vienna, Department of Inorganic Chemistry / Materials Chemistry, Währinger Str. 42, A-1090 Wien, Austria</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author.
<email>hans.flandorfer@univie.ac.at</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>1</day>
<month>4</month>
<year>2012</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<month>4</month>
<year>2012</year>
</pub-date>
<volume>23</volume>
<issue>2-2</issue>
<fpage>128</fpage>
<lpage>133</lpage>
<history>
<date date-type="received">
<day>7</day>
<month>11</month>
<year>2011</year>
</date>
<date date-type="rev-recd">
<day>27</day>
<month>12</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>28</day>
<month>12</month>
<year>2011</year>
</date>
</history>
<permissions>
<copyright-statement>© 2012 Elsevier Ltd.</copyright-statement>
<copyright-year>2011</copyright-year>
<copyright-holder>Elsevier Ltd</copyright-holder>
<license>
<license-p>This document may be redistributed and reused, subject to
<ext-link ext-link-type="uri" xlink:href="http://www.elsevier.com/wps/find/authorsview.authors/supplementalterms1.0">certain conditions</ext-link>
.</license-p>
</license>
</permissions>
<abstract>
<p>The partial and integral enthalpy of mixing of molten ternary Co–Sb–Sn alloys was determined performing high temperature drop calorimetry in a large compositional range at 1273 K. Measurements have been done along five sections,
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:1,
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:3,
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 3:1,
<italic>x</italic>
<sub>Co</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:4, and
<italic>x</italic>
<sub>Co</sub>
/
<italic>x</italic>
<sub>Sb</sub>
 ≈ 1:5. Additionally, binary alloys of the constituent systems Co–Sb and Co–Sn were investigated at the same temperature. All the binary data were evaluated by means of a standard Redlich–Kister polynomial fit whereas ternary data were fitted on the basis of an extended Redlich–Kister–Muggianu model for substitutional solutions. An iso-enthalpy plot of the ternary system was constructed. In addition, the extrapolation Model of Toop was applied and compared to our data.</p>
</abstract>
<abstract abstract-type="graphical">
<title>Highlights</title>
<p>► New determination of Δ
<sub>mix</sub>
<italic>H</italic>
of liquid Co–Sb and Co–Sn alloys. ► First experimental investigation of Δ
<sub>mix</sub>
<italic>H</italic>
in Co–Sb–Sn. ► Important experimental values for modeling of liquid phase in Co–Sb–Sn.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>A. Ternary alloy systems</kwd>
<kwd>B. Thermodynamic and thermochemical properties</kwd>
<kwd>F. Calorimetry</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<label>1</label>
<title>Introduction</title>
<p>At the first of July 2006, the ROHS Directive of the European Union (“Directive on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment 2002/95/EC”)
<xref rid="bib1" ref-type="bibr">[1]</xref>
has come into force. Due to this directive the use of lead is prohibited in electronic products, however, with a number of exemptions due to reliability issues
<xref rid="bib2" ref-type="bibr">[2]</xref>
. Similar regulations are active or impending in various other parts of the world. Over the last decade, due to this global demand for Pb-free soldering, many alloy candidates for replacement of hitherto used Pb–Sn solders have been developed. Among all Pb-free solders, Sn-based alloys are most widely used in electronics. Sn is a rather easily available, inexpensive and nontoxic low melting element that forms alloys and compounds with many metals of importance in electronic applications.</p>
<p>While for low temperature soft soldering suitable materials have been found, e.g. Sn–Ag–Cu and Sn–Cu–Ni, no convenient alloy has so far been found for high-temperature soft soldering (melting temperature ≥ 230 °C). At the moment Sn–Zn, Sn–Sb and Sn–Au containing solders are promising candidates, while Cu, Co and Ni may be used as additions and as contact materials as well. In general, systems of the type solder + substrate are characterized by huge differences in the melting points of the pure components. The high melting areas cannot be investigated experimentally at the temperatures relevant for soldering, i.e. 200–300 °C, because diffusion is slow and thermodynamic equilibrium will not be reached in reasonable time. Furthermore, multiple component systems of four or more metals cannot be explored with experimental methods only. Therefore a combination of experiments and thermodynamic modeling is needed. Methods like CALPHAD strongly depend on experimental data, especially on thermochemical information like Gibbs energy or enthalpy. Thus the subject of the present study is the experimental investigation of the enthalpy of mixing of liquid alloys in the ternary Co–Sb–Sn system. It will complete the investigation of a serial of three ternary systems where Cu–Sb–Sn
<xref rid="bib3" ref-type="bibr">[3]</xref>
and Ni–Sb–Sn
<xref rid="bib4" ref-type="bibr">[4]</xref>
have been already published yet.</p>
</sec>
<sec id="sec2">
<label>2</label>
<title>Bibliography</title>
<sec id="sec2.1">
<label>2.1</label>
<title>The Co–Sb binary system</title>
<p>Ivanov et al.
<xref rid="bib5" ref-type="bibr">[5]</xref>
have measured the enthalpy of mixing of liquid Co–Sb alloys by isoperibolic calorimetry at 1600 K and, for Co-rich alloys only, at 1800 K. The values presented show a generally exothermic effect with a minimum of −6270 J/mol at approx. 50 at.% Co. The minimum corresponds to the formation of the congruently melting compound CoSb. A thermodynamic assessment was published by Zhang et al.
<xref rid="bib6" ref-type="bibr">[6]</xref>
giving the interaction parameters in order to calculate Δ
<italic>G</italic>
<sup>E</sup>
of the liquid phase. Using these parameters at 0 K gives mainly endothermic values with a maximum of ∼4400 J/mol at approx. 25 at.% Co.</p>
</sec>
<sec id="sec2.2">
<label>2.2</label>
<title>The Co–Sn binary system</title>
<p>Several authors have determined mixing enthalpies in the Co-Sn system. Starting with Koerber and Oelsen
<xref rid="bib7" ref-type="bibr">[7]</xref>
who found positive enthalpy of mixing with a maximum of ∼1800 J/mol at 20 at.% Co in the Sn-rich part and negative values with a minimum of about −3000 J/mol at 75 at.% Co in the Co-rich part at 1773 K. In contrary, Esin et al.
<xref rid="bib8" ref-type="bibr">[8]</xref>
reported from calorimetric measurements at 1850 K positive enthalpy of mixing up to 75 at.% Sn with a maximum ∼ 4000 J/mol at 50 at.% Co and negative values in the Sn-rich part with a minimum equal to −1000 J/mol at 90 at.% Sn. However, there is no information to reference states given in this paper. Applying a Knudsen cell method Eremenko et al.
<xref rid="bib9" ref-type="bibr">[9]</xref>
have measured activities of tin in Co–Sn at 1573 K, calculated the excess Gibbs energy of mixing and could confirm the trend of enthalpy data measured by Koerber and Oelsen
<xref rid="bib7" ref-type="bibr">[7]</xref>
; their result are characterized by an exoergonic minimum of the enthalpy of mixing equal to −3000 J/mol at 70 at. % Co and the endergonic maximum at 15 at.% Co around 1400 J/mol. Later in 1991, Lueck et al.
<xref rid="bib10" ref-type="bibr">[10]</xref>
have measured the enthalpy of mixing at five different temperatures (1671, 1675, 1759, 1780, and 1823 K), and have found a significant temperature dependence of Δ
<sub>mix</sub>
<italic>H</italic>
and general endothermic behavior above 1675 K. Below this temperature they found an M-shaped Δ
<sub>mix</sub>
<italic>H</italic>
versus concentration curve with slightly negative values at approx. 40–60 at.% Co. The most recent experimental determination of the mixing enthalpy of liquid alloys has been done by Vassilev et al.
<xref rid="bib11" ref-type="bibr">[11]</xref>
performing drop calorimetry from 0 to 10 at.% Co at 991 and 1020 K. They got generally exothermic values with a minimum of approx. −2000 J/mol at the liquidus limit of 8 at. % Co.</p>
</sec>
<sec id="sec2.3">
<label>2.3</label>
<title>The Sb–Sn binary system</title>
<p>Several calorimetric investigations of the enthalpy of mixing of liquid Sb–Sn alloys can be found in the literature. In 1930, Kawakami
<xref rid="bib12" ref-type="bibr">[12]</xref>
was the first to measure it at 1073 K. Later the binary system was investigated by Frankit and Mcdonald
<xref rid="bib13" ref-type="bibr">[13]</xref>
at 805 K, Kleppa
<xref rid="bib14" ref-type="bibr">[14]</xref>
at 723 K, Wittig and Gehring
<xref rid="bib15" ref-type="bibr">[15]</xref>
at 973 K, Sommer et al.
<xref rid="bib16" ref-type="bibr">[16]</xref>
in the temperature range from 783 K to 1107 K, and Azzaoui et al.
<xref rid="bib17" ref-type="bibr">[17]</xref>
at 892 K (0.5 ≤ 
<italic>x</italic>
<sub>Sn</sub>
 ≤ 1) and at 913 K (0 ≤ 
<italic>x</italic>
<sub>Sn</sub>
 ≤ 0.5) to conclude finally that all the experimental results agree to satisfaction.</p>
<p>EMF methods were applied to derive the corresponding Δ
<sub>mix</sub>
<italic>H</italic>
values by Vassiliev et al.
<xref rid="bib18" ref-type="bibr">[18]</xref>
at 800 K. Very recently Chen et al.
<xref rid="bib19" ref-type="bibr">[19]</xref>
described the liquid phase in the Sb–Sn system using a regular solution model assuming temperature independent heat of mixing. The calculated values are in good agreement with the experimental data reported by Wittig et al.
<xref rid="bib15" ref-type="bibr">[15]</xref>
, Sommer et al.
<xref rid="bib16" ref-type="bibr">[16]</xref>
and Azzaoui et al.
