Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0004250 ( Pmc/Corpus ); précédent : 0004249; suivant : 0004251 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">One Step Synthesis of NiO Nanoparticles via Solid-State Thermal Decomposition at Low-Temperature of Novel
<italic>Aqua</italic>
(2,9-dimethyl-1,10-phenanthroline)NiCl
<sub>2</sub>
Complex</title>
<author>
<name sortKey="Barakat, Assem" sort="Barakat, Assem" uniqKey="Barakat A" first="Assem" last="Barakat">Assem Barakat</name>
<affiliation>
<nlm:aff id="af1-ijms-14-23941">Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mail:
<email>ambarakat@ksu.edu.sa</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Al Noaimi, Mousa" sort="Al Noaimi, Mousa" uniqKey="Al Noaimi M" first="Mousa" last="Al-Noaimi">Mousa Al-Noaimi</name>
<affiliation>
<nlm:aff id="af2-ijms-14-23941">Department of Chemistry, Hashemite University, Zarqa 13115, Jordan; E-Mail:
<email>manoaimi@hu.edu.jo</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Suleiman, Mohammed" sort="Suleiman, Mohammed" uniqKey="Suleiman M" first="Mohammed" last="Suleiman">Mohammed Suleiman</name>
<affiliation>
<nlm:aff id="af3-ijms-14-23941">Department of Chemistry, Science College, AN-Najah National University, P.O. Box 7, Nablus, Palestine; E-Mail:
<email>suleimanshtaya@najah.edu</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Aldwayyan, Abdullah S" sort="Aldwayyan, Abdullah S" uniqKey="Aldwayyan A" first="Abdullah S." last="Aldwayyan">Abdullah S. Aldwayyan</name>
<affiliation>
<nlm:aff id="af4-ijms-14-23941">Department of Physics and Astronomy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mail:
<email>dwayyan@ksu.edu.sa</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hammouti, Belkheir" sort="Hammouti, Belkheir" uniqKey="Hammouti B" first="Belkheir" last="Hammouti">Belkheir Hammouti</name>
<affiliation>
<nlm:aff id="af5-ijms-14-23941">Laboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, Faculity of Science, University Mohammed Premier, Oujda 60000, Morocco; E-Mail:
<email>hammoutib@gmail.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ben Hadda, Taibi" sort="Ben Hadda, Taibi" uniqKey="Ben Hadda T" first="Taibi" last="Ben Hadda">Taibi Ben Hadda</name>
<affiliation>
<nlm:aff id="af6-ijms-14-23941">Lab of Chemical Material, FSO, University Mohammed Premier, Oujda 60000, Morocco; E-Mail:
<email>taibi.ben.hadda@gmail.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haddad, Salim F" sort="Haddad, Salim F" uniqKey="Haddad S" first="Salim F." last="Haddad">Salim F. Haddad</name>
<affiliation>
<nlm:aff id="af7-ijms-14-23941">Department of Chemistry, the University of Jordan, Amman 11942, Jordan; E-Mail:
<email>hadsal2003@yahoo.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Boshaala, Ahmed" sort="Boshaala, Ahmed" uniqKey="Boshaala A" first="Ahmed" last="Boshaala">Ahmed Boshaala</name>
<affiliation>
<nlm:aff id="af8-ijms-14-23941">Department of Chemistry, Faculty of Science, Benghazi University, P.O. Box 1308, Benghazi 5341, Libya; E-Mail:
<email>ahmedboshaala@yahoo.co.uk</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Warad, Ismail" sort="Warad, Ismail" uniqKey="Warad I" first="Ismail" last="Warad">Ismail Warad</name>
<affiliation>
<nlm:aff id="af3-ijms-14-23941">Department of Chemistry, Science College, AN-Najah National University, P.O. Box 7, Nablus, Palestine; E-Mail:
<email>suleimanshtaya@najah.edu</email>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24351867</idno>
<idno type="pmc">3876087</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876087</idno>
<idno type="RBID">PMC:3876087</idno>
<idno type="doi">10.3390/ijms141223941</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000425</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000425</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">One Step Synthesis of NiO Nanoparticles via Solid-State Thermal Decomposition at Low-Temperature of Novel
<italic>Aqua</italic>
(2,9-dimethyl-1,10-phenanthroline)NiCl
<sub>2</sub>
Complex</title>
<author>
<name sortKey="Barakat, Assem" sort="Barakat, Assem" uniqKey="Barakat A" first="Assem" last="Barakat">Assem Barakat</name>
<affiliation>
<nlm:aff id="af1-ijms-14-23941">Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mail:
<email>ambarakat@ksu.edu.sa</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Al Noaimi, Mousa" sort="Al Noaimi, Mousa" uniqKey="Al Noaimi M" first="Mousa" last="Al-Noaimi">Mousa Al-Noaimi</name>
<affiliation>
<nlm:aff id="af2-ijms-14-23941">Department of Chemistry, Hashemite University, Zarqa 13115, Jordan; E-Mail:
<email>manoaimi@hu.edu.jo</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Suleiman, Mohammed" sort="Suleiman, Mohammed" uniqKey="Suleiman M" first="Mohammed" last="Suleiman">Mohammed Suleiman</name>
<affiliation>
<nlm:aff id="af3-ijms-14-23941">Department of Chemistry, Science College, AN-Najah National University, P.O. Box 7, Nablus, Palestine; E-Mail:
<email>suleimanshtaya@najah.edu</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Aldwayyan, Abdullah S" sort="Aldwayyan, Abdullah S" uniqKey="Aldwayyan A" first="Abdullah S." last="Aldwayyan">Abdullah S. Aldwayyan</name>
<affiliation>
<nlm:aff id="af4-ijms-14-23941">Department of Physics and Astronomy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mail:
<email>dwayyan@ksu.edu.sa</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hammouti, Belkheir" sort="Hammouti, Belkheir" uniqKey="Hammouti B" first="Belkheir" last="Hammouti">Belkheir Hammouti</name>
<affiliation>
<nlm:aff id="af5-ijms-14-23941">Laboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, Faculity of Science, University Mohammed Premier, Oujda 60000, Morocco; E-Mail:
<email>hammoutib@gmail.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ben Hadda, Taibi" sort="Ben Hadda, Taibi" uniqKey="Ben Hadda T" first="Taibi" last="Ben Hadda">Taibi Ben Hadda</name>
<affiliation>
<nlm:aff id="af6-ijms-14-23941">Lab of Chemical Material, FSO, University Mohammed Premier, Oujda 60000, Morocco; E-Mail:
<email>taibi.ben.hadda@gmail.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haddad, Salim F" sort="Haddad, Salim F" uniqKey="Haddad S" first="Salim F." last="Haddad">Salim F. Haddad</name>
<affiliation>
<nlm:aff id="af7-ijms-14-23941">Department of Chemistry, the University of Jordan, Amman 11942, Jordan; E-Mail:
<email>hadsal2003@yahoo.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Boshaala, Ahmed" sort="Boshaala, Ahmed" uniqKey="Boshaala A" first="Ahmed" last="Boshaala">Ahmed Boshaala</name>
<affiliation>
<nlm:aff id="af8-ijms-14-23941">Department of Chemistry, Faculty of Science, Benghazi University, P.O. Box 1308, Benghazi 5341, Libya; E-Mail:
<email>ahmedboshaala@yahoo.co.uk</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Warad, Ismail" sort="Warad, Ismail" uniqKey="Warad I" first="Ismail" last="Warad">Ismail Warad</name>
<affiliation>
<nlm:aff id="af3-ijms-14-23941">Department of Chemistry, Science College, AN-Najah National University, P.O. Box 7, Nablus, Palestine; E-Mail:
<email>suleimanshtaya@najah.edu</email>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Molecular Sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>[NiCl
<sub>2</sub>
(C
<sub>14</sub>
H
<sub>12</sub>
N
<sub>2</sub>
)(H
<sub>2</sub>
O)] complex has been synthesized from nickel chloride hexahydrate (NiCl
<sub>2</sub>
·6H
<sub>2</sub>
O) and 2,9-dimethyl-1,10-phenanthroline (dmphen) as
<italic>N</italic>
,
<italic>N</italic>
-bidentate ligand. The synthesized complex was characterized by elemental analysis, infrared (IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and differential thermal/thermogravimetric analysis (TG/DTA). The complex was further confirmed by single crystal X-ray diffraction (XRD) as triclinic with space group P-1. The desired complex, subjected to thermal decomposition at low temperature of 400 ºC in an open atmosphere, revealed a novel and facile synthesis of pure NiO nanoparticles with uniform spherical particle; the structure of the NiO nanoparticles product was elucidated on the basis of Fourier transform infrared (FT-IR), UV-vis spectroscopy, TG/DTA, XRD, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDXS) and transmission electron microscopy (TEM).</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, W" uniqKey="Wei W">W. Wei</name>
</author>
<author>
<name sortKey="Jiang, X" uniqKey="Jiang X">X. Jiang</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L. Lu</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X. Yang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagi, R E" uniqKey="Nagi R">R.E. Nagi</name>
</author>
<author>
<name sortKey="Radwan, M S" uniqKey="Radwan M">M.S. Radwan</name>
</author>
<author>
<name sortKey="El Shall, M" uniqKey="El Shall M">M. El-Shall</name>
</author>
<author>
<name sortKey="Hassan, M A" uniqKey="Hassan M">M.A. Hassan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deraz, N M" uniqKey="Deraz N">N.M. Deraz</name>
</author>
<author>
<name sortKey="Selim, M M" uniqKey="Selim M">M.M. Selim</name>
</author>
<author>
<name sortKey="Ramadan, M" uniqKey="Ramadan M">M. Ramadan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hotovy, I" uniqKey="Hotovy I">I. Hotovy</name>
</author>
<author>
<name sortKey="Huran, J" uniqKey="Huran J">J. Huran</name>
</author>
<author>
<name sortKey="Spiess, L" uniqKey="Spiess L">L. Spiess</name>
</author>
<author>
<name sortKey="Hascik, S" uniqKey="Hascik S">S. Hascik</name>
</author>
<author>
<name sortKey="Rehacek, V" uniqKey="Rehacek V">V. Rehacek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, E L" uniqKey="Miller E">E.L. Miller</name>
</author>
<author>
<name sortKey="Rocheleau, R E" uniqKey="Rocheleau R">R.E. Rocheleau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, H X" uniqKey="Yang H">H.X. Yang</name>
</author>
<author>
<name sortKey="Dong, Q F" uniqKey="Dong Q">Q.F. Dong</name>
</author>
<author>
<name sortKey="Hu, X H" uniqKey="Hu X">X.H. Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ichiyanagi, Y" uniqKey="Ichiyanagi Y">Y. Ichiyanagi</name>