<xref rid="bib17" ref-type="bibr">[17]</xref>
.</p>
</sec>
<sec id="sec2.4">
<label>2.4</label>
<title>The Co–Sb–Sn ternary system</title>
<p>To the best knowledge of the authors no data for the enthalpy of mixing of liquid alloys in the Co–Sb–Sn ternary system are available from literature.</p>
</sec>
</sec>
<sec id="sec3">
<label>3</label>
<title>Experimental procedure</title>
<p>The calorimetric measurements were carried out in a Calvet-type twin calorimeter with two thermopiles with more than 200 thermocouples each, wire wound resistance furnace, and an automatic drop device for up to 30 drops. Control and data evaluation was performed using LabView and HiQ software as described by Flandorfer et al.
<xref rid="bib20" ref-type="bibr">[20]</xref>
. To prevent oxidation all measurements were conducted under Ar flow (99.999%, purified from O
<sub>2</sub>
, approx. 30 ml/min). At the end of each series the calorimeter was calibrated by five or six drops (between 30 and 50 mg each) of NIST standard α-Al
<sub>2</sub>
O
<sub>3</sub>
(National Institute of Standards and Technology, Gaithersburg, MD).</p>
<p>The samples were prepared from cobalt sheet (99.99%), tin rod (99.99%), and antimony shots (99.999%). Antimony was further purified by filtering the liquid metal under vacuum through quartz glass wool. The solid oxide film on the liquid antimony remained at the glass wool. Samples of pure metals Co, Sb, or Sn, respectively, at ambient temperature were dropped into a bath of Sb, Sn or binary alloy Sb–Sn, Co–Sn or Co–Sb, respectively, of chosen starting composition at furnace temperature of 1273 K. All measurements were carried out using a graphite crucible (∅
<sub>i</sub>
 = 9 mm, height = 90 mm) which was heated at 1273 K for 10 min before using it to remove surface impurities.</p>
<p>The enthalpy of mixing was determined for Co–Sb and Co–Sn as well as for the following composition cross-sections in the ternary Co–Sb–Sn:
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 3:1,
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:1,
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:3,
<italic>x</italic>
<sub>Co</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:4, and
<italic>x</italic>
<sub>Co</sub>
/
<italic>x</italic>
<sub>Sb</sub>
 ≈ 1:5 at 1273 K; see
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
.</p>
<p>The interval time between individual drops was usually 40 min and the heat flow acquisition interval was ∼0.5 s. Obtained signals were recorded, integrated and quantified applying the calorimeter constant evaluated by calibration. The measured enthalpy (integrated heat flow at constant pressure) is:
<disp-formula id="fd1">
<label>(1)</label>
<mml:math id="M1" altimg="si1.gif" overflow="scroll">
<mml:mrow>
<mml:mo>Δ</mml:mo>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mrow>
<mml:mi mathvariant="normal">drop</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mi>n</mml:mi>
<mml:mi mathvariant="normal">i</mml:mi>
</mml:msub>
<mml:mo>·</mml:mo>
<mml:mrow>
<mml:mo>[</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi mathvariant="bold">H</mml:mi>
<mml:mrow>
<mml:mi mathvariant="normal">i</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi mathvariant="normal">l</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>,</mml:mo>
<mml:mi mathvariant="normal">FT</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi mathvariant="bold">H</mml:mi>
<mml:mrow>
<mml:mtext>i</mml:mtext>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mtext>s</mml:mtext>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>,</mml:mo>
<mml:mtext>DT</mml:mtext>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>]</mml:mo>
</mml:mrow>
<mml:mo>+</mml:mo>
<mml:mo>Δ</mml:mo>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mrow>
<mml:mi mathvariant="normal">reaction</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:math>
</disp-formula>
</p>
<p>
<italic>n</italic>
<sub>i</sub>
is the number of moles of the dropped element i, FT = furnace temp., and DT = drop temp.</p>
<p>
<bold>H</bold>
<sub>i(l),FT</sub>
 − 
<bold>H</bold>
<sub>i(s),DT</sub>
was calculated using the polynomials for the thermodynamic data of pure elements in the SGTE data base
<xref rid="bib21" ref-type="bibr">[21]</xref>
. For the respective temperatures FT and DT, the average of the values for each drop of a run was taken because their scattering was low enough do not influence the accuracy of the method. Because of the rather small masses added, the partial enthalpy
<inline-formula>
<mml:math id="M2" altimg="si2.gif" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mo>Δ</mml:mo>
<mml:mrow>
<mml:mtext>mix</mml:mtext>
</mml:mrow>
</mml:msub>
<mml:mover accent="true">
<mml:mrow>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mo stretchy="true">¯</mml:mo>
</mml:mover>
</mml:mrow>
</mml:math>
</inline-formula>
can be considered as:
<disp-formula id="fd2">
<label>(2)</label>
<mml:math id="M3" altimg="si3.gif" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mo>Δ</mml:mo>
<mml:mrow>
<mml:mtext>mix</mml:mtext>
</mml:mrow>
</mml:msub>
<mml:mover accent="true">
<mml:mrow>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mo stretchy="true">¯</mml:mo>
</mml:mover>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mrow>
<mml:mo>Δ</mml:mo>
<mml:msub>
<mml:mi mathvariant="bold">H</mml:mi>
<mml:mrow>
<mml:mtext>reaction</mml:mtext>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>n</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:math>
</disp-formula>
</p>
<p>The estimated experimental error is approximately ±250 J/mol, also depending on the concentration of the material dropped.</p>
</sec>
<sec id="sec4">
<label>4</label>
<title>Results and discussion</title>
<sec id="sec4.1">
<label>4.1</label>
<title>Experimental results</title>
<p>Because of ambiguous literature data for Co–Sb and especially for Co–Sn measurements have been performed by dropping pure solid Co into liquid Sb or Sn, respectively, at 1273 K. The results can be seen in
<xref rid="tbl1" ref-type="table">Table 1</xref>
and
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
. Values within the shadowed fields in
<xref rid="tbl1" ref-type="table">Table 1</xref>
are from beyond the liquidus limit. Our measurements confirm the generally exothermic enthalpy of mixing for Co–Sb found by Ivanov et al.
<xref rid="bib5" ref-type="bibr">[5]</xref>
. However, the minimum of −13000 J/mol is much lower. This could be caused by the lower temperature of 1273 °C compared to 1600 K in Ref. 
<xref rid="bib5" ref-type="bibr">[5]</xref>
. Additionally, it is not clear if the authors accounted for the rather strong enthalpy of ferro-/paramagnetic transition (∼8500 J/mol, according to
<xref rid="bib21" ref-type="bibr">[21]</xref>
). Our results for Co–Sn show as well an exothermic behavior over the entire concentration range. The minimum is at approx. 55 at% Sn and −5000 J/mol.</p>
<p>The partial and integral molar enthalpy of mixing of ternary Co–Sb–Sn alloys was obtained in five separate experiments along the cross sections
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 3:1 (section A),
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:1 (section B),
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:3 (section C),
<italic>x</italic>
<sub>Co</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 4:1(section D), and
<italic>x</italic>
<sub>Co</sub>
/
<italic>x</italic>
<sub>Sb</sub>
 ≈ 5:1 (section E), at a constant temperature of 1273 K; the results are listed in
<xref rid="tbl2" ref-type="table">Table 2</xref>
. The starting values of Δ
<sub>mix</sub>
<italic>H</italic>
for the binary systems were calculated based on our own results and on literature data for Sb–Sn
<xref rid="bib16" ref-type="bibr">[16]</xref>
; see
<xref rid="tbl3" ref-type="table">Table 3</xref>
.</p>
<p>In sections A, B and C a clear kink in the Δ
<sub>mix</sub>
<italic>H</italic>
versus
<italic>x</italic>
<sub>Co</sub>
curves could be observed at 20, 21 and 24 at.% Co, respectively. This indicates the formation of a solid phase and thus denotes the liquidus limit at 1273 K. The respective points have been added to
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