</author>
<author>
<name sortKey="Wakabayashi, N" uniqKey="Wakabayashi N">N. Wakabayashi</name>
</author>
<author>
<name sortKey="Yamazaki, M" uniqKey="Yamazaki M">M. Yamazaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W Y" uniqKey="Li W">W.Y. Li</name>
</author>
<author>
<name sortKey="Xu, L N" uniqKey="Xu L">L.N. Xu</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, F B" uniqKey="Zhang F">F.B. Zhang</name>
</author>
<author>
<name sortKey="Zhou, Y K" uniqKey="Zhou Y">Y.K. Zhou</name>
</author>
<author>
<name sortKey="Li, H L" uniqKey="Li H">H.L. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, X H" uniqKey="Huang X">X.H. Huang</name>
</author>
<author>
<name sortKey="Tu, J P" uniqKey="Tu J">J.P. Tu</name>
</author>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B. Zhang</name>
</author>
<author>
<name sortKey="Zhang, C Q" uniqKey="Zhang C">C.Q. Zhang</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Yuan, Y F" uniqKey="Yuan Y">Y.F. Yuan</name>
</author>
<author>
<name sortKey="Wu, H M" uniqKey="Wu H">H.M. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leevin, D" uniqKey="Leevin D">D. Leevin</name>
</author>
<author>
<name sortKey="Ying, J Y" uniqKey="Ying J">J.Y. Ying</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoshio, M" uniqKey="Yoshio M">M. Yoshio</name>
</author>
<author>
<name sortKey="Todorov, Y" uniqKey="Todorov Y">Y. Todorov</name>
</author>
<author>
<name sortKey="Yamato, K" uniqKey="Yamato K">K. Yamato</name>
</author>
<author>
<name sortKey="Noguchia, H" uniqKey="Noguchia H">H. Noguchia</name>
</author>
<author>
<name sortKey="Itoha, J I" uniqKey="Itoha J">J.I. Itoha</name>
</author>
<author>
<name sortKey="Okadab, M" uniqKey="Okadab M">M. Okadab</name>
</author>
<author>
<name sortKey="Mourib, T" uniqKey="Mourib T">T. Mourib</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghosh, M" uniqKey="Ghosh M">M. Ghosh</name>
</author>
<author>
<name sortKey="Biswas, K" uniqKey="Biswas K">K. Biswas</name>
</author>
<author>
<name sortKey="Sundaresan, A" uniqKey="Sundaresan A">A. Sundaresan</name>
</author>
<author>
<name sortKey="Rao, C N R" uniqKey="Rao C">C.N.R. Rao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Makhlouf, S A" uniqKey="Makhlouf S">S.A. Makhlouf</name>
</author>
<author>
<name sortKey="Parker, F T" uniqKey="Parker F">F.T. Parker</name>
</author>
<author>
<name sortKey="Spada, F E" uniqKey="Spada F">F.E. Spada</name>
</author>
<author>
<name sortKey="Berkowitz, A E" uniqKey="Berkowitz A">A.E. Berkowitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahmad, T" uniqKey="Ahmad T">T. Ahmad</name>
</author>
<author>
<name sortKey="Ramanujachary, K V" uniqKey="Ramanujachary K">K.V. Ramanujachary</name>
</author>
<author>
<name sortKey="Lofland, S E" uniqKey="Lofland S">S.E. Lofland</name>
</author>
<author>
<name sortKey="Ganguli, A K" uniqKey="Ganguli A">A.K. Ganguli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borgstrom, M" uniqKey="Borgstrom M">M. Borgstrom</name>
</author>
<author>
<name sortKey="Blart, E" uniqKey="Blart E">E. Blart</name>
</author>
<author>
<name sortKey="Boschloo, G" uniqKey="Boschloo G">G. Boschloo</name>
</author>
<author>
<name sortKey="Mukhtar, E" uniqKey="Mukhtar E">E. Mukhtar</name>
</author>
<author>
<name sortKey="Hagfeldt, A" uniqKey="Hagfeldt A">A. Hagfeldt</name>
</author>
<author>
<name sortKey="Hammarstrom, L" uniqKey="Hammarstrom L">L. Hammarstrom</name>
</author>
<author>
<name sortKey="Odobel, F" uniqKey="Odobel F">F. Odobel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nathan, T" uniqKey="Nathan T">T. Nathan</name>
</author>
<author>
<name sortKey="Aziz, A" uniqKey="Aziz A">A. Aziz</name>
</author>
<author>
<name sortKey="Noor, A F" uniqKey="Noor A">A.F. Noor</name>
</author>
<author>
<name sortKey="Prabaharan, S R" uniqKey="Prabaharan S">S.R. Prabaharan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, J" uniqKey="He J">J. He</name>
</author>
<author>
<name sortKey="Lindstroem, H" uniqKey="Lindstroem H">H. Lindstroem</name>
</author>
<author>
<name sortKey="Hagfeldt, A" uniqKey="Hagfeldt A">A. Hagfeldt</name>
</author>
<author>
<name sortKey="Lindquist, S E" uniqKey="Lindquist S">S.E. Lindquist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt, G" uniqKey="Schmidt G">G. Schmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldvurt, E" uniqKey="Goldvurt E">E. Goldvurt</name>
</author>
<author>
<name sortKey="Kulkarni, T B" uniqKey="Kulkarni T">T.B. Kulkarni</name>
</author>
<author>
<name sortKey="Bhargava, R N" uniqKey="Bhargava R">R.N. Bhargava</name>
</author>
<author>
<name sortKey="Taylorb, J" uniqKey="Taylorb J">J. Taylorb</name>
</author>
<author>
<name sortKey="Liberab, M" uniqKey="Liberab M">M. Liberab</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalsani, V" uniqKey="Kalsani V">V. Kalsani</name>
</author>
<author>
<name sortKey="Schmittel, M" uniqKey="Schmittel M">M. Schmittel</name>
</author>
<author>
<name sortKey="Listorti, A" uniqKey="Listorti A">A. Listorti</name>
</author>
<author>
<name sortKey="Accorsi, G" uniqKey="Accorsi G">G. Accorsi</name>
</author>
<author>
<name sortKey="Armaroli, N" uniqKey="Armaroli N">N. Armaroli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rapenne, G" uniqKey="Rapenne G">G. Rapenne</name>
</author>
<author>
<name sortKey="Dietrich Buchecker, C O" uniqKey="Dietrich Buchecker C">C.O. Dietrich-Buchecker</name>
</author>
<author>
<name sortKey="Sauvage, J P" uniqKey="Sauvage J">J.P. Sauvage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, M" uniqKey="Meyer M">M. Meyer</name>
</author>
<author>
<name sortKey="Albrecht Gary, A M" uniqKey="Albrecht Gary A">A.M. Albrecht-Gary</name>
</author>
<author>
<name sortKey="Dietrich Buchecker, C O" uniqKey="Dietrich Buchecker C">C.O. Dietrich-Buchecker</name>
</author>
<author>
<name sortKey="Sauvage, J P" uniqKey="Sauvage J">J.P. Sauvage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, G" uniqKey="Li G">G. Li</name>
</author>
<author>
<name sortKey="Shi, D H" uniqKey="Shi D">D.H. Shi</name>
</author>
<author>
<name sortKey="Zhu, H L" uniqKey="Zhu H">H.L. Zhu</name>
</author>
<author>
<name sortKey="Yan, H" uniqKey="Yan H">H. Yan</name>
</author>
<author>
<name sortKey="Ng, S W" uniqKey="Ng S">S.W. Ng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johns, C A" uniqKey="Johns C">C.A. Johns</name>
</author>
<author>
<name sortKey="Golzar Hossain, G M" uniqKey="Golzar Hossain G">G.M. Golzar-Hossain</name>
</author>
<author>
<name sortKey="Abdul Malik, K M" uniqKey="Abdul Malik K">K.M. Abdul-Malik</name>
</author>
<author>
<name sortKey="Zahir Haider, S" uniqKey="Zahir Haider S">S. Zahir-Haider</name>
</author>
<author>
<name sortKey="Rowzatur Romman, U K" uniqKey="Rowzatur Romman U">U.K. Rowzatur-Romman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramirez Silvaa, M T" uniqKey="Ramirez Silvaa M">M.T. Ramirez-Silvaa</name>
</author>
<author>
<name sortKey="Goemez Hernaendeza, M" uniqKey="Goemez Hernaendeza M">M. Goemez-Hernaendeza</name>
</author>
<author>
<name sortKey="Pacheco Hernaendez, M" uniqKey="Pacheco Hernaendez M">M. Pacheco-Hernaendez</name>
</author>
<author>
<name sortKey="Rojas Hernaendeza, A" uniqKey="Rojas Hernaendeza A">A. Rojas-Hernaendeza</name>
</author>
<author>
<name sortKey="Galicia, L" uniqKey="Galicia L">L. Galicia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Binnemans, K" uniqKey="Binnemans K">K. Binnemans</name>
</author>
<author>
<name sortKey="Lenaerts, P" uniqKey="Lenaerts P">P. Lenaerts</name>
</author>
<author>
<name sortKey="Driesen, K" uniqKey="Driesen K">K. Driesen</name>
</author>
<author>
<name sortKey="Goerller Walrand, C" uniqKey="Goerller Walrand C">C. Goerller-Walrand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lenaerts, P" uniqKey="Lenaerts P">P. Lenaerts</name>
</author>
<author>
<name sortKey="Storms, A" uniqKey="Storms A">A. Storms</name>
</author>
<author>
<name sortKey="Mullens, J" uniqKey="Mullens J">J. Mullens</name>
</author>
<author>
<name sortKey="D Aen, J" uniqKey="D Aen J">J. D’Haen</name>
</author>
<author>
<name sortKey="Gorller Walrand, C" uniqKey="Gorller Walrand C">C. Gorller-Walrand</name>
</author>
<author>
<name sortKey="Binnemans, K" uniqKey="Binnemans K">K. Binnemans</name>
</author>
<author>
<name sortKey="Driesen, K" uniqKey="Driesen K">K. Driesen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Srinivasan, S" uniqKey="Srinivasan S">S. Srinivasan</name>
</author>
<author>
<name sortKey="Annaraj, J" uniqKey="Annaraj J">J. Annaraj</name>
</author>
<author>
<name sortKey="Athappan, P J" uniqKey="Athappan P">P.J. Athappan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wellington, K W" uniqKey="Wellington K">K.W. Wellington</name>
</author>
<author>
<name sortKey="Kaye, P T" uniqKey="Kaye P">P.T. Kaye</name>
</author>
<author>
<name sortKey="Watkinsa, G M" uniqKey="Watkinsa G">G.M. Watkinsa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lai, S" uniqKey="Lai S">S. Lai</name>
</author>
<author>
<name sortKey="Hsiao, C" uniqKey="Hsiao C">C. Hsiao</name>
</author>
<author>
<name sortKey="Ling, J" uniqKey="Ling J">J. Ling</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Peng, S" uniqKey="Peng S">S. Peng</name>
</author>
<author>
<name sortKey="Chen, I" uniqKey="Chen I">I. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
<author>
<name sortKey="Shao, C" uniqKey="Shao C">C. Shao</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Warad, I" uniqKey="Warad I">I. Warad</name>
</author>
<author>
<name sortKey="Hammouti, B" uniqKey="Hammouti B">B. Hammouti</name>
</author>
<author>
<name sortKey="Hadda, T B" uniqKey="Hadda T">T.B. Hadda</name>
</author>
<author>
<name sortKey="Boshaala, A" uniqKey="Boshaala A">A. Boshaala</name>
</author>
<author>
<name sortKey="Haddad, S F" uniqKey="Haddad S">S.F. Haddad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aldwayyan, A" uniqKey="Aldwayyan A">A. Aldwayyan</name>
</author>
<author>
<name sortKey="Al Jekhedab, F" uniqKey="Al Jekhedab F">F. Al-Jekhedab</name>
</author>
<author>
<name sortKey="Al Noaimi, M" uniqKey="Al Noaimi M">M. Al-Noaimi</name>
</author>
<author>
<name sortKey="Hammouti, B" uniqKey="Hammouti B">B. Hammouti</name>
</author>
<author>
<name sortKey="Hadda, T" uniqKey="Hadda T">T. Hadda</name>
</author>
<author>
<name sortKey="Suleiman, M" uniqKey="Suleiman M">M. Suleiman</name>
</author>
<author>
<name sortKey="Warad, I" uniqKey="Warad I">I. Warad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, P" uniqKey="Yang P">P. Yang</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C. Zhang</name>
</author>
<author>
<name sortKey="Yang, X J" uniqKey="Yang X">X.J. Yang</name>
</author>
<author>
<name sortKey="Hu, H M" uniqKey="Hu H">H.M. Hu</name>
</author>
<author>
<name sortKey="Gao, Y" uniqKey="Gao Y">Y. Gao</name>
</author>
<author>
<name sortKey="Wu, B" uniqKey="Wu B">B. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salavati Niasari, M" uniqKey="Salavati Niasari M">M. Salavati-Niasari</name>
</author>
<author>
<name sortKey="Mohandes, F" uniqKey="Mohandes F">F. Mohandes</name>
</author>
<author>
<name sortKey="Davar, F" uniqKey="Davar F">F. Davar</name>
</author>
<author>
<name sortKey="Mazaheri, M" uniqKey="Mazaheri M">M. Mazaheri</name>
</author>
<author>
<name sortKey="Monemzadeh, M" uniqKey="Monemzadeh M">M. Monemzadeh</name>
</author>
<author>
<name sortKey="Yavarinia, N" uniqKey="Yavarinia N">N. Yavarinia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salavati Niasari, M" uniqKey="Salavati Niasari M">M. Salavati-Niasari</name>
</author>
<author>
<name sortKey="Mir, N" uniqKey="Mir N">N. Mir</name>
</author>
<author>
<name sortKey="Davar, F" uniqKey="Davar F">F. Davar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tauc, J" uniqKey="Tauc J">J. Tauc</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klug, H P" uniqKey="Klug H">H.P. Klug</name>
</author>
<author>
<name sortKey="Alexander, L E" uniqKey="Alexander L">L.E. Alexander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sheldrick, G M" uniqKey="Sheldrick G">G.M. Sheldrick</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Mol Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Mol Sci</journal-id>
<journal-id journal-id-type="publisher-id">ijms</journal-id>
<journal-title-group>
<journal-title>International Journal of Molecular Sciences</journal-title>
</journal-title-group>
<issn pub-type="epub">1422-0067</issn>
<publisher>
<publisher-name>Molecular Diversity Preservation International (MDPI)</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24351867</article-id>
<article-id pub-id-type="pmc">3876087</article-id>
<article-id pub-id-type="doi">10.3390/ijms141223941</article-id>
<article-id pub-id-type="publisher-id">ijms-14-23941</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>One Step Synthesis of NiO Nanoparticles via Solid-State Thermal Decomposition at Low-Temperature of Novel
<italic>Aqua</italic>
(2,9-dimethyl-1,10-phenanthroline)NiCl
<sub>2</sub>
Complex</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Barakat</surname>
<given-names>Assem</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-14-23941">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Al-Noaimi</surname>
<given-names>Mousa</given-names>
</name>
<xref ref-type="aff" rid="af2-ijms-14-23941">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Suleiman</surname>
<given-names>Mohammed</given-names>
</name>
<xref ref-type="aff" rid="af3-ijms-14-23941">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Aldwayyan</surname>
<given-names>Abdullah S.</given-names>
</name>
<xref ref-type="aff" rid="af4-ijms-14-23941">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hammouti</surname>
<given-names>Belkheir</given-names>
</name>
<xref ref-type="aff" rid="af5-ijms-14-23941">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ben Hadda</surname>
<given-names>Taibi</given-names>
</name>
<xref ref-type="aff" rid="af6-ijms-14-23941">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Haddad</surname>
<given-names>Salim F.</given-names>
</name>
<xref ref-type="aff" rid="af7-ijms-14-23941">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Boshaala</surname>
<given-names>Ahmed</given-names>
</name>
<xref ref-type="aff" rid="af8-ijms-14-23941">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Warad</surname>
<given-names>Ismail</given-names>
</name>
<xref ref-type="aff" rid="af3-ijms-14-23941">3</xref>
<xref rid="c1-ijms-14-23941" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-ijms-14-23941">
<label>1</label>
Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mail:
<email>ambarakat@ksu.edu.sa</email>
</aff>
<aff id="af2-ijms-14-23941">
<label>2</label>
Department of Chemistry, Hashemite University, Zarqa 13115, Jordan; E-Mail:
<email>manoaimi@hu.edu.jo</email>
</aff>
<aff id="af3-ijms-14-23941">
<label>3</label>
Department of Chemistry, Science College, AN-Najah National University, P.O. Box 7, Nablus, Palestine; E-Mail:
<email>suleimanshtaya@najah.edu</email>
</aff>
<aff id="af4-ijms-14-23941">
<label>4</label>
Department of Physics and Astronomy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; E-Mail:
<email>dwayyan@ksu.edu.sa</email>
</aff>
<aff id="af5-ijms-14-23941">
<label>5</label>
Laboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, Faculity of Science, University Mohammed Premier, Oujda 60000, Morocco; E-Mail:
<email>hammoutib@gmail.com</email>
</aff>
<aff id="af6-ijms-14-23941">
<label>6</label>
Lab of Chemical Material, FSO, University Mohammed Premier, Oujda 60000, Morocco; E-Mail:
<email>taibi.ben.hadda@gmail.com</email>
</aff>
<aff id="af7-ijms-14-23941">
<label>7</label>
Department of Chemistry, the University of Jordan, Amman 11942, Jordan; E-Mail:
<email>hadsal2003@yahoo.com</email>
</aff>
<aff id="af8-ijms-14-23941">
<label>8</label>
Department of Chemistry, Faculty of Science, Benghazi University, P.O. Box 1308, Benghazi 5341, Libya; E-Mail:
<email>ahmedboshaala@yahoo.co.uk</email>
</aff>
<author-notes>
<corresp id="c1-ijms-14-23941">
<label>*</label>
Author to whom correspondence should be addressed; E-Mail:
<email>warad@najah.edu</email>
; Tel.: +972-9234-5113; Fax: +972-9234-5982.</corresp>
</author-notes>
<pub-date pub-type="collection">
<month>12</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>09</day>
<month>12</month>
<year>2013</year>
</pub-date>
<volume>14</volume>
<issue>12</issue>
<fpage>23941</fpage>
<lpage>23954</lpage>
<history>
<date date-type="received">
<day>23</day>
<month>10</month>
<year>2013</year>
</date>
<date date-type="rev-recd">
<day>13</day>
<month>11</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>25</day>
<month>11</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>© 2013 by the authors; licensee MDPI, Basel, Switzerland</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0/">
<license-p>This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/3.0/">http://creativecommons.org/licenses/by/3.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>[NiCl
<sub>2</sub>
(C
<sub>14</sub>
H
<sub>12</sub>
N
<sub>2</sub>
)(H
<sub>2</sub>
O)] complex has been synthesized from nickel chloride hexahydrate (NiCl
<sub>2</sub>
·6H
<sub>2</sub>
O) and 2,9-dimethyl-1,10-phenanthroline (dmphen) as
<italic>N</italic>
,
<italic>N</italic>
-bidentate ligand. The synthesized complex was characterized by elemental analysis, infrared (IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and differential thermal/thermogravimetric analysis (TG/DTA). The complex was further confirmed by single crystal X-ray diffraction (XRD) as triclinic with space group P-1. The desired complex, subjected to thermal decomposition at low temperature of 400 ºC in an open atmosphere, revealed a novel and facile synthesis of pure NiO nanoparticles with uniform spherical particle; the structure of the NiO nanoparticles product was elucidated on the basis of Fourier transform infrared (FT-IR), UV-vis spectroscopy, TG/DTA, XRD, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDXS) and transmission electron microscopy (TEM).</p>
</abstract>
<kwd-group>
<kwd>nickel(II) complex</kwd>
<kwd>thermal decomposition</kwd>
<kwd>2,9-dimethyl-1,10-phenanthroline</kwd>
<kwd>nanoparticles</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<label>1.</label>
<title>Introduction</title>
<p>Among transition metal oxides, nickel oxide (NiO) bulk and nano size have received considerable attention due to their wide range of applications in different fields, such as: catalysis [
<xref rid="b1-ijms-14-23941" ref-type="bibr">1</xref>
<xref rid="b3-ijms-14-23941" ref-type="bibr">3</xref>
], fuel cell electrodes and gas sensors [
<xref rid="b4-ijms-14-23941" ref-type="bibr">4</xref>
<xref rid="b7-ijms-14-23941" ref-type="bibr">7</xref>
], electrochromic films [
<xref rid="b8-ijms-14-23941" ref-type="bibr">8</xref>
<xref rid="b10-ijms-14-23941" ref-type="bibr">10</xref>
], battery cathodes [
<xref rid="b11-ijms-14-23941" ref-type="bibr">11</xref>
<xref rid="b15-ijms-14-23941" ref-type="bibr">15</xref>
] magnetic materials [
<xref rid="b16-ijms-14-23941" ref-type="bibr">16</xref>
<xref rid="b18-ijms-14-23941" ref-type="bibr">18</xref>
], and photovoltaic devices [
<xref rid="b19-ijms-14-23941" ref-type="bibr">19</xref>
]. Furthermore, NiO is being studied for applications in smart windows [
<xref rid="b20-ijms-14-23941" ref-type="bibr">20</xref>
], electrochemical supercapacitors [
<xref rid="b21-ijms-14-23941" ref-type="bibr">21</xref>
] and dye-sensitized photocathodes [
<xref rid="b22-ijms-14-23941" ref-type="bibr">22</xref>
]. Because of the quantum size and surface effects, NiO nanoparticles exhibit catalytic, optical, electronic, and magnetic properties that are significantly different than those of bulk-sized NiO particles [
<xref rid="b23-ijms-14-23941" ref-type="bibr">23</xref>
<xref rid="b25-ijms-14-23941" ref-type="bibr">25</xref>
].</p>
<p>1,10-Phenanthroline and its derivatives are well-known established
<italic>N</italic>
,
<italic>N</italic>
-bidentate ligands for transition metal complexation, to enrich the steric and electronic environment in such ligands different substituent function groups can be setup in their structures [