, together with our data from the binary systems Co–Sb (21 at.% Co) and Co–Sn (25 at.% Co). They are in good agreement with the current versions of the phase diagrams given in Massalski's compilation
<xref rid="bib22" ref-type="bibr">[22]</xref>
. The resulting liquidus isotherm for 1273 K is shown as dashed line in
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
.</p>
<p>
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
shows as an example the integral molar enthalpy of mixing along section A dropping pure Co into liquid Sb
<sub>0.74</sub>
Sn
<sub>0.26</sub>
, whereas only values for the fully liquid state were plotted. The values quickly become more negative by adding Co as it was expected regarding the constituent binary Co-systems. The situation is very similar for sections B and C, however, the values are less exothermic in section B and again less in section C. This reflects the less exothermic enthalpy of mixing in Co–Sn compared to Co–Sb. Section D, shown in
<xref rid="fig4" ref-type="fig">Fig. 4</xref>
was measured dropping pure Sb into bath of liquid Co
<sub>0.18</sub>
Sn
<sub>0.82</sub>
. The system was fully liquid over the entire experimental range up to 66 at. % Sb. Δ
<sub>mix</sub>
<italic>H</italic>
becomes slightly more exothermic starting from the binary Co–Sn and passes a minimum of approx. 4600 J/mol at ∼40 at.% Sb. Section E was gained dropping pure Sn into liquid Co
<sub>0.15</sub>
Sb
<sub>0.85</sub>
. The integral molar enthalpy of mixing increases almost linearly from the binary starting value of −5334 J/mol. Accordingly, the partial values are rather constant and scatter around −2000 J/mol. Again, no formation of a solid phase could be observed until the experimental limit of 58 at.% Sn.</p>
<p>A valuable check of the quality of our experimental data is the agreement of values from different sections close to the intersection points within the five concentrational sections (see
<xref rid="tbl4" ref-type="table">Table 4</xref>
and
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
). The maximum deviation is ∼900 J/mol at intersection d(B,E), however, it is much less in all other cases and the average deviation is approx. 300 J/mol. Considering the estimated experimental error of ±250 J/mol the deviation is hardly significant. Nevertheless, systematic errors arriving e.g. from incomplete mixing reactions cannot be fully excluded.</p>
</sec>
<sec id="sec4.2">
<label>4.2</label>
<title>Binary and ternary modeling</title>
<p>The experimental results of the binary systems Co–Sb and Co–Sn were described by a least square fit to the well-known Redlich–Kister polynomial
<xref rid="bib23" ref-type="bibr">[23]</xref>
for substitutional solutions which is given by the following equation:
<disp-formula id="fd3">
<label>(3)</label>
<mml:math id="M4" altimg="si4.gif" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mo>Δ</mml:mo>
<mml:mrow>
<mml:mtext>mix</mml:mtext>
</mml:mrow>
</mml:msub>
<mml:mi>H</mml:mi>
<mml:mo>=</mml:mo>
<mml:munder>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
</mml:munder>
<mml:mrow>
<mml:munder>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mi>j</mml:mi>
<mml:mo>></mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:munder>
<mml:mrow>
<mml:mrow>
<mml:mo>[</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>j</mml:mi>
</mml:msub>
<mml:munder>
<mml:mo></mml:mo>
<mml:mi>ν</mml:mi>
</mml:munder>
<mml:mrow>
<mml:mmultiscripts>
<mml:mi>L</mml:mi>
<mml:mi>i,j</mml:mi>
<mml:mi>H</mml:mi>
<mml:mprescripts></mml:mprescripts>
<mml:none></mml:none>
<mml:mi>ν</mml:mi>
</mml:mmultiscripts>
<mml:msup>
<mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>j</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mi>ν</mml:mi>
</mml:msup>
</mml:mrow>
</mml:mrow>
<mml:mo>]</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:math>
</disp-formula>
where
<italic>i</italic>
,
<italic>j</italic>
, are equal to element 1 and 2 according to the alphabetical order (Co; Sb and Co; Sn, respectively) and
<italic>v</italic>
 = 0,1,2,3…,
<italic>etc</italic>
. up to the maximal necessary power, which was 1 in both cases. The resulting interaction parameters are listed in
<xref rid="tbl3" ref-type="table">Table 3</xref>
.</p>
<p>The experimental results of the ternary system Co–Sb–Sn could be described by a least square fit according to the Redlich–Kister–Muggianu
<xref rid="bib24" ref-type="bibr">[24]</xref>
polynomial which is given by the following equation,
<disp-formula id="fd4">
<label>(4)</label>
<mml:math id="M5" altimg="si5.gif" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mo>Δ</mml:mo>
<mml:mrow>
<mml:mtext>mix</mml:mtext>
</mml:mrow>
</mml:msub>
<mml:mi>H</mml:mi>
<mml:mo>=</mml:mo>
<mml:munder>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
</mml:munder>
<mml:mrow>
<mml:munder>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mi>j</mml:mi>
<mml:mo>></mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:munder>
<mml:mrow>
<mml:mrow>
<mml:mo>[</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>j</mml:mi>
</mml:msub>
<mml:munder>
<mml:mo></mml:mo>
<mml:mi>ν</mml:mi>
</mml:munder>
<mml:mrow>
<mml:mmultiscripts>
<mml:mi mathvariant="bold-italic">L</mml:mi>
<mml:mi mathvariant="bold">i,j</mml:mi>
<mml:mi mathvariant="bold">H</mml:mi>
<mml:mprescripts></mml:mprescripts>
<mml:none></mml:none>
<mml:mi mathvariant="bold-italic">ν</mml:mi>
</mml:mmultiscripts>
<mml:msup>
<mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>j</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mi>ν</mml:mi>
</mml:msup>
</mml:mrow>
</mml:mrow>
<mml:mo>]</mml:mo>
</mml:mrow>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>j</mml:mi>
</mml:msub>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>k</mml:mi>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mmultiscripts>
<mml:mi mathvariant="bold-italic">M</mml:mi>
<mml:mi mathvariant="bold">i,j,k</mml:mi>
<mml:mi mathvariant="bold">H</mml:mi>
<mml:mprescripts></mml:mprescripts>
<mml:none></mml:none>
<mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mn>0</mml:mn>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mmultiscripts>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:mmultiscripts>
<mml:mi mathvariant="bold-italic">M</mml:mi>
<mml:mi mathvariant="bold">i,j,k</mml:mi>
<mml:mi mathvariant="bold">H</mml:mi>
<mml:mprescripts></mml:mprescripts>
<mml:none></mml:none>
<mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mmultiscripts>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>j</mml:mi>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:mmultiscripts>
<mml:mi mathvariant="bold-italic">M</mml:mi>
<mml:mi mathvariant="bold">i,j,k</mml:mi>
<mml:mi mathvariant="bold">H</mml:mi>
<mml:mprescripts></mml:mprescripts>
<mml:none></mml:none>
<mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mn>2</mml:mn>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mmultiscripts>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mi>k</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:math>
</disp-formula>
where
<italic>i,j,k</italic>
are equal to 1,2,3 for the element Co, Sb and Sn. The binary parameters
<sup>
<italic>v</italic>
</sup>
<bold>
<italic>L</italic>
</bold>
<sub>
<bold>
<italic>i,j</italic>
</bold>
</sub>
(
<italic>v</italic>
 = 0,1,2…) as well as the excess ternary interaction parameters
<bold>
<italic>M</italic>
</bold>
<sub>
<bold>
<italic>i,j,k</italic>
</bold>
</sub>
, obtained from the experimental enthalpies of mixing from the present investigation, are listed in
<xref rid="tbl3" ref-type="table">Table 3</xref>
.</p>
<p>The calculated values along the cross sections A, D, and E are presented in
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
,
<xref rid="fig4" ref-type="fig">Fig. 4</xref>
,
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
. There is generally a satisfying agreement to the experimental values. This is also the case for sections B and C which are not presented here because they are very similar to section A. In addition, we have calculated Δ
<sub>mix</sub>
<italic>H</italic>
for the ternary system without ternary interaction terms in Eq.
<xref rid="fd4" ref-type="disp-formula">4</xref>
. In case of sections A (see
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
) B and C the experimental values can still be well described. However, for sections D and E there is a significant deviation toward less exothermic mixing enthalpy.</p>