<xref rid="b22-ijms-14-23941" ref-type="bibr">22</xref>
<xref rid="b30-ijms-14-23941" ref-type="bibr">30</xref>
]. For the same reason 2,9-dimethyl-1,10-phenanthrolines and their complexes have been frequently used in the field of molecular biology and supramolecular self-assembly [
<xref rid="b22-ijms-14-23941" ref-type="bibr">22</xref>
<xref rid="b32-ijms-14-23941" ref-type="bibr">32</xref>
]. Furthermore, transition metals complexes of phenanthroline ligands are of interest to researchers because of their role in molecular scaffolding in DNA cleaving, structural studies, building blocks for the synthesis of metallo-drimers, thin films of luminescent properties, control of redox properties, analytical chemistry, and catalysis [
<xref rid="b22-ijms-14-23941" ref-type="bibr">22</xref>
<xref rid="b32-ijms-14-23941" ref-type="bibr">32</xref>
].</p>
<p>The starting complex and final NiO nanoparticles product before and after thermal decomposition were characterized on the basis of Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) spectroscopy, differential thermal/thermogravimetric analysis (TG/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDXS) and transmission electron microscopy (TEM); additionally the complex was characterized by elemental analysis and X-ray single crystal structure.</p>
<p>In this work, we wish to report the synthesis and characterization of mononuclear
<italic>aqua</italic>
-dichloro(2,9-dimethyl-1,10-phenanthroline-κ
<sup>2</sup>
<italic>N</italic>
,
<italic>N</italic>
)nickel(II) complex. Subsequently, direct thermal decomposition process of the desired complex precursor is one of the most important and straightforward strategies to access structurally elaborated and pure NiO nanoparticles with regular spherical particle.</p>
</sec>
<sec>
<label>2.</label>
<title>Results and Discussion</title>
<sec>
<label>2.1.</label>
<title>Synthesis of the Desired Complex and NiO Nanoparticles</title>
<p>The mononuclear 2,9-dimethyl-1,10-phenanthroline-nickel(II) complex was isolated in excellent yield by stirring equivalent amounts of 2,9-dimethyl-1,10-phenanthroline in distilled water with NiCl
<sub>2</sub>
·6H
<sub>2</sub>
O in ethanol [
<xref rid="b33-ijms-14-23941" ref-type="bibr">33</xref>
,
<xref rid="b34-ijms-14-23941" ref-type="bibr">34</xref>
]. NiO nanoparticles were successfully synthesized through thermal decomposition of the (2,9-dimethyl-1,10-phenanthroline)NiCl
<sub>2</sub>
complex precursor at 400 ºC. NiO is formed via decomposition of 2,9-dimethyl-1,10-phenanthroline organic and chloride ligands in open atmosphere to NiO powder product and CO
<italic>
<sub>x</sub>
</italic>
, NO
<italic>
<sub>x</sub>
</italic>
, ClO
<italic>
<sub>x</sub>
</italic>
as expected gases bi-products. Uniform and spherical NiO nanoparticles with weak agglomeration were collected, as seen in
<xref rid="f10-ijms-14-23941" ref-type="fig">Scheme 1</xref>
.</p>
<p>The structures of the desired complex before and after thermal decomposition to prepare the NiO nanoparticles product were subjected to several available physical measurements.</p>
</sec>
<sec>
<label>2.2.</label>
<title>Thermal Decomposition Analysis of NiCl
<sub>2</sub>
(2,9-Dimethyl-1,10-phenanthroline)·H
<sub>2</sub>
O Complex to NiO Nanoparticle</title>
<p>The thermal properties TG/DTA of the desired complex was investigated under open atmosphere in the 0–800 ºC temperature range and heating rate of 10 ºC/min. Typical thermal TG/DTA curve is given in
<xref rid="f1-ijms-14-23941" ref-type="fig">Figure 1</xref>
.</p>
<p>As seen from thermal curves, no uncoordinated water molecules were detected in the complex structure in the range 50–100 ºC. One coordinated-water molecule was recorded with weight loss ~5% in the range 130–160 ºC and sharp DTA endothermic signal at ~140 ºC. Thermal decomposition study of residue complex showed no intermediate decomposition steps of the coordinated chlorides and 2,9-dimethyl-1,10-phenanthroline ligands, both ligands de-structured away from the complex to CO
<italic>
<sub>x</sub>
</italic>
, NO
<italic>
<sub>x</sub>
</italic>
and ClO
<italic>
<sub>x</sub>
</italic>
as gases by-products with one broad step decomposition at 300–500 ºC and an exothermic DTA signal at ~405 ºC; the final main product was confirmed by IR to be NiO, then subjected to several available physical measurements [
<xref rid="b16-ijms-14-23941" ref-type="bibr">16</xref>
,
<xref rid="b24-ijms-14-23941" ref-type="bibr">24</xref>
<xref rid="b27-ijms-14-23941" ref-type="bibr">27</xref>
,
<xref rid="b34-ijms-14-23941" ref-type="bibr">34</xref>
].</p>
</sec>
<sec>
<label>2.3.</label>
<title>IR Spectral Investigation</title>
<p>IR spectrum in particular showed five main sets of characteristic absorptions in the range 3410, 3090, 2940, 530 and 390 cm
<sup>−1</sup>
, which can be assigned to, coordinated-H
<sub>2</sub>
O, H–Ph, H–CH
<sub>2</sub>
, Ni–N and Ni–Cl stretching vibrations, respectively as in
<xref rid="f2-ijms-14-23941" ref-type="fig">Figure 2a</xref>
, all bands of the of (2,9-dimethyl-1,10-phenanthroline)NiCl
<sub>2</sub>
complex disappeared after thermal decomposition at 400 ºC and a strong band at around 440 cm
<sup>−1</sup>
is observed, as seen in
<xref rid="f2-ijms-14-23941" ref-type="fig">Figure 2b</xref>
, which was assigned to the Ni–O stretching of the octahedral NiO
<sub>6</sub>
groups in the face center cubic NiO structure [
<xref rid="b30-ijms-14-23941" ref-type="bibr">30</xref>
<xref rid="b33-ijms-14-23941" ref-type="bibr">33</xref>
].</p>
</sec>
<sec>
<label>2.4.</label>
<title>Electronic Absorption Spectral Study</title>
<p>The optical properties of the NiCl
<sub>2</sub>
(2,9-dimethyl-1,10-phenanthroline)·H
<sub>2</sub>
O complex was investigated by UV-vis spectroscopy (
<xref rid="f3-ijms-14-23941" ref-type="fig">Figure 3a</xref>
). For comparison, UV-vis spectra of the prepared NiCl
<sub>2</sub>
(2,9-dimethyl-1,10-phenanthroline)·H
<sub>2</sub>
O complex and NiO nanoparticles using water as solvent are also presented in
<xref rid="f3-ijms-14-23941" ref-type="fig">Figure 3b</xref>
. As expected, the aqueous solution of the starting complex in
<xref rid="f3-ijms-14-23941" ref-type="fig">Figure 3a</xref>
exhibits multiple absorptions in the UV-visible regions. The ligand displayed typical ligand-centered π→π* transitions at 240, 280 and 304 nm. Upon coordination with nickel ions, there are minor changes of these bands. The visible spectra of the desired complex was obtained at higher concentration (10
<sup>−4</sup>
M) with the maximum absorption at 350, 530 and 560 nm can be assigned to d to d electron transition or Metal to Ligand Charge Transfer (MLCT) [
<xref rid="b32-ijms-14-23941" ref-type="bibr">32</xref>
<xref rid="b37-ijms-14-23941" ref-type="bibr">37</xref>
]. It was clearly evident that the UV-vis spectrum of the NiO nanoparticles is quite different from that starting complex, confirming the strong band that appeared at 355 nm is due to NiO nanoparticle, not Ni(II) complex. This strong absorption band is attributed to the electronic transition from the valence band to the conduction band in the NiO semiconductor [
<xref rid="b36-ijms-14-23941" ref-type="bibr">36</xref>
,
<xref rid="b37-ijms-14-23941" ref-type="bibr">37</xref>
]. In addition, the UV-vis spectrum of a commercial bulk NiO powder does not show any observable absorption band [
<xref rid="b36-ijms-14-23941" ref-type="bibr">36</xref>
].</p>
<p>The optical band gap of NiO nanoparticles has been calculated from the absorption spectrum using the Tauc relation [
<xref rid="b38-ijms-14-23941" ref-type="bibr">38</xref>
].</p>
<disp-formula id="fd1-ijms-14-23941">
<label>(1)</label>
<mml:math id="m1">
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi mathvariant="normal">ɛ</mml:mi>
<mml:mi>h</mml:mi>
<mml:mi mathvariant="normal">ν</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo>=</mml:mo>
<mml:mtext>C</mml:mtext>
<mml:msup>
<mml:mrow>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>h</mml:mi>
<mml:mi mathvariant="normal">ν</mml:mi>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mtext>g</mml:mtext>
</mml:msub>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mi>n</mml:mi>
</mml:msup>
</mml:mrow>
</mml:math>
</disp-formula>
<p>Where C is a constant, ɛ is molar extinction coefficient,
<italic>E</italic>
<sub>g</sub>
is the average band gap of the material and
<italic>n</italic>
depends on the type of transition. For
<italic>n</italic>
= ½,
<italic>E</italic>
<sub>g</sub>
in
<xref rid="fd1-ijms-14-23941" ref-type="disp-formula">Equation (1)</xref>
; is direct allowed band gap. The average band gap was estimated from the intercept of linear portion of the (ɛ
<italic>h</italic>
ν)
<sup>2</sup>
<italic>vs. h</italic>
ν plots, as shown in
<xref rid="f4-ijms-14-23941" ref-type="fig">Figure 4</xref>
.</p>
<p>The strongest absorption peak of the NiO prepared sample appears at around 355 nm, which is fairly blue shifted from the absorption edge of bulk NiO nanoparticle [
<xref rid="b35-ijms-14-23941" ref-type="bibr">35</xref>
,
<xref rid="b36-ijms-14-23941" ref-type="bibr">36</xref>
]. The band gap energy calculated from UV-absorption is 3.96 eV. This value is higher than bulk NiO
<italic>i.e.</italic>
,
<italic>E</italic>
<sub>g</sub>
= 3.74 eV. So it is highly agreed that the synthesized NiO is in nano scale [
<xref rid="b14-ijms-14-23941" ref-type="bibr">14</xref>
,
<xref rid="b26-ijms-14-23941" ref-type="bibr">26</xref>
].</p>
</sec>
<sec>
<label>2.5.</label>
<title>EDX Analysis</title>
<p>EDX analysis of the NiCl
<sub>2</sub>
(2,9-dimethyl-1,10-phenanthroline)·H
<sub>2</sub>
O complex and NiO nanoparticles product were represented in
<xref rid="f5-ijms-14-23941" ref-type="fig">Figure 5</xref>
. EDX of complex revealed several signals come from Ni, Cl, N, C and O,
<xref rid="f5-ijms-14-23941" ref-type="fig">Figure 5a</xref>
. After thermal decomposition process only Ni and O signals come from the NiO nanoparticles formation as seen in
<xref rid="f5-ijms-14-23941" ref-type="fig">Figure 5b</xref>
.</p>
</sec>
<sec>
<label>2.6.</label>
<title>X-ray Single Crystal of NiCl
<sub>2</sub>
(2,9-Dimethyl-1,10-phenanthroline)·H
<sub>2</sub>
O Complex and XRD Powder of NiO</title>
<p>The molecular structure is shown in
<xref rid="f6-ijms-14-23941" ref-type="fig">Figure 6</xref>
and selected bond distances and angles are given in the
<xref rid="t1-ijms-14-23941" ref-type="table">Table 1</xref>
. The complex was crystallized in triclinic P-1 space group.</p>
<p>The Ni(II) ion is five-coordinated to two N atoms of 2,9-dimethyl-1,10-phenanthroline and two Cl ions and one O atom of water. The overall geometry around each nickel center atom is in a slightly distorted triangular bipyramid configuration. Several H–O and H–Cl hydrogen-bonds were detected which may stabilized the structure of mononuclear nickel(II).</p>
<p>
<xref rid="f7-ijms-14-23941" ref-type="fig">Figure 7</xref>
shows powder XRD patterns of the decomposition NiCl
<sub>2</sub>
(2,9-dimethyl-1,10-phenanthroline)·H
<sub>2</sub>
O complex product at 400 ºC reveals only the diffraction peaks attributable to NiO with face-centered cubic phase at 2θ = 37.40, 43.45, 62.95, 75.40 and 79.45,
<xref rid="f7-ijms-14-23941" ref-type="fig">Figure 7</xref>
, which can be perfectly related to (111), (200), (220), (311) and (222) crystal planes, respectively (JCPDS card No. 73-1523). This finding confirms that at 400 ºC the complex was decomposed completely to nickel oxide. No peaks of impurity were found in the XRD pattern, indicating that the nanocrystalline NiO obtained via this synthesis method consists of ultrapure phase.</p>
<p>The average size of the NiO nanoparticles was estimated using the relative intensity peak (220) by the Debye-Scherrer equation [
<xref rid="b39-ijms-14-23941" ref-type="bibr">39</xref>
], was found to be 16 nm and increase in sharpness of XRD peaks indicates that particles are in crystalline nature:</p>
<disp-formula id="fd2-ijms-14-23941">
<label>(2)</label>
<mml:math id="m2">
<mml:mrow>
<mml:mi>D</mml:mi>
<mml:mo>=</mml:mo>
<mml:mo stretchy="false">(</mml:mo>
<mml:mn>094</mml:mn>
<mml:mi mathvariant="normal">λ</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo>/</mml:mo>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi mathvariant="normal">β</mml:mi>
<mml:mtext>cos</mml:mtext>
<mml:mi mathvariant="normal">θ</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:math>
</disp-formula>
<p>Where λ is the wavelength (λ = 1.542 Å) (Cu-K
<sub>α</sub>
), β is the full width at half maximum (FWHM) of the line, and θ is the diffraction angle.</p>
</sec>
<sec>
<label>2.7.</label>
<title>SEM Measurement</title>
<p>The SEM micrographs of the NiCl
<sub>2</sub>
(2,9-dimethyl-1,10-phenanthroline)·H
<sub>2</sub>
O complex and its decomposition product at 400 ºC are presented in
<xref rid="f8-ijms-14-23941" ref-type="fig">Figure 8a</xref>
. We observed that the starting complex powder was made of very large block crystals in different sizes. The SEM image of the product in
<xref rid="f8-ijms-14-23941" ref-type="fig">Figure 8b</xref>
clearly shows that the shape and size of particles are quite different from the precursor complex. It can be seen that the product was formed from extremely fine semi-spherical particles that were loosely aggregated. No characteristic morphology of the complex is observed, indicating the complete decomposition into the extremely fine spherical particles.</p>
</sec>
<sec>
<label>2.8.</label>
<title>TEM Measurement</title>
<p>The TEM images of the complex and its decomposition product at 400 ºC shown on
<xref rid="f9-ijms-14-23941" ref-type="fig">Figure 9</xref>
. We observed that the TEM micrograph of the starting complex powder was made of very large block crystals in different sizes
<xref rid="f9-ijms-14-23941" ref-type="fig">Figure 9a</xref>
. Uniform NiO nanoparticles have sphere shapes with weak agglomeration
<xref rid="f9-ijms-14-23941" ref-type="fig">Figure 9b</xref>
was collected after thermal decomposition of the complex. The particle sizes possess a narrow distribution in a range from 10 to 20 nm, and the mean particle diameter is about 15 nm. Actually, the mean particle size determined by TEM is very close to the average particle size calculated by Debye-Scherer formula from the XRD pattern.</p>
</sec>
</sec>
<sec>
<label>3.</label>
<title>Experimental Section</title>
<sec>
<label>3.1.</label>
<title>Material and Instrumentation</title>
<p>2,9-Dimethyl-1,10-phenanthroline ligand and Nickel chloride hexahydrate NiCl
<sub>2</sub>
·6H
<sub>2</sub>
O were purchased from Acros, Geel, Belgium and used as received. Elemental analyses were carried out on an Elementar Vario EL analyzer (Vario EL, Donaustrass, Germany) The obtained nanoparticles were examined by a Brucker D/MAX 2500 X-ray diffractometer (Brucker, Darmstad, Germany) with Cu-K radiation (λ = 1.54 Å). The transmission electron microscopy TEM was (1001 JEOL, Maputo, Japan). The scanning electron microscopy (SEM) used a JSM-6360 ASEM (JEOL, Maputo, Japan). The IR spectra for samples were recorded using Perkin Elmer Spectrum 1000 FT-IR Spectrometer (PerkinElmer Inc., Waltham, MA, USA). Samples were measured using a TU-1901 double-beam UV-vis spectrophotometer (KFW, Haryana, India) was dispersed in water solvent.</p>
</sec>
<sec>
<label>3.2.</label>
<title>General Procedure for the Preparation of the Desired Complex</title>
<p>A mixture of nickel chloride hexahydrate NiCl
<sub>2</sub>
·6H
<sub>2</sub>
O (Acros) (100 mg, 4.10 mmol) in distilled water (15 mL) and 2,9-dimethyl-1,10-phenanthroline (Acros) (dmphen) (80 mg, 4.20 mmol) in methanol (4 mL) was stirred for 1 h at room temperature. The solution was concentrated to about 1 mL under reduced pressure and then added to 40 mL of cooled ethanol. This causes the precipitation of (134 mg, ~92% yield) brown powder product that was filtered, and dried, and the crystals were grown by slow diffusion of ethanol into a solution of the complex in water.</p>
</sec>
<sec>
<label>3.3.</label>
<title>General Procedure for the Preparation of NiO Nanoparticles</title>
<p>According to the TG/DTA analysis the 0.5 g of NiCl
<sub>2</sub>
(2,9-dimethyl-1,10-phenanthroline)·H
<sub>2</sub>
O complex was decomposed at 400 ºC temperatures for 0.5 h in ambient air. The decomposition products were collected for characterization.</p>
</sec>
<sec>
<label>3.4.</label>
<title>Supplementary Material</title>
<p>Crystallographic data has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 910435. Copies of this information may be obtained free of charge via
<ext-link ext-link-type="uri" xlink:href="http://www.ccdc.cam.ac.uk/conts/retrieving.html">http://www.ccdc.cam.ac.uk/conts/retrieving.html</ext-link>
(or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-122-3336-033; E-Mail:
<email>deposit@ccdc.cam.ac.uk</email>
).</p>
</sec>
<sec>
<label>3.5.</label>
<title>X-ray Structural Analyses for the Complex</title>
<p>The X-ray data for complex was collected (
<xref rid="t2-ijms-14-23941" ref-type="table">Table 2</xref>
) on Xcalibur E goniometer (Agilent Technologies, Oxford Diffraction, Oxford, UK) with enhance X-ray source and Eos CCD detector, graphite-monochromated Mo-K
<sub>α</sub>
radiation (λ = 0.71073 Å) using five ω-scans with a total of 350 frames at temperature of 293 K. Data collection, cell parameters evaluation, data reduction and absorption were performed using CrysAlisPro, Agilent Technologies, Version 1.171.35.11 (release 16-05-2011 CrysAlis171 .NET, Oxford, UK). Structure determination was made using SHELXL programs (SHELXL-97, University of Gottingen, Gottingen, Germany) [
<xref rid="b40-ijms-14-23941" ref-type="bibr">40</xref>
].</p>
<p>The structure was solved by direct methods and refined by full-matrix least-squares with anisotropic temperature factor, for the non-hydrogen atoms.</p>
</sec>
</sec>
<sec sec-type="conclusions">
<label>4.</label>
<title>Conclusions</title>
<p>The new [NiCl
<sub>2</sub>
(C
<sub>14</sub>
H
<sub>12</sub>
N
<sub>2</sub>
)(H
<sub>2</sub>
O)] complex was subjected to thermal decomposition at low temperature of 400 ºC in an open atmosphere in order to prepare uniformed spherical NiO nanoparticles in the range of 10–20 nm. The structures of the complex and the NiO nanoparticles product were elucidated on the basis of FT-IR, UV-vis spectroscope, TG/DTA, XRD, SEM, EDX and TEM. The application of NiO nanoparticles is currently underway in our laboratory.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project Number RGP-VPP-257.</p>
</ack>
<notes>
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest.</p>
</notes>
<ref-list>
<title>References</title>
<ref id="b1-ijms-14-23941">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wei</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Study on the catalytic effect of NiO nanoparticles on the thermal decomposition of TEGDN/NC propellant</article-title>
<source>J. Hazard. Mater</source>
<year>2009</year>
<volume>168</volume>
<fpage>838</fpage>
<lpage>842</lpage>
<pub-id pub-id-type="pmid">19299086</pub-id>
</element-citation>
</ref>
<ref id="b2-ijms-14-23941">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagi</surname>
<given-names>R.E.</given-names>
</name>
<name>
<surname>Radwan</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>El-Shall</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hassan</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Synthesis and characterization of nanoparticle Co
<sub>3</sub>
O
<sub>4</sub>
, CuO and NiO catalysts prepared by physical and chemical methods to minimize air pollution</article-title>
<source>Appl. Catal. A Gen</source>
<year>2007</year>
<volume>331</volume>
<fpage>8</fpage>
<lpage>18</lpage>
</element-citation>
</ref>
<ref id="b3-ijms-14-23941">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deraz</surname>
<given-names>N.M.</given-names>
</name>
<name>
<surname>Selim</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Ramadan</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Processing and properties of nanocrystalline Ni and NiO catalysts</article-title>