<p>However, this does not necessarily mean that a real ternary interaction takes place in the liquid mixture. More likely the extrapolation model according to Muggianu is not the best choice for this system. The fact having two very similar constituents (Co–Sb and Co–Sn) and the much less exothermic Sb–Sn as the third one implies that the asymmetric Toop model
<xref rid="bib25" ref-type="bibr">[25]</xref>
could be more suitable. Therefore Δ
<sub>mix</sub>
<italic>H</italic>
according to the extrapolation model of Toop was additionally plotted in
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
,
<xref rid="fig4" ref-type="fig">Fig. 4</xref>
,
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
. Generally, the values are less exothermic compared to the Muggianu extrapolation model. For the addition of Co to binary Sb–Sn alloys the deviation is very small. In case of sections D and E also the Toop model fails to satisfyingly reproduce the experimental values.</p>
<p>Finally, the values calculated for the entire system including ternary interaction are presented as an iso-enthalpy plot in
<xref rid="fig6" ref-type="fig">Fig. 6</xref>
. The enthalpy of mixing is generally exothermic with a minimum of approx. −13000 J/mol in the binary Co–Sb system. Data beyond the liquidus limit (compare to
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
) have to be considered as mixing enthalpy of the metastable liquid.</p>
</sec>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="bib1">
<label>1</label>
<element-citation publication-type="journal">
<article-title>Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RHS)</article-title>
<source>Off J Eur Union</source>
<volume>L37</volume>
<year>2003</year>
<fpage>19</fpage>
<lpage>23</lpage>
</element-citation>
</ref>
<ref id="bib2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Puttlitz</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Galyon</surname>
<given-names>G.T.</given-names>
</name>
</person-group>
<article-title>Impact of the ROHS Directive on high-performance electronic systems – part II: key reliability issues preventing the implementation of lead-free solders</article-title>
<source>J Mater Sci Mater El</source>
<volume>18</volume>
<year>2007</year>
<fpage>347</fpage>
<lpage>365</lpage>
</element-citation>
</ref>
<ref id="bib3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jendrzejczyk-Handzlik</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Rechchach</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gierlotka</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Ipser</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Flandorfer</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Enthalpies of mixing of liquid systems for lead-free soldering: Cu–Sb–Sn system</article-title>
<source>Thermochim Acta</source>
<volume>512</volume>
<year>2011</year>
<fpage>217</fpage>
<lpage>224</lpage>
</element-citation>
</ref>
<ref id="bib4">
<label>4</label>
<mixed-citation publication-type="other">Elmahfoudi A, Fürtauer S, Sabbar A, Flandorfer H. Enthalpy of mixing of liquid systems for lead free soldering: Ni–Sb–Sn system, Thermochim Acta, in press.</mixed-citation>
</ref>
<ref id="bib5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ivanov</surname>
<given-names>M.I.</given-names>
</name>
<name>
<surname>Tedenac</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Bulanova</surname>
<given-names>M.V.</given-names>
</name>
<name>
<surname>Berezutskii</surname>
<given-names>V.V.</given-names>
</name>
</person-group>
<article-title>Thermal chemistry and short-range order in Co–Sb melts</article-title>
<source>Powder Metall Met C+</source>
<volume>46</volume>
<year>2007</year>
<fpage>285</fpage>
<lpage>290</lpage>
</element-citation>
</ref>
<ref id="bib6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y.B.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>Z.M.</given-names>
</name>
<name>
<surname>Geng</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>The thermodynamic assessment of the Co–Sb system</article-title>
<source>Calphad</source>
<volume>32</volume>
<year>2008</year>
<fpage>56</fpage>
<lpage>63</lpage>
</element-citation>
</ref>
<ref id="bib7">
<label>7</label>
<mixed-citation publication-type="other">Korber F, Oelsen W. Thermochemistry of alloys. III. The heats of formation of the binary alloys iron–antimony, cobalt–antimony, nickel–antimony, cobalt–tin, nickel–tin, copper–tin and copper–zinc for the cast state, Mitteilungen aus dem Kaiser-Wilhelm-Institut fuer Eisenforschung zu Duesseldorf, 19; 1937; 209–219.</mixed-citation>
</ref>
<ref id="bib8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Esin</surname>
<given-names>Y.O.</given-names>
</name>
<name>
<surname>Valishev</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Baev</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Geld</surname>
<given-names>P.V.</given-names>
</name>
</person-group>
<article-title>Interatomic interaction energy and ordering in liquid alloys of cobalt with tin</article-title>
<source>Zh Fiz Khim+</source>
<volume>51</volume>
<year>1977</year>
<fpage>2524</fpage>
<lpage>2528</lpage>
</element-citation>
</ref>
<ref id="bib9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eremenko</surname>
<given-names>V.N.</given-names>
</name>
<name>
<surname>Lukashen</surname>
<given-names>Gm</given-names>
</name>
<name>
<surname>Pritula</surname>
<given-names>V.L.</given-names>
</name>
</person-group>
<article-title>Thermodynamic properties of liquid tin alloys with iron, cobalt, and nickel</article-title>
<source>Russ J Phys Chem USSR</source>
<volume>45</volume>
<year>1971</year>
<fpage>1131</fpage>
<lpage>1133</lpage>
</element-citation>
</ref>
<ref id="bib10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luck</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Tomiska</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Predel</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Determination of the mixing enthalpy of liquid cobalt–tin alloys by high-temperature calorimetry</article-title>
<source>Z Metallkd</source>
<volume>82</volume>
<year>1991</year>
<fpage>944</fpage>
<lpage>949</lpage>
</element-citation>
</ref>
<ref id="bib11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vassilev</surname>
<given-names>G.P.</given-names>
</name>
<name>
<surname>Lilova</surname>
<given-names>K.I.</given-names>
</name>
<name>
<surname>Gachon</surname>
<given-names>J.C.</given-names>
</name>
</person-group>
<article-title>Calorimetric and phase diagram studies of the Co–Sn system</article-title>
<source>Intermetallics</source>
<volume>15</volume>
<year>2007</year>
<fpage>1156</fpage>
<lpage>1162</lpage>
</element-citation>
</ref>
<ref id="bib12">
<label>12</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kawakami</surname>
<given-names>M.</given-names>
</name>
</person-group>
<chapter-title>The heat of mixing in molten metals, Science Reports of the Tohoku Imperial University</chapter-title>
<series>Series 1: Mathematics, Physics, Chemistry</series>
<volume>vol. 19</volume>
<year>1930</year>
<comment>521–549</comment>
</element-citation>
</ref>
<ref id="bib13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frantik</surname>
<given-names>R.O.</given-names>
</name>
<name>
<surname>Mcdonald</surname>
<given-names>H.J.</given-names>
</name>
</person-group>
<article-title>A thermodynamic study of the tin–antimony system</article-title>
<source>Trans Electrochem Soc</source>
<volume>88</volume>
<year>1945</year>
<fpage>243</fpage>
<lpage>251</lpage>
</element-citation>
</ref>
<ref id="bib14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kleppa</surname>
<given-names>O.J.</given-names>
</name>
</person-group>
<article-title>A calorimetric investigation of some binary and ternary liquid alloys rich in tin</article-title>
<source>J Phys Chem US</source>
<volume>60</volume>
<year>1956</year>
<fpage>842</fpage>
<lpage>846</lpage>
</element-citation>
</ref>
<ref id="bib15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wittig</surname>
<given-names>F.E.</given-names>
</name>
<name>
<surname>Gehring</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Die mischungswärmen des antimons mit B-metallen: III. Die systeme mit zinn und blei, ber. Bunsen-Gesell</article-title>