<source>Mater. Chem. Phys</source>
<year>2009</year>
<volume>113</volume>
<fpage>269</fpage>
<lpage>275</lpage>
</element-citation>
</ref>
<ref id="b4-ijms-14-23941">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hotovy</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Huran</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Spiess</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hascik</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rehacek</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Preparation of nickel oxide thin films for gas sensors applications</article-title>
<source>Sens. Actuators B Chem</source>
<year>1999</year>
<volume>57</volume>
<fpage>147</fpage>
<lpage>152</lpage>
</element-citation>
</ref>
<ref id="b5-ijms-14-23941">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>E.L.</given-names>
</name>
<name>
<surname>Rocheleau</surname>
<given-names>R.E.</given-names>
</name>
</person-group>
<article-title>Electrochemical behavior of reactively sputtered iron-doped nickel oxide</article-title>
<source>J. Electrochem. Soc</source>
<year>1997</year>
<volume>144</volume>
<fpage>3072</fpage>
<lpage>3077</lpage>
</element-citation>
</ref>
<ref id="b6-ijms-14-23941">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>H.X.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>Q.F.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>X.H.</given-names>
</name>
</person-group>
<article-title>Preparation and characterization of LiNiO
<sub>2</sub>
synthesized from Ni(OH)
<sub>2</sub>
and LiOH·H
<sub>2</sub>
O</article-title>
<source>J. Power Sources</source>
<year>1999</year>
<volume>79</volume>
<fpage>256</fpage>
<lpage>261</lpage>
</element-citation>
</ref>
<ref id="b7-ijms-14-23941">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ichiyanagi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wakabayashi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Yamazaki</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Magnetic properties of NiO nanoparticles</article-title>
<source>J. Phys. B Condens. Mater</source>
<year>2003</year>
<volume>329–333</volume>
<fpage>862</fpage>
<lpage>863</lpage>
</element-citation>
</ref>
<ref id="b8-ijms-14-23941">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W.Y.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>L.N.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Co
<sub>3</sub>
O
<sub>4</sub>
nanomaterials in lithium-ion batteries and gas sensors</article-title>
<source>Adv. Funct. Mater</source>
<year>2005</year>
<volume>15</volume>
<fpage>851</fpage>
<lpage>857</lpage>
</element-citation>
</ref>
<ref id="b9-ijms-14-23941">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>F.B.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.K.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.L.</given-names>
</name>
</person-group>
<article-title>Nanocrystalline NiO as an electrode material for electrochemical capacitor</article-title>
<source>Mater. Chem. Phys</source>
<year>2004</year>
<volume>83</volume>
<fpage>260</fpage>
<lpage>264</lpage>
</element-citation>
</ref>
<ref id="b10-ijms-14-23941">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>X.H.</given-names>
</name>
<name>
<surname>Tu</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>Y.F.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>H.M.</given-names>
</name>
</person-group>
<article-title>Electrochemical properties of NiO–Ni nanocomposite as anode material for lithium ion batteries</article-title>
<source>J. Power Sources</source>
<year>2006</year>
<volume>161</volume>
<fpage>541</fpage>
<lpage>544</lpage>
</element-citation>
</ref>
<ref id="b11-ijms-14-23941">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leevin</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ying</surname>
<given-names>J.Y.</given-names>
</name>
</person-group>
<article-title>Oxidative dehydrogenation of propane by non-stoichiometric nickel molybdates</article-title>
<source>Stud. Surf. Sci. Catal</source>
<year>1997</year>
<volume>110</volume>
<fpage>367</fpage>
<lpage>373</lpage>
</element-citation>
</ref>
<ref id="b12-ijms-14-23941">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoshio</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Todorov</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yamato</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Noguchia</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Itoha</surname>
<given-names>J.I.</given-names>
</name>
<name>
<surname>Okadab</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mourib</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Preparation of Li
<italic>
<sub>y</sub>
</italic>
Mn
<italic>
<sub>x</sub>
</italic>
Ni
<sub>1−</sub>
<italic>
<sub>x</sub>
</italic>
O
<sub>2</sub>
as a cathode for lithium-ion batteries</article-title>
<source>J. Power Sources</source>
<year>1998</year>
<volume>74</volume>
<fpage>46</fpage>
<lpage>53</lpage>
</element-citation>
</ref>
<ref id="b13-ijms-14-23941">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghosh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Biswas</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sundaresan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>C.N.R.</given-names>
</name>
</person-group>
<article-title>MnO and NiO nanoparticles: Synthesis and magnetic properties</article-title>
<source>J. Mater. Chem</source>
<year>2006</year>
<volume>16</volume>
<fpage>106</fpage>
<lpage>111</lpage>
</element-citation>
</ref>
<ref id="b14-ijms-14-23941">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Makhlouf</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>F.T.</given-names>
</name>
<name>
<surname>Spada</surname>
<given-names>F.E.</given-names>
</name>
<name>
<surname>Berkowitz</surname>
<given-names>A.E.</given-names>
</name>
</person-group>
<article-title>Magnetic anomalies in NiO nanoparticles</article-title>
<source>J. Appl. Phys</source>
<year>1997</year>
<volume>81</volume>
<fpage>5561</fpage>
<lpage>5563</lpage>
</element-citation>
</ref>
<ref id="b15-ijms-14-23941">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahmad</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ramanujachary</surname>
<given-names>K.V.</given-names>
</name>
<name>
<surname>Lofland</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Ganguli</surname>
<given-names>A.K.</given-names>
</name>
</person-group>
<article-title>Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route</article-title>
<source>Solid State Sci</source>
<year>2006</year>
<volume>8</volume>
<fpage>425</fpage>
<lpage>430</lpage>
</element-citation>
</ref>
<ref id="b16-ijms-14-23941">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borgstrom</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Blart</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Boschloo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mukhtar</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hagfeldt</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hammarstrom</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Odobel</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Sensitized hole injection of phosphorus porphyrin into NiO: Toward new photovoltaic devices</article-title>
<source>J. Phys. Chem. B</source>
<year>2005</year>
<volume>109</volume>
<fpage>22928</fpage>
<lpage>22934</lpage>
<pub-id pub-id-type="pmid">16853987</pub-id>
</element-citation>
</ref>
<ref id="b17-ijms-14-23941">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nathan</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Aziz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Noor</surname>
<given-names>A.F.</given-names>
</name>
<name>
<surname>Prabaharan</surname>
<given-names>S.R.</given-names>
</name>
</person-group>
<article-title>Nanostructured NiO for electrochemical capacitors: Synthesis and electrochemical properties</article-title>
<source>J. Solid State Electrochem</source>
<year>2008</year>
<volume>12</volume>
<fpage>1003</fpage>
<lpage>1009</lpage>
</element-citation>
</ref>
<ref id="b18-ijms-14-23941">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lindstroem</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hagfeldt</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lindquist</surname>
<given-names>S.E.</given-names>
</name>
</person-group>
<article-title>Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell</article-title>
<source>J. Phys. Chem. B</source>
<year>1999</year>
<volume>103</volume>
<fpage>8940</fpage>
<lpage>8943</lpage>
</element-citation>
</ref>
<ref id="b19-ijms-14-23941">
<label>19.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Schmidt</surname>
<given-names>G.</given-names>
</name>
</person-group>
<source>Nanoparticles: From Theory to Application</source>
<publisher-name>VCH</publisher-name>
<publisher-loc>Weinheim, Germany</publisher-loc>
<year>2004</year>
</element-citation>
</ref>
<ref id="b20-ijms-14-23941">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldvurt</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kulkarni</surname>
<given-names>T.B.</given-names>
</name>
<name>
<surname>Bhargava</surname>
<given-names>R.N.</given-names>
</name>
<name>
<surname>Taylorb</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Liberab</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Size dependent efficiency in Tb doped Y
<sub>2</sub>
O
<sub>3</sub>
nanocrystalline phosphor</article-title>
<source>J. Lumin</source>
<year>1997</year>
<volume>72–74</volume>
<fpage>190</fpage>
<lpage>192</lpage>
</element-citation>
</ref>
<ref id="b21-ijms-14-23941">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kalsani</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Schmittel</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Listorti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Accorsi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Armaroli</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Novel phenanthroline ligands and their kinetically locked copper(I) complexes with unexpected photophysical properties</article-title>
<source>Inorg. Chem</source>
<year>2006</year>
<volume>45</volume>
<fpage>2061</fpage>
<lpage>2067</lpage>
<pub-id pub-id-type="pmid">16499367</pub-id>
</element-citation>
</ref>
<ref id="b22-ijms-14-23941">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rapenne</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Dietrich-Buchecker</surname>
<given-names>C.O.</given-names>
</name>
<name>
<surname>Sauvage</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<article-title>Copper(I)- or Iron(II)-templated synthesis of molecular knots containing two tetrahedral or octahedral coordination sites</article-title>
<source>J. Am. Chem. Soc</source>
<year>1999</year>
<volume>121</volume>
<fpage>994</fpage>
<lpage>1001</lpage>
</element-citation>
</ref>
<ref id="b23-ijms-14-23941">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Albrecht-Gary</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Dietrich-Buchecker</surname>
<given-names>C.O.</given-names>
</name>
<name>
<surname>Sauvage</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<article-title>Dicopper(I) trefoil knots: Topological and structural effects on the demetalation rates and mechanism</article-title>
<source>J. Am. Chem. Soc</source>
<year>1997</year>
<volume>119</volume>
<fpage>4599</fpage>
<lpage>4607</lpage>
</element-citation>
</ref>
<ref id="b24-ijms-14-23941">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>D.H.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H.L.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>S.W.</given-names>
</name>
</person-group>
<article-title>Transition metal complexes (
<italic>M</italic>
= Cu, Ni and Mn) of Schiff-base ligands: Syntheses, crystal structures, and inhibitory bioactivities against urease and xanthine oxidase</article-title>
<source>Inorg. Chim. Acta</source>
<year>2007</year>
<volume>360</volume>
<fpage>2881</fpage>
<lpage>2889</lpage>
</element-citation>
</ref>
<ref id="b25-ijms-14-23941">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johns</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Golzar-Hossain</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Abdul-Malik</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Zahir-Haider</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rowzatur-Romman</surname>
<given-names>U.K.</given-names>
</name>
</person-group>
<article-title>Structural studies of Ni(II), Zn(II) and Cd(II) complexes with saccharinate and 2,2′-bipyridine ligands</article-title>
<source>Polyhedron</source>
<year>2001</year>
<volume>20</volume>
<fpage>721</fpage>
<lpage>726</lpage>
</element-citation>
</ref>
<ref id="b26-ijms-14-23941">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramirez-Silvaa</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Goemez-Hernaendeza</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pacheco-Hernaendez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rojas-Hernaendeza</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Galicia</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Spectroscopy study of 5-amino-1,10-phenanthroline</article-title>
<source>Spectrochim. Acta A Mol. Biomol. Spectrosc</source>
<year>2004</year>
<volume>60</volume>
<fpage>781</fpage>
<lpage>789</lpage>
<pub-id pub-id-type="pmid">15036088</pub-id>
</element-citation>
</ref>
<ref id="b27-ijms-14-23941">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Binnemans</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lenaerts</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Driesen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Goerller-Walrand</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>A luminescent tris(2-thenoyltrifluoroacetonato)europium(III) complex covalently linked to a 1,10-phenanthroline-functionalised sol-gel glass</article-title>
<source>J. Mater. Chem</source>
<year>2004</year>
<volume>14</volume>
<fpage>191</fpage>
<lpage>195</lpage>
</element-citation>
</ref>
<ref id="b28-ijms-14-23941">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lenaerts</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Storms</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mullens</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>D’Haen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gorller-Walrand</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Binnemans</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Driesen</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Thin films of highly luminescent lanthanide complexes covalently linked to an organic–inorganic hybrid material via 2-substituted imidazo[4,5-f]-1,10-phenanthroline groups</article-title>
<source>J. Chem. Mater</source>
<year>2005</year>
<volume>17</volume>
<fpage>5194</fpage>
<lpage>5201</lpage>
</element-citation>
</ref>
<ref id="b29-ijms-14-23941">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Srinivasan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Annaraj</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Athappan</surname>
<given-names>P.J.</given-names>
</name>
</person-group>
<article-title>Spectral and redox studies on mixed ligand complexes of cobalt(III) phenanthroline/bipyridyl and benzoylhydrazones, their DNA binding and antimicrobial activity</article-title>
<source>Inorg. Biochem</source>
<year>2005</year>
<volume>99</volume>
<fpage>876</fpage>
<lpage>882</lpage>
</element-citation>
</ref>
<ref id="b30-ijms-14-23941">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wellington</surname>
<given-names>K.W.</given-names>
</name>
<name>
<surname>Kaye</surname>
<given-names>P.T.</given-names>
</name>
<name>
<surname>Watkinsa</surname>
<given-names>G.M.</given-names>
</name>
</person-group>
<article-title>Designer ligands. Part 14. Novel Mn(lI), Ni(II) and Zn(II) complexes of benzamide- and biphenyl-derived ligands</article-title>
<source>Arch. Org. Chem</source>
<year>2008</year>
<volume>17</volume>
<fpage>248</fpage>
<lpage>264</lpage>
</element-citation>
</ref>
<ref id="b31-ijms-14-23941">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lai</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hsiao</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ling</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Metal–metal bonding in metal-string complexes
<italic>M</italic>
<sub>3</sub>
(dpa)
<sub>4</sub>
<italic>X</italic>
<sub>2</sub>
(
<italic>M</italic>
= Ni, Co, dpa = di(2-pyridyl)amido, and
<italic>X</italic>
= Cl, NCS) from resonance Raman and infrared spectroscopy</article-title>
<source>Chem. Phys. Lett</source>
<year>2008</year>
<volume>456</volume>
<fpage>181</fpage>
<lpage>185</lpage>
</element-citation>
</ref>
<ref id="b32-ijms-14-23941">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Electrospinning preparation, characterization and photocatalytic properties of Bi
<sub>2</sub>
O
<sub>3</sub>
nanofibers</article-title>
<source>J. Colloid Interface Sci</source>
<year>2009</year>
<volume>333</volume>
<fpage>242</fpage>
<lpage>248</lpage>
<pub-id pub-id-type="pmid">19217114</pub-id>
</element-citation>
</ref>
<ref id="b33-ijms-14-23941">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Warad</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Hammouti</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hadda</surname>
<given-names>T.B.</given-names>
</name>
<name>
<surname>Boshaala</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Haddad</surname>
<given-names>S.F.</given-names>
</name>
</person-group>
<article-title>X-ray single-crystal structure of a novel di-μ-chloro-bis[chloro(2,9-dimethyl-1,10-phenanthroline)nickel(II)] complex: Synthesis, and spectral and thermal studies</article-title>
<source>Res. Chem. Intermed</source>
<year>2013</year>
<volume>39</volume>
<fpage>4011</fpage>
<lpage>4020</lpage>
</element-citation>
</ref>
<ref id="b34-ijms-14-23941">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aldwayyan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Al-Jekhedab</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Al-Noaimi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hammouti</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hadda</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Suleiman</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Warad</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Synthesis and characterization of CdO nanoparticles starting from organometalic dmphen-CdI
<sub>2</sub>
complex</article-title>
<source>Int. J. Electrochem. Sci</source>
<year>2013</year>
<volume>8</volume>
<fpage>10506</fpage>
<lpage>10514</lpage>
</element-citation>
</ref>
<ref id="b35-ijms-14-23941">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X.J.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>H.M.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Synthesis, structure, and catalytic ethylene oligomerization of nickel(II) and cobalt(II) complexes with symmetrical and unsymmetrical 2,9-diaryl-1,10-phenanthroline ligands</article-title>
<source>Inorg. Chim. Acta</source>
<year>2009</year>
<volume>362</volume>
<fpage>89</fpage>
<lpage>96</lpage>
</element-citation>
</ref>
<ref id="b36-ijms-14-23941">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salavati-Niasari</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mohandes</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Davar</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Mazaheri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Monemzadeh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yavarinia</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Preparation of NiO nanoparticles from metal-organic frameworks via a solid-state decomposition route</article-title>
<source>Inorg. Chim. Acta</source>
<year>2009</year>
<volume>362</volume>
<fpage>3691</fpage>
<lpage>3697</lpage>
</element-citation>
</ref>