<source>Physik Chem</source>
<volume>71</volume>
<year>1967</year>
<fpage>372</fpage>
<lpage>375</lpage>
</element-citation>
</ref>
<ref id="bib16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sommer</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Luck</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rupfbolz</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Predel</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Chemical short-range order in liquid Sb–Sn alloys proved with the aid of the dependence of the mixing enthalpies on temperature</article-title>
<source>Mater Res Bull</source>
<volume>18</volume>
<year>1983</year>
<fpage>621</fpage>
<lpage>629</lpage>
</element-citation>
</ref>
<ref id="bib17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azzaoui</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Notin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hertz</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Ternary experimental excess functions by means of high-order polynomials – enthalpy of mixing of liquid Pb–Sn–Sb alloys</article-title>
<source>Z Metallkd</source>
<volume>84</volume>
<year>1993</year>
<fpage>545</fpage>
<lpage>551</lpage>
</element-citation>
</ref>
<ref id="bib18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vassiliev</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Lelaurain</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hertz</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>A new proposal for the binary (Sn, Sb) phase diagram and its thermodynamic properties based on a new emf study</article-title>
<source>J Alloys Compd</source>
<volume>247</volume>
<year>1997</year>
<fpage>223</fpage>
<lpage>233</lpage>
</element-citation>
</ref>
<ref id="bib19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>S.W.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Gierlotka</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zi</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>P.Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>H.J.</given-names>
</name>
</person-group>
<article-title>Phase equilibria of the Sn–Sb binary system</article-title>
<source>J Electron Mater</source>
<volume>37</volume>
<year>2008</year>
<fpage>992</fpage>
<lpage>1002</lpage>
</element-citation>
</ref>
<ref id="bib20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flandorfer</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gehringer</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hayer</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Individual solutions for control and data acquisition with the PC</article-title>
<source>Thermochim Acta</source>
<volume>382</volume>
<year>2002</year>
<fpage>77</fpage>
<lpage>87</lpage>
</element-citation>
</ref>
<ref id="bib21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dinsdale</surname>
<given-names>A.T.</given-names>
</name>
</person-group>
<article-title>SGTE data for pure elements</article-title>
<source>Calphad</source>
<volume>15</volume>
<year>1991</year>
<fpage>317</fpage>
<lpage>425</lpage>
</element-citation>
</ref>
<ref id="bib22">
<label>22</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Massalski</surname>
<given-names>T.B.</given-names>
</name>
<name>
<surname>Okamoto</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>ASM International</surname>
</name>
</person-group>
<chapter-title>Binary alloy phase diagrams</chapter-title>
<edition>2nd ed.</edition>
<year>1990</year>
</element-citation>
</ref>
<ref id="bib23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Redlich</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Kister</surname>
<given-names>A.T.</given-names>
</name>
</person-group>
<article-title>Algebraic representation of thermodynamic properties and the classification of solutions</article-title>
<source>Ind Eng Chem</source>
<volume>40</volume>
<year>1948</year>
<fpage>345</fpage>
<lpage>348</lpage>
</element-citation>
</ref>
<ref id="bib24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muggianu</surname>
<given-names>Y.M.</given-names>
</name>
<name>
<surname>Gambino</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bros</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<article-title>Enthalpies of formation of liquid alloys bismuth–gallium–tin at 723 K – choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary-system</article-title>
<source>J Chim Phys PCB</source>
<volume>72</volume>
<year>1975</year>
<fpage>83</fpage>
<lpage>88</lpage>
</element-citation>
</ref>
<ref id="bib25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Toop</surname>
<given-names>G.W.</given-names>
</name>
</person-group>
<article-title>Predicting ternary activities using binary data</article-title>
<source>T Metall Soc AIME</source>
<volume>233</volume>
<year>1965</year>
<fpage>850</fpage>
<lpage>855</lpage>
</element-citation>
</ref>
</ref-list>
<ack>
<title>Acknowledgments</title>
<p>The financial support by the
<funding-source id="gs1">Austrian Science Fund</funding-source>
(FWF) through project No. P21507-N19 is gratefully acknowledged. This work is as well a contribution to COST Action MP0602 on “Advanced Solder Materials for High Temperature Application” (HISOLD).</p>
</ack>
</back>
<floats-group>
<fig id="fig1">
<label>Fig. 1</label>
<caption>
<p>Measured sections (A,B,C,D,E) and alloy compositions in the ternary Co–Sb–Sn system (intersections a–e indicated, see
<xref rid="tbl3" ref-type="table">Table 3</xref>
), the liquidus limit is marked by the dashed line.</p>
</caption>
<graphic xlink:href="gr1"></graphic>
</fig>
<fig id="fig2">
<label>Fig. 2</label>
<caption>
<p>Integral molar enthalpies of mixing of binary Co–Sb and Co–Sn alloys at 1273 K; reference states: pure liquid metals.</p>
</caption>
<graphic xlink:href="gr2"></graphic>
</fig>
<fig id="fig3">
<label>Fig. 3</label>
<caption>
<p>Integral molar enthalpies of mixing of liquid Co–Sb–Sn alloys along the section
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:3 at 1273 K; reference states: pure liquid metals.</p>
</caption>
<graphic xlink:href="gr3"></graphic>
</fig>
<fig id="fig4">
<label>Fig. 4</label>
<caption>
<p>Integral molar enthalpies of mixing of liquid Co–Sb–Sn alloys along the section
<italic>x</italic>
<sub>Co</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:4 at 1273 K; reference states: pure liquid metals.</p>
</caption>
<graphic xlink:href="gr4"></graphic>
</fig>
<fig id="fig5">
<label>Fig. 5</label>
<caption>
<p>Integral molar enthalpies of mixing of liquid Co–Sb–Sn alloys along the section
<italic>x</italic>
<sub>Co</sub>
/
<italic>x</italic>
<sub>Sb</sub>
 ≈ 1:5 at 1273 K; reference states: pure liquid metals.</p>
</caption>
<graphic xlink:href="gr5"></graphic>
</fig>
<fig id="fig6">
<label>Fig. 6</label>
<caption>
<p>Isoenthalpy curves of liquid Co–Sb–Sn alloys at 1273 K; reference states: pure liquid metals, numbers given in J/mol.</p>
</caption>
<graphic xlink:href="gr6"></graphic>
</fig>
<table-wrap id="tbl1" position="float">
<label>Table 1</label>
<caption>
<p>Partial and integral molar enthalpies of mixing of liquid Co–Sb and Co–Sn alloys at 1273 K; standard states: pure liquid metals.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Dropped mole
<hr></hr>
</th>
<th>Drop enthalpy
<hr></hr>
</th>
<th colspan="2">Partial enthalpy
<hr></hr>
</th>
<th colspan="2">Integral enthalpy
<xref rid="tbl1fna" ref-type="table-fn">a</xref>
<hr></hr>
</th>
</tr>
<tr>
<th>
<italic>n</italic>
(i) [mmol]</th>
<th>Δ
<italic>H</italic>
<sub>drop</sub>
[J]</th>
<th>
<italic>x</italic>
(i)
<xref rid="tbl1fnb" ref-type="table-fn">b</xref>
</th>
<th>
<inline-formula>
<mml:math id="M6" altimg="si6.gif" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mo>Δ</mml:mo>
<mml:mrow>
<mml:mtext>mix</mml:mtext>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mover accent="true">
<mml:mi>H</mml:mi>
<mml:mo>¯</mml:mo>
</mml:mover>
<mml:mtext>i</mml:mtext>
</mml:msub>
</mml:mrow>
</mml:math>
</inline-formula>
[J/mol]</th>
<th>
<italic>x</italic>
(i)</th>
<th>Δ
<sub>mix</sub>
<italic>H</italic>
[J/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="2">Co–Sb; i = Co</td>
<td colspan="4">Starting amount:
<italic>n</italic>
(Sb) = 8.6089 mmol</td>
</tr>
<tr>
<td>0.1890</td>
<td>15,774</td>
<td>0.0107</td>
<td>−28,254</td>
<td>0.0215</td>
<td>−790</td>
</tr>
<tr>
<td>0.1962</td>
<td>16,792</td>
<td>0.0322</td>
<td>−27,236</td>
<td>0.0428</td>
<td>−1553</td>
</tr>
<tr>
<td>0.1971</td>
<td>17,340</td>
<td>0.0531</td>
<td>−26,688</td>
<td>0.0634</td>
<td>−2275</td>
</tr>
<tr>
<td>0.1987</td>
<td>16,012</td>
<td>0.0733</td>
<td>−28,016</td>
<td>0.0832</td>
<td>−3000</td>
</tr>
<tr>
<td>0.2009</td>
<td>19,034</td>
<td>0.0928</td>
<td>−24,994</td>
<td>0.1024</td>
<td>−3639</td>
</tr>
<tr>
<td>0.2092</td>
<td>17,281</td>
<td>0.1120</td>
<td>−26,747</td>
<td>0.1215</td>
<td>−4314</td>
</tr>
<tr>
<td>0.2173</td>
<td>20,176</td>
<td>0.1311</td>
<td>−23,852</td>
<td>0.1406</td>
<td>−4923</td>
</tr>
<tr>
<td>0.2184</td>
<td>18,484</td>
<td>0.1498</td>
<td>−25,544</td>
<td>0.1589</td>
<td>−5544</td>
</tr>
<tr>
<td>0.2194</td>
<td>23,158</td>
<td>0.1678</td>
<td>−20,870</td>
<td>0.1766</td>
<td>−6045</td>
</tr>
<tr>
<td>0.2232</td>
<td>20,435</td>
<td>0.1852</td>
<td>−23,593</td>
<td>0.1938</td>
<td>−6590</td>
</tr>
<tr>
<td>0.2260</td>
<td>21,122</td>
<td>0.2021</td>
<td>−22,907</td>
<td>0.2105</td>
<td>−7104</td>
</tr>
<tr>
<td colspan="6">

</td>
</tr>
<tr>
<td colspan="2">Co–Sn; i = Co; 1. run</td>
<td colspan="4">Starting amount: n(Sn) = 21.0679 mmol</td>
</tr>
<tr>
<td>0.5103</td>
<td>38,071</td>
<td>0.0118</td>
<td>−14,479</td>
<td>0.0236</td>
<td>−342</td>
</tr>
<tr>
<td>0.5106</td>
<td>38,990</td>
<td>0.0349</td>
<td>−13,560</td>
<td>0.0462</td>
<td>−648</td>
</tr>
<tr>
<td>0.5461</td>
<td>38,847</td>
<td>0.0577</td>
<td>−13,702</td>
<td>0.0692</td>
<td>−963</td>
</tr>
<tr>
<td>0.5747</td>
<td>39,241</td>
<td>0.0808</td>
<td>−13,308</td>
<td>0.0923</td>
<td>−1269</td>
</tr>
<tr>
<td>0.5808</td>
<td>39,145</td>
<td>0.1034</td>
<td>−13,404</td>
<td>0.1144</td>
<td>−1565</td>
</tr>
<tr>
<td>0.5829</td>
<td>39,441</td>
<td>0.1250</td>
<td>−13,108</td>
<td>0.1356</td>
<td>−1841</td>
</tr>
<tr>
<td>0.5934</td>
<td>39,642</td>
<td>0.1459</td>
<td>−12,908</td>
<td>0.1562</td>
<td>−2104</td>
</tr>
<tr>
<td>0.6262</td>
<td>39,907</td>
<td>0.1665</td>
<td>−12,642</td>
<td>0.1768</td>
<td>−2362</td>
</tr>
<tr>
<td>0.6267</td>
<td>40,151</td>
<td>0.1866</td>
<td>−12,399</td>
<td>0.1965</td>
<td>−2602</td>
</tr>
<tr>
<td>0.6394</td>
<td>38,988</td>
<td>0.2060</td>
<td>−13,561</td>
<td>0.2156</td>
<td>−2863</td>
</tr>
<tr>
<td>0.6629</td>
<td>38,838</td>
<td>0.2251</td>
<td>−13,711</td>
<td>0.2345</td>
<td>−3124</td>
</tr>
<tr>
<td colspan="6">

</td>
</tr>
<tr>
<td colspan="2">Co–Sn; i = Co; 2. run</td>
<td colspan="4">Starting amount:
<italic>n</italic>
(Sn) = 21.3158 mmol</td>
</tr>
<tr>
<td>0.5129</td>
<td>39,433</td>
<td>0.0117</td>
<td>−13,117</td>
<td>0.0235</td>
<td>−308</td>
</tr>
<tr>
<td>0.5599</td>
<td>40,403</td>
<td>0.0357</td>
<td>−12,146</td>
<td>0.0479</td>
<td>−604</td>
</tr>
<tr>
<td>0.5606</td>
<td>40,611</td>
<td>0.0595</td>
<td>−11,939</td>
<td>0.0712</td>
<td>−881</td>
</tr>
<tr>
<td>0.5616</td>
<td>40,163</td>
<td>0.0823</td>
<td>−12,386</td>
<td>0.0934</td>
<td>−1156</td>
</tr>
<tr>
<td>0.5878</td>
<td>41,195</td>
<td>0.1044</td>
<td>−11,355</td>
<td>0.1155</td>
<td>−1405</td>
</tr>
<tr>
<td>0.6021</td>
<td>41,031</td>
<td>0.1263</td>
<td>−11,518</td>
<td>0.1370</td>
<td>−1651</td>
</tr>
<tr>
<td>0.6131</td>
<td>41,524</td>
<td>0.1475</td>
<td>−11,025</td>
<td>0.1579</td>
<td>−1878</td>
</tr>
<tr>
<td>0.6378</td>
<td>41,694</td>
<td>0.1683</td>
<td>−10,855</td>
<td>0.1786</td>
<td>−2099</td>
</tr>
<tr>
<td>0.6539</td>
<td>41,763</td>
<td>0.1887</td>
<td>−10,786</td>
<td>0.1988</td>
<td>−2312</td>
</tr>
<tr>
<td>0.6688</td>
<td>38,170</td>
<td>0.2086</td>
<td>−14,380</td>
<td>0.2185</td>
<td>−2608</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tbl1fna">
<label>a</label>
<p>Per mole of binary mixture.</p>
</fn>
</table-wrap-foot>
<table-wrap-foot>
<fn id="tbl1fnb">
<label>b</label>
<p>Average of x
<sub>i</sub>
before and after the drop.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl2" position="float">
<label>Table 2</label>
<caption>
<p>Partial and integral enthalpies of mixing of Co–Sb–Sn alloys, 1273 K; standard states: pure liquid metals.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>dropped mole
<hr></hr>
</th>
<th>Drop enthalpy
<hr></hr>
</th>
<th colspan="2">Partial enthalpy
<hr></hr>
</th>
<th colspan="3">Integral enthalpy
<xref rid="tbl2fna" ref-type="table-fn">a</xref>
<hr></hr>
</th>
</tr>
<tr>
<th>
<italic>n</italic>
<sub>i</sub>
[mmol]</th>
<th>Δ
<italic>H</italic>
<sub>Drop</sub>
[J]</th>
<th>
<italic>x</italic>
<sub>i</sub>
<xref rid="tbl2fnb" ref-type="table-fn">b</xref>
</th>
<th>
<inline-formula>
<mml:math id="M7" altimg="si2.gif" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mo>Δ</mml:mo>
<mml:mrow>
<mml:mtext>mix</mml:mtext>
</mml:mrow>
</mml:msub>
<mml:mover accent="true">
<mml:mrow>
<mml:msub>
<mml:mi>H</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mo stretchy="true">¯</mml:mo>
</mml:mover>
</mml:mrow>
</mml:math>
</inline-formula>
<break></break>
[J/mol]</th>
<th>
<italic>x</italic>
<sub>Co</sub>
</th>
<th>
<italic>x</italic>
<sub>Sb</sub>
</th>
<th>Δ
<sub>mix</sub>
<italic>H</italic>
[J/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="7">
<italic>Sect. A</italic>
:
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 3:1; i = Co; starting amounts:
<italic>n</italic>
<sub>Sb</sub>
 = 8.1911 mmol;
<italic>n</italic>
<sub>Sn</sub>
 = 2.9204 mmol</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0.7372</td>
<td>−974</td>
</tr>
<tr>
<td>0.3955</td>
<td>21,495</td>
<td>0.0172</td>
<td>−31,081</td>
<td>0.0344</td>
<td>0.7118</td>
<td>−2009</td>
</tr>
<tr>
<td>0.4123</td>
<td>22,548</td>
<td>0.0511</td>
<td>−30,027</td>
<td>0.0678</td>
<td>0.6872</td>
<td>−2978</td>
</tr>
<tr>
<td>0.4232</td>
<td>24,984</td>
<td>0.0838</td>
<td>−27,591</td>
<td>0.0997</td>
<td>0.6636</td>
<td>−3822</td>
</tr>
<tr>
<td>0.4274</td>
<td>24,994</td>
<td>0.1148</td>
<td>−27,581</td>
<td>0.1299</td>
<td>0.6414</td>
<td>−4617</td>
</tr>
<tr>
<td>0.4530</td>
<td>25,277</td>
<td>0.1448</td>
<td>−27,298</td>
<td>0.1597</td>
<td>0.6195</td>
<td>−5394</td>
</tr>
<tr>
<td>0.4609</td>
<td>26,166</td>
<td>0.1738</td>
<td>−26,410</td>
<td>0.1880</td>
<td>0.5986</td>
<td>−6102</td>
</tr>
<tr>
<td>0.4724</td>
<td>24,466</td>
<td>0.2015</td>
<td>−28,110</td>
<td>0.2151</td>
<td>0.5786</td>
<td>−6837</td>
</tr>
<tr>
<td>0.4792</td>
<td>23,011</td>
<td>0.2279</td>
<td>−29,565</td>
<td>0.2408</td>
<td>0.5597</td>
<td>−7581</td>
</tr>
<tr>
<td>0.4799</td>
<td>19,319</td>
<td>0.2528</td>
<td>−33,257</td>
<td>0.2649</td>
<td>0.5419</td>
<td>−8396</td>
</tr>
<tr>
<td>0.4811</td>
<td>18,318</td>
<td>0.2762</td>
<td>−34,257</td>
<td>0.2876</td>
<td>0.5252</td>
<td>−9194</td>
</tr>
<tr>
<td>0.4812</td>
<td>17,053</td>
<td>0.2982</td>
<td>−35,522</td>
<td>0.3089</td>
<td>0.5095</td>
<td>−9982</td>
</tr>
<tr>
<td>0.4846</td>
<td>18,861</td>
<td>0.3190</td>
<td>−33,715</td>
<td>0.3291</td>
<td>0.4946</td>
<td>−10,676</td>
</tr>
<tr>
<td>0.5027</td>
<td>21,101</td>
<td>0.3390</td>
<td>−31,474</td>
<td>0.3489</td>
<td>0.4800</td>
<td>−11,289</td>
</tr>
<tr>
<td>0.5091</td>
<td>18,745</td>
<td>0.3583</td>
<td>−33,830</td>
<td>0.3677</td>
<td>0.4661</td>
<td>−11,942</td>
</tr>
<tr>
<td>0.5215</td>
<td>18,734</td>
<td>0.3768</td>
<td>−33,842</td>
<td>0.3860</td>
<td>0.4527</td>
<td>−12,573</td>
</tr>
<tr>
<td>0.5299</td>
<td>20,414</td>
<td>0.3947</td>
<td>−32,161</td>
<td>0.4034</td>
<td>0.4398</td>
<td>−13,130</td>
</tr>
<tr>
<td>0.5332</td>
<td>19,071</td>
<td>0.4117</td>
<td>−33,505</td>
<td>0.4200</td>
<td>0.4275</td>
<td>−13,697</td>
</tr>
<tr>
<td>0.5446</td>
<td>21,845</td>
<td>0.4280</td>
<td>−30,730</td>
<td>0.4361</td>
<td>0.4157</td>
<td>−14,168</td>
</tr>
<tr>
<td>0.5750</td>
<td>20,899</td>
<td>0.4441</td>
<td>−31,677</td>
<td>0.4520</td>
<td>0.4039</td>
<td>−14,665</td>
</tr>
<tr>
<td>0.5785</td>
<td>20,517</td>
<td>0.4596</td>
<td>−32,058</td>
<td>0.4672</td>
<td>0.3927</td>
<td>−15,147</td>
</tr>
<tr>
<td>0.5834</td>
<td>19,984</td>
<td>0.4745</td>
<td>−32,591</td>
<td>0.4817</td>
<td>0.3820</td>
<td>−15,622</td>
</tr>
<tr>
<td>0.5933</td>
<td>30,447</td>
<td>0.4887</td>
<td>−22,128</td>
<td>0.4957</td>
<td>0.3718</td>
<td>−15,797</td>
</tr>
<tr>
<td>0.6013</td>
<td>24,324</td>
<td>0.5024</td>
<td>−28,251</td>
<td>0.5091</td>
<td>0.3619</td>
<td>−16,128</td>
</tr>
<tr>
<td>0.6466</td>
<td>32,795</td>
<td>0.5159</td>
<td>−19,780</td>
<td>0.5227</td>
<td>0.3518</td>
<td>−16,229</td>
</tr>
<tr>
<td>0.6778</td>
<td>22,999</td>
<td>0.5295</td>
<td>−29,576</td>
<td>0.5362</td>
<td>0.3419</td>
<td>−16,607</td>
</tr>
<tr>
<td colspan="7">
<italic>Sect. B</italic>
:
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:1; i = Co; starting amounts:
<italic>n</italic>
<sub>Sb</sub>
 = 8.5209 mmol;
<italic>n</italic>
<sub>Sn</sub>
 = 9.0809 mmol</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0.4841</td>
<td>−1320</td>
</tr>
<tr>
<td>0.4545</td>
<td>27,957</td>
<td>0.0126</td>
<td>−24,618</td>
<td>0.0252</td>
<td>0.4719</td>
<td>−1907</td>
</tr>
<tr>
<td>0.4761</td>
<td>27,844</td>
<td>0.0377</td>
<td>−24,731</td>
<td>0.0502</td>
<td>0.4598</td>
<td>−2493</td>
</tr>
<tr>
<td>0.4895</td>
<td>27,930</td>
<td>0.0624</td>
<td>−24,645</td>
<td>0.0747</td>
<td>0.4480</td>
<td>−3063</td>
</tr>
<tr>
<td>0.4988</td>
<td>29,014</td>
<td>0.0865</td>
<td>−23,561</td>
<td>0.0983</td>
<td>0.4365</td>
<td>−3587</td>
</tr>
<tr>
<td>0.5135</td>
<td>29,345</td>
<td>0.1099</td>
<td>−23,230</td>
<td>0.1214</td>
<td>0.4253</td>
<td>−4090</td>
</tr>
<tr>
<td>0.5305</td>
<td>30,737</td>
<td>0.1327</td>
<td>−21,838</td>
<td>0.1441</td>
<td>0.4143</td>
<td>−4548</td>
</tr>
<tr>
<td>0.5315</td>
<td>31,001</td>
<td>0.1549</td>
<td>−21,574</td>
<td>0.1656</td>
<td>0.4039</td>
<td>−4977</td>
</tr>
<tr>
<td>0.5460</td>
<td>30,895</td>
<td>0.1762</td>
<td>−21,680</td>
<td>0.1867</td>
<td>0.3937</td>
<td>−5398</td>
</tr>
<tr>
<td>0.5485</td>
<td>31,004</td>
<td>0.1967</td>
<td>−21,572</td>
<td>0.2068</td>
<td>0.3840</td>
<td>−5798</td>
</tr>
<tr>
<td>0.5569</td>
<td>27,992</td>
<td>0.2165</td>
<td>−24,583</td>
<td>0.2262</td>
<td>0.3746</td>
<td>−6258</td>
</tr>
<tr>
<td>0.5690</td>
<td>26,822</td>
<td>0.2357</td>
<td>−25,753</td>
<td>0.2451</td>
<td>0.3654</td>
<td>−6734</td>
</tr>
<tr>
<td>0.5824</td>
<td>24,505</td>
<td>0.2543</td>
<td>−28,071</td>
<td>0.2635</td>
<td>0.3565</td>
<td>−7254</td>
</tr>
<tr>
<td>0.5870</td>
<td>20,844</td>
<td>0.2723</td>
<td>−31,731</td>
<td>0.2811</td>
<td>0.3480</td>
<td>−7840</td>
</tr>
<tr>
<td>0.5932</td>
<td>21,503</td>
<td>0.2896</td>
<td>−31,072</td>
<td>0.2981</td>
<td>0.3398</td>
<td>−8390</td>
</tr>
<tr>
<td>0.6114</td>
<td>20,482</td>
<td>0.3065</td>
<td>−32,094</td>
<td>0.3149</td>
<td>0.3317</td>
<td>−8954</td>
</tr>
<tr>
<td>0.6121</td>
<td>22,848</td>
<td>0.3228</td>
<td>−29,727</td>
<td>0.3308</td>
<td>0.3240</td>
<td>−9437</td>
</tr>
<tr>
<td>0.6134</td>
<td>22,388</td>
<td>0.3384</td>
<td>−30,188</td>
<td>0.3460</td>
<td>0.3166</td>
<td>−9910</td>
</tr>
<tr>
<td>0.6393</td>
<td>22,779</td>
<td>0.3536</td>
<td>−29,797</td>
<td>0.3612</td>
<td>0.3092</td>
<td>−10372</td>
</tr>
<tr>
<td>0.6419</td>
<td>20,186</td>
<td>0.3685</td>
<td>−32,389</td>
<td>0.3758</td>
<td>0.3022</td>
<td>−10873</td>
</tr>
<tr>
<td>0.6562</td>
<td>22,921</td>
<td>0.3829</td>
<td>−29,654</td>
<td>0.3900</td>
<td>0.2953</td>
<td>−11300</td>
</tr>
<tr>
<td>0.6620</td>
<td>22,112</td>
<td>0.3968</td>
<td>−30,463</td>
<td>0.4036</td>
<td>0.2887</td>
<td>−11730</td>
</tr>
<tr>
<td>0.6884</td>
<td>22,832</td>
<td>0.4104</td>
<td>−29,743</td>
<td>0.4172</td>
<td>0.2821</td>
<td>−12140</td>
</tr>
<tr>
<td>0.7208</td>
<td>21,483</td>
<td>0.4240</td>
<td>−31,092</td>
<td>0.4308</td>
<td>0.2755</td>
<td>−12582</td>
</tr>
<tr>
<td>0.7260</td>
<td>23,788</td>
<td>0.4373</td>
<td>−28,787</td>
<td>0.4439</td>
<td>0.2692</td>
<td>−12954</td>
</tr>
<tr>
<td>0.7966</td>
<td>24,531</td>
<td>0.4507</td>
<td>−28,044</td>
<td>0.4575</td>
<td>0.2626</td>
<td>−13324</td>
</tr>
<tr>
<td colspan="7">
<italic>Sect. C</italic>
:
<italic>x</italic>
<sub>Sb</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:3; i = Co; starting amounts:
<italic>n</italic>
<sub>Sb</sub>
 = 2.7486 mmol;
<italic>n</italic>
<sub>Sn</sub>
 = 8.1840 mmol</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0.2514</td>
<td>−1039</td>
</tr>
<tr>
<td>0.3419</td>
<td>31,838</td>
<td>0.0152</td>
<td>−20,738</td>
<td>0.0303</td>
<td>0.2438</td>
<td>−1636</td>
</tr>
<tr>
<td>0.3913</td>
<td>32,091</td>
<td>0.0466</td>
<td>−20,484</td>
<td>0.0629</td>
<td>0.2356</td>
<td>−2269</td>
</tr>
<tr>
<td>0.4332</td>
<td>33,755</td>
<td>0.0796</td>
<td>−18,821</td>
<td>0.0964</td>
<td>0.2272</td>
<td>−2861</td>
</tr>
<tr>
<td>0.4540</td>
<td>33,776</td>
<td>0.1127</td>
<td>−18,799</td>
<td>0.1291</td>
<td>0.2190</td>
<td>−3438</td>
</tr>
<tr>
<td>0.4596</td>
<td>34,371</td>
<td>0.1445</td>
<td>−18,204</td>
<td>0.1598</td>
<td>0.2112</td>
<td>−3959</td>
</tr>
<tr>
<td>0.4742</td>
<td>35,901</td>
<td>0.1746</td>
<td>−16,674</td>
<td>0.1894</td>
<td>0.2038</td>
<td>−4406</td>
</tr>
<tr>
<td>0.4943</td>
<td>36,129</td>
<td>0.2037</td>
<td>−16,446</td>
<td>0.2180</td>
<td>0.1966</td>
<td>−4832</td>
</tr>
<tr>
<td>0.5017</td>
<td>33,626</td>
<td>0.2316</td>
<td>−18,949</td>
<td>0.2451</td>
<td>0.1898</td>
<td>−5321</td>
</tr>
<tr>
<td>0.5018</td>
<td>28,742</td>
<td>0.2578</td>
<td>−23,833</td>
<td>0.2704</td>
<td>0.1834</td>
<td>−5941</td>
</tr>
<tr>
<td>0.5060</td>
<td>25,324</td>
<td>0.2823</td>
<td>−27,251</td>
<td>0.2942</td>
<td>0.1774</td>
<td>−6637</td>
</tr>
<tr>
<td>0.5209</td>
<td>22,516</td>
<td>0.3057</td>
<td>−30,059</td>
<td>0.3172</td>
<td>0.1717</td>
<td>−7399</td>
</tr>
<tr>
<td>0.5224</td>
<td>21,653</td>
<td>0.3280</td>
<td>−30,923</td>
<td>0.3388</td>
<td>0.1662</td>
<td>−8142</td>
</tr>
<tr>
<td>0.5246</td>
<td>26,036</td>
<td>0.3489</td>
<td>−26,540</td>
<td>0.3591</td>
<td>0.1611</td>
<td>−8708</td>
</tr>
<tr>
<td>0.5311</td>
<td>23,526</td>
<td>0.3688</td>
<td>−29,049</td>
<td>0.3785</td>
<td>0.1563</td>
<td>−9322</td>
</tr>
<tr>
<td>0.5322</td>
<td>23,718</td>
<td>0.3876</td>
<td>−28,857</td>
<td>0.3967</td>
<td>0.1517</td>
<td>−9896</td>
</tr>
<tr>
<td>0.5329</td>
<td>25,712</td>
<td>0.4053</td>
<td>−26,863</td>
<td>0.4140</td>
<td>0.1473</td>
<td>−10,381</td>
</tr>
<tr>
<td>0.5528</td>
<td>24,592</td>
<td>0.4224</td>
<td>−27,983</td>
<td>0.4308</td>
<td>0.1431</td>
<td>−10,887</td>
</tr>
<tr>
<td>0.5596</td>
<td>24,727</td>
<td>0.4389</td>
<td>−27,849</td>
<td>0.4469</td>
<td>0.1390</td>
<td>−11,367</td>
</tr>
<tr>
<td>0.5674</td>
<td>24,419</td>
<td>0.4546</td>
<td>−28,156</td>
<td>0.4624</td>
<td>0.1352</td>
<td>−11,836</td>
</tr>
<tr>
<td>0.5818</td>
<td>25,680</td>
<td>0.4698</td>
<td>−26,895</td>
<td>0.4773</td>
<td>0.1314</td>
<td>−12,255</td>
</tr>
<tr>
<td>0.5828</td>
<td>26,341</td>
<td>0.4844</td>
<td>−26,234</td>
<td>0.4915</td>
<td>0.1278</td>
<td>−12,634</td>
</tr>
<tr>
<td>0.6408</td>
<td>26,886</td>
<td>0.4988</td>
<td>−25,690</td>
<td>0.5062</td>
<td>0.1241</td>
<td>−13,012</td>
</tr>
<tr>
<td>0.6641</td>
<td>31,189</td>
<td>0.5134</td>
<td>−21,386</td>
<td>0.5206</td>
<td>0.1205</td>
<td>−13,255</td>
</tr>
<tr>
<td>0.6687</td>
<td>26,314</td>
<td>0.5274</td>
<td>−26,261</td>
<td>0.5342</td>
<td>0.1171</td>
<td>−13,626</td>
</tr>
<tr>
<td>0.6863</td>
<td>26,416</td>
<td>0.5409</td>
<td>−26,160</td>
<td>0.5475</td>
<td>0.1138</td>
<td>−13,982</td>
</tr>
<tr>
<td colspan="7">
<italic>Sect. D</italic>
:
<italic>x</italic>
<sub>Co</sub>
/
<italic>x</italic>
<sub>Sn</sub>
 ≈ 1:4; i = Sb; starting amounts:
<italic>n</italic>
<sub>Co</sub>
 = 1.5833 mmol;
<italic>n</italic>
<sub>Sn</sub>
 = 7.1116 mmol</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>0.1821</td>
<td>0</td>
<td>−2324</td>
</tr>
<tr>
<td>0.3158</td>
<td>35,134</td>
<td>0.0175</td>
<td>−13,030</td>
<td>0.1757</td>
<td>0.0350</td>
<td>−2699</td>
</tr>
<tr>
<td>0.3438</td>
<td>37,451</td>
<td>0.0528</td>
<td>−10,713</td>
<td>0.1693</td>
<td>0.0705</td>
<td>−2994</td>
</tr>
<tr>
<td>0.3446</td>
<td>38,339</td>
<td>0.0870</td>
<td>−9825</td>
<td>0.1632</td>
<td>0.1035</td>
<td>−3236</td>
</tr>
<tr>
<td>0.3979</td>
<td>37,798</td>
<td>0.1212</td>
<td>−10,366</td>
<td>0.1568</td>
<td>0.1389</td>
<td>−3517</td>
</tr>
<tr>
<td>0.4630</td>
<td>39,112</td>
<td>0.1577</td>
<td>−9052</td>
<td>0.1499</td>
<td>0.1766</td>
<td>−3760</td>
</tr>
<tr>
<td>0.4677</td>
<td>39,252</td>
<td>0.1941</td>
<td>−8912</td>
<td>0.1436</td>
<td>0.2115</td>
<td>−3979</td>
</tr>
<tr>
<td>0.5221</td>
<td>40,082</td>
<td>0.2294</td>
<td>−8082</td>
<td>0.1371</td>
<td>0.2472</td>
<td>−4164</td>
</tr>
<tr>
<td>0.5467</td>
<td>41,188</td>
<td>0.2642</td>
<td>−6976</td>
<td>0.1309</td>
<td>0.2812</td>
<td>−4291</td>
</tr>
<tr>
<td>0.6028</td>
<td>41,729</td>
<td>0.2983</td>
<td>−6435</td>
<td>0.1247</td>
<td>0.3153</td>
<td>−4393</td>
</tr>
<tr>
<td>0.6036</td>
<td>41,997</td>
<td>0.3309</td>
<td>−6168</td>
<td>0.1190</td>
<td>0.3464</td>
<td>−4474</td>
</tr>
<tr>
<td>0.6190</td>
<td>42,608</td>
<td>0.3609</td>
<td>−5556</td>
<td>0.1137</td>
<td>0.3754</td>
<td>−4522</td>
</tr>
<tr>
<td>0.6325</td>
<td>43,126</td>
<td>0.3890</td>
<td>−5038</td>
<td>0.1088</td>
<td>0.4026</td>
<td>−4544</td>
</tr>
<tr>
<td>0.6367</td>
<td>43,937</td>
<td>0.4151</td>
<td>−4227</td>
<td>0.1042</td>
<td>0.4276</td>
<td>−4531</td>
</tr>
<tr>
<td>0.6564</td>
<td>44,112</td>
<td>0.4395</td>
<td>−4052</td>
<td>0.0999</td>
<td>0.4513</td>
<td>−4511</td>
</tr>
<tr>
<td>0.6567</td>
<td>43,993</td>
<td>0.4623</td>
<td>−4171</td>
<td>0.0959</td>
<td>0.4732</td>
<td>−4497</td>
</tr>
<tr>
<td>0.6960</td>
<td>44,826</td>
<td>0.4838</td>
<td>−3338</td>
<td>0.0921</td>
<td>0.4945</td>
<td>−4451</td>
</tr>
<tr>
<td>0.7112</td>
<td>45,061</td>
<td>0.5045</td>
<td>−3103</td>
<td>0.0884</td>
<td>0.5146</td>
<td>−4397</td>
</tr>
<tr>
<td>0.7597</td>
<td>45,245</td>
<td>0.5244</td>
<td>−2919</td>
<td>0.0848</td>
<td>0.5343</td>
<td>−4337</td>
</tr>
<tr>
<td>0.8088</td>
<td>45,454</td>
<td>0.5440</td>
<td>−2711</td>
<td>0.0813</td>
<td>0.5536</td>
<td>−4269</td>
</tr>
<tr>
<td>0.8193</td>
<td>44,995</td>
<td>0.5627</td>
<td>−3170</td>
<td>0.0780</td>
<td>0.5717</td>
<td>−4225</td>
</tr>
<tr>
<td>0.8610</td>
<td>45,240</td>
<td>0.5804</td>
<td>−2925</td>
<td>0.0748</td>
<td>0.5891</td>
<td>−4172</td>
</tr>
<tr>
<td>0.9272</td>
<td>45,090</td>
<td>0.5977</td>
<td>−3074</td>
<td>0.0717</td>
<td>0.6063</td>
<td>−4126</td>
</tr>
<tr>
<td>1.1087</td>
<td>46,197</td>
<td>0.6157</td>
<td>−1967</td>
<td>0.0683</td>
<td>0.6252</td>
<td>−4023</td>
</tr>
<tr>
<td>1.1820</td>
<td>45,658</td>
<td>0.6342</td>
<td>−2506</td>
<td>0.0649</td>
<td>0.6433</td>
<td>−3949</td>
</tr>
<tr>
<td>1.1881</td>
<td>45,930</td>
<td>0.6516</td>
<td>−2234</td>
<td>0.0619</td>
<td>0.6599</td>
<td>−3870</td>
</tr>
<tr>
<td colspan="7">
<italic>Sect. E</italic>
:
<italic>x</italic>
<sub>Co</sub>
/
<italic>x</italic>
<sub>Sb</sub>
 ≈ 1:5; i = Sn; starting amounts:
<italic>n</italic>
<sub>Co</sub>
 = 1.2102 mmol;
<italic>n</italic>
<sub>Sb</sub>
 = 6.6881 mmol</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>0.1532</td>
<td>0.8468</td>
<td>−5334</td>
</tr>
<tr>
<td>0.2938</td>
<td>33,166</td>
<td>0.0179</td>
<td>−1758</td>
<td>0.1477</td>
<td>0.8164</td>
<td>−5206</td>
</tr>
<tr>
<td>0.3278</td>
<td>30,148</td>
<td>0.0544</td>
<td>−4776</td>
<td>0.1420</td>
<td>0.7850</td>
<td>−5189</td>
</tr>
<tr>
<td>0.3393</td>
<td>32,997</td>
<td>0.0907</td>
<td>−1927</td>
<td>0.1366</td>
<td>0.7549</td>
<td>−5064</td>
</tr>
<tr>
<td>0.3429</td>
<td>34,450</td>
<td>0.1251</td>
<td>−473</td>
<td>0.1315</td>
<td>0.7268</td>
<td>−4893</td>
</tr>
<tr>
<td>0.3447</td>
<td>31,929</td>
<td>0.1572</td>
<td>−2994</td>
<td>0.1268</td>
<td>0.7006</td>
<td>−4825</td>
</tr>
<tr>
<td>0.3578</td>
<td>32,191</td>
<td>0.1876</td>
<td>−2732</td>
<td>0.1222</td>
<td>0.6752</td>
<td>−4749</td>
</tr>
<tr>
<td>0.3593</td>
<td>24,402</td>
<td>0.2165</td>
<td>−10522</td>
<td>0.1179</td>
<td>0.6516</td>
<td>−4705</td>
</tr>
<tr>
<td>0.3884</td>
<td>32,450</td>
<td>0.2445</td>
<td>−2474</td>
<td>0.1136</td>
<td>0.6278</td>
<td>−4624</td>
</tr>
<tr>
<td>0.3910</td>
<td>34,771</td>
<td>0.2717</td>
<td>−152</td>
<td>0.1096</td>
<td>0.6056</td>
<td>−4466</td>
</tr>
<tr>
<td>0.3947</td>
<td>28,778</td>
<td>0.2971</td>
<td>−6145</td>
<td>0.1058</td>
<td>0.5847</td>
<td>−4524</td>
</tr>
<tr>
<td>0.4030</td>
<td>32,629</td>
<td>0.3212</td>
<td>−2295</td>
<td>0.1022</td>
<td>0.5648</td>
<td>−4448</td>
</tr>
<tr>
<td>0.4061</td>
<td>33,448</td>
<td>0.3440</td>
<td>−1475</td>
<td>0.0988</td>
<td>0.5461</td>
<td>−4349</td>
</tr>
<tr>
<td>0.4151</td>
<td>31,213</td>
<td>0.3657</td>
<td>−3711</td>
<td>0.0956</td>
<td>0.5282</td>
<td>−4328</td>
</tr>
<tr>
<td>0.4262</td>
<td>31,516</td>
<td>0.3864</td>
<td>−3407</td>
<td>0.0925</td>
<td>0.5110</td>
<td>−4298</td>
</tr>
<tr>
<td>0.4280</td>
<td>32,175</td>
<td>0.4061</td>
<td>−2748</td>
<td>0.0895</td>
<td>0.4948</td>
<td>−4249</td>
</tr>
<tr>
<td>0.4436</td>
<td>34,298</td>
<td>0.4249</td>
<td>−625</td>
<td>0.0867</td>
<td>0.4791</td>
<td>−4134</td>
</tr>
<tr>
<td>0.4476</td>
<td>34,104</td>
<td>0.4430</td>
<td>−820</td>
<td>0.0840</td>
<td>0.4642</td>
<td>−4031</td>
</tr>
<tr>
<td>0.4698</td>
<td>34,002</td>
<td>0.4605</td>
<td>−921</td>
<td>0.0813</td>
<td>0.4495</td>
<td>−3933</td>
</tr>
<tr>
<td>0.5101</td>
<td>30,126</td>
<td>0.4779</td>
<td>−4798</td>
<td>0.0786</td>
<td>0.4346</td>
<td>−3962</td>
</tr>
<tr>
<td>0.5155</td>
<td>31,225</td>
<td>0.4950</td>
<td>−3699</td>
<td>0.0761</td>
<td>0.4206</td>
<td>−3953</td>
</tr>
<tr>
<td>0.5179</td>
<td>35,758</td>
<td>0.5112</td>
<td>834</td>
<td>0.0737</td>
<td>0.4073</td>
<td>−3802</td>
</tr>
<tr>
<td>0.5315</td>
<td>33,527</td>
<td>0.5266</td>
<td>−1396</td>
<td>0.0714</td>
<td>0.3945</td>
<td>−3727</td>
</tr>
<tr>
<td>0.5452</td>
<td>40,532</td>
<td>0.5414</td>
<td>5608</td>
<td>0.0692</td>
<td>0.3822</td>
<td>−3658</td>
</tr>
<tr>
<td>0.5622</td>
<td>33,278</td>
<td>0.5556</td>
<td>−1646</td>
<td>0.0670</td>
<td>0.3703</td>
<td>−3596</td>
</tr>
<tr>
<td>0.5713</td>
<td>30,674</td>
<td>0.5694</td>
<td>−4250</td>
<td>0.0650</td>
<td>0.3590</td>
<td>−3616</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tbl2fna">
<label>a</label>
<p>Per mole of mixture.</p>
</fn>
</table-wrap-foot>
<table-wrap-foot>
<fn id="tbl2fnb">
<label>b</label>
<p>Average value before and after the drop.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tbl3" position="float">
<label>Table 3</label>
<caption>
<p>Binary and ternary interaction parameters for Co–Sb–Sn at 1273 K.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>System</th>
<th>Reference</th>
<th>Interaction Parameters (J/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co–Sb</td>
<td>[this work]</td>
<td>
<italic>
<sup>0</sup>
L</italic>
 = −50706
<break></break>
<italic>
<sup>1</sup>
L</italic>
 = −13831</td>
</tr>
<tr>
<td>Co–Sn</td>
<td>[this work]</td>
<td>
<italic>
<sup>0</sup>
L</italic>
 = −20746
<break></break>
<italic>
<sup>1</sup>
L</italic>
 = −8087</td>
</tr>
<tr>
<td>Sb–Sn</td>
<td>
<xref rid="bib16" ref-type="bibr">[16]</xref>
</td>
<td>
<italic>
<sup>0</sup>
L</italic>
 = −5269.4
<break></break>
<italic>
<sup>1</sup>
L</italic>
 = 507.4</td>
</tr>
<tr>
<td>Co–Sb–Sn</td>
<td>[this work]</td>
<td>
<sup>0</sup>
<italic>M</italic>
 = 293415
<break></break>
<italic>
<sup>1</sup>
M</italic>
 = −43213
<break></break>
<italic>
<sup>2</sup>
M</italic>
 = −63791</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tbl4" position="float">
<label>Table 4</label>
<caption>
<p>Values of the integral enthalpy of mixing at the intersection points a, b, c, d and e; see also
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Intersection</th>
<th colspan="3">Integral enthalpy of mixing in J/mol
<xref rid="tbl4fna" ref-type="table-fn">a</xref>
<hr></hr>
</th>
</tr>
<tr>
<th>Co drops</th>
<th>Sb drops</th>
<th>Sn drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<italic>a</italic>
(A,E)</td>
<td align="char">−4600</td>
<td></td>
<td align="char">−4750</td>
</tr>
<tr>
<td>
<italic>b</italic>
(D,E)</td>
<td align="char">−4500</td>
<td></td>
<td align="char">−4650</td>
</tr>
<tr>
<td>
<italic>c</italic>
(B,D)</td>
<td align="char">−3800</td>
<td align="char">−4550</td>
<td></td>
</tr>
<tr>
<td>
<italic>d</italic>
(B,E)</td>
<td align="char">−3200</td>
<td></td>
<td align="char">−4100</td>
</tr>
<tr>
<td>
<italic>e</italic>
(C,D)</td>
<td align="char">−3800</td>
<td align="char">−3760</td>
<td></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tbl4fna">
<label>a</label>
<p>Values rounded.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000429 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000429 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4819022
   |texte=   Enthalpies of mixing of liquid systems for lead free soldering: Co–Sb–Sn
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27087752" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024