<ref id="b37-ijms-14-23941">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salavati-Niasari</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mir</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Davar</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Synthesis and characterization of NiO nanoclusters via thermal decomposition</article-title>
<source>Polyhedron</source>
<year>2009</year>
<volume>28</volume>
<fpage>1111</fpage>
<lpage>1114</lpage>
</element-citation>
</ref>
<ref id="b38-ijms-14-23941">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tauc</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Optical properties and electronic structure of amorphous Ge and Si</article-title>
<source>Mater. Res. Bull</source>
<year>1968</year>
<volume>3</volume>
<fpage>37</fpage>
<lpage>46</lpage>
</element-citation>
</ref>
<ref id="b39-ijms-14-23941">
<label>39.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Klug</surname>
<given-names>H.P.</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>L.E.</given-names>
</name>
</person-group>
<source>X-ray Diffraction Procedures</source>
<edition>2nd ed.</edition>
<publisher-name>Wiley</publisher-name>
<publisher-loc>New York, NY, USA</publisher-loc>
<year>1964</year>
</element-citation>
</ref>
<ref id="b40-ijms-14-23941">
<label>40.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Sheldrick</surname>
<given-names>G.M.</given-names>
</name>
</person-group>
<source>SHELXL-97</source>
<publisher-name>University of Gottingen</publisher-name>
<publisher-loc>Gottingen, Germany</publisher-loc>
<year>1997</year>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1-ijms-14-23941" position="float">
<label>Figure 1.</label>
<caption>
<p>TG/DTA thermal curves of the desired complex.</p>
</caption>
<graphic xlink:href="ijms-14-23941f1"></graphic>
</fig>
<fig id="f2-ijms-14-23941" position="float">
<label>Figure 2.</label>
<caption>
<p>IR-KBr disk spectra (
<bold>a</bold>
) desired complex; and (
<bold>b</bold>
) NiO nanoparticles.</p>
</caption>
<graphic xlink:href="ijms-14-23941f2"></graphic>
</fig>
<fig id="f3-ijms-14-23941" position="float">
<label>Figure 3.</label>
<caption>
<p>UV-vis spectrum of the desired complex (
<bold>a</bold>
) and NiO nanoparticles dissolved in water at room temperature (
<bold>b</bold>
).</p>
</caption>
<graphic xlink:href="ijms-14-23941f3"></graphic>
</fig>
<fig id="f4-ijms-14-23941" position="float">
<label>Figure 4.</label>
<caption>
<p>UV-vis band gap energy.</p>
</caption>
<graphic xlink:href="ijms-14-23941f4"></graphic>
</fig>
<fig id="f5-ijms-14-23941" position="float">
<label>Figure 5.</label>
<caption>
<p>EDX spectra (
<bold>a</bold>
) NiCl
<sub>2</sub>
(2,9-dimethyl-1,10-phenanthroline)·H
<sub>2</sub>
O complex; and (
<bold>b</bold>
) NiO nanoparticles.</p>
</caption>
<graphic xlink:href="ijms-14-23941f5"></graphic>
</fig>
<fig id="f6-ijms-14-23941" position="float">
<label>Figure 6.</label>
<caption>
<p>ORTEP (Oak Ridge Thermal Ellipsoid Plot) plot of two molecular units per asymmetric unit in P-1 showing atom labelling. Thermal ellipsoids are drawn at the 50% probability level.</p>
</caption>
<graphic xlink:href="ijms-14-23941f6"></graphic>
</fig>
<fig id="f7-ijms-14-23941" position="float">
<label>Figure 7.</label>
<caption>
<p>XRD patterns of NiO nanoparticles via complex thermal decomposed at 400 ºC.</p>
</caption>
<graphic xlink:href="ijms-14-23941f7"></graphic>
</fig>
<fig id="f8-ijms-14-23941" position="float">
<label>Figure 8.</label>
<caption>
<p>SEM micrographs (
<bold>a</bold>
) NiCl
<sub>2</sub>
(2,9-dimethyl-1,10-phenanthroline)·H
<sub>2</sub>
O complex and (
<bold>b</bold>
) NiO nanoparticles.</p>
</caption>
<graphic xlink:href="ijms-14-23941f8"></graphic>
</fig>
<fig id="f9-ijms-14-23941" position="float">
<label>Figure 9.</label>
<caption>
<p>TEM micrographs (
<bold>a</bold>
) NiCl
<sub>2</sub>
(2,9-dimethyl-1,10-phenanthroline)·H
<sub>2</sub>
O complex and (
<bold>b</bold>
) NiO nanoparticles.</p>
</caption>
<graphic xlink:href="ijms-14-23941f9"></graphic>
</fig>
<fig id="f10-ijms-14-23941" position="float">
<label>Scheme 1.</label>
<caption>
<p>Synthesis of the complex and NiO nanoparticles.</p>
</caption>
<graphic xlink:href="ijms-14-23941f10"></graphic>
</fig>
<table-wrap id="t1-ijms-14-23941" position="float">
<label>Table 1.</label>
<caption>
<p>Selected bond distances (Å) and angles (º) of the complex.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="bottom" rowspan="1" colspan="1">Bond</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">Bond distances (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Ni(II)–O(II)</td>
<td align="center" valign="top" rowspan="1" colspan="1">2.014(2)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Ni(II)–N(III)</td>
<td align="center" valign="top" rowspan="1" colspan="1">2.044(2)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Ni(II)–N(IV)</td>
<td align="center" valign="top" rowspan="1" colspan="1">2.046(3)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Ni(II)–Cl(IV)</td>
<td align="center" valign="top" rowspan="1" colspan="1">2.337(8)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Ni(II)–Cl(III)</td>
<td align="center" valign="top" rowspan="1" colspan="1">2.347(2)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">
<bold>Angles</bold>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<bold>Angles value (º)</bold>
</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">O(II)–Ni(II)–N(III)</td>
<td align="center" valign="top" rowspan="1" colspan="1">164.61(11)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">O(II)–Ni(II)–N(IV)</td>
<td align="center" valign="top" rowspan="1" colspan="1">113.61(11)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">N(III)–Ni(II)–N(IV)</td>
<td align="center" valign="top" rowspan="1" colspan="1">81.75(10)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">O(II)–Ni(II)–Cl(IV)</td>
<td align="center" valign="top" rowspan="1" colspan="1">87.35(6)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">N(III)–Ni(II)–Cl(IV)</td>
<td align="center" valign="top" rowspan="1" colspan="1">91.91(7)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">N(IV)–Ni(II)–Cl(IV)</td>
<td align="center" valign="top" rowspan="1" colspan="1">96.63(7)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">O(II)–Ni(II)–Cl(III)</td>
<td align="center" valign="top" rowspan="1" colspan="1">87.35(6)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">N(III)–Ni(II)–Cl(III)</td>
<td align="center" valign="top" rowspan="1" colspan="1">88.27(6)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">N(IV)–Ni(II)–Cl(III)</td>
<td align="center" valign="top" rowspan="1" colspan="1">102.71(7)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Cl(IV)–Ni(II)–Cl(III)</td>
<td align="center" valign="top" rowspan="1" colspan="1">160.48(4)</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="t2-ijms-14-23941" position="float">
<label>Table 2.</label>
<caption>
<p>Crystal data and structure refinement for the complex.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="bottom" rowspan="1" colspan="1">Parameters</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">Data</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Empirical formula</td>
<td align="center" valign="top" rowspan="1" colspan="1">C
<sub>14</sub>
H
<sub>14</sub>
C
<sub>l2</sub>
N
<sub>2</sub>
NiO</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Formula weight</td>
<td align="center" valign="top" rowspan="1" colspan="1">355.9 g/mol</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Temperature</td>
<td align="center" valign="top" rowspan="1" colspan="1">293.2(2) K</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Wavelength</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.71073 Å</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Crystal system</td>
<td align="center" valign="top" rowspan="1" colspan="1">Triclinic</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Space group</td>
<td align="center" valign="top" rowspan="1" colspan="1">P-1</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="3" colspan="1">Unit cell dimensions</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<italic>a</italic>
= 7.5511(3) Å, α = 106.680(5)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">
<italic>b</italic>
= 11.5028(7) Å, β = 93.419(4)</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">
<italic>c</italic>
= 18.9030(11) Å, γ = 103.448(5)</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Volume</td>
<td align="center" valign="top" rowspan="1" colspan="1">1,515.54(14) Å
<sup>3</sup>
</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">
<italic>Z</italic>
Formula units per unit cell</td>
<td align="center" valign="top" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Density (calculated)</td>
<td align="center" valign="top" rowspan="1" colspan="1">1.560 mg/m
<sup>3</sup>
</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Absorption coefficient</td>
<td align="center" valign="top" rowspan="1" colspan="1">1.628 mm
<sup>−1</sup>
</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">
<italic>F</italic>
(000)</td>
<td align="center" valign="top" rowspan="1" colspan="1">728 e/cell</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Crystal size</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.50 × 0.50 × 0.25 mm
<sup>3</sup>
</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Theta range for data collection</td>
<td align="center" valign="top" rowspan="1" colspan="1">2.95º to 25.02º</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Index ranges</td>
<td align="center" valign="top" rowspan="1" colspan="1">−8 ≤
<italic>h</italic>
≤ 8, −12 ≤
<italic>k</italic>
≤ 13, −22 ≤
<italic>l</italic>
≤ 22</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Reflections collected</td>
<td align="center" valign="top" rowspan="1" colspan="1">10,281</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Independent reflections</td>
<td align="center" valign="top" rowspan="1" colspan="1">5,327 [
<italic>R</italic>
<sub>(int)</sub>
= 0.0283]</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Completeness to θ = 25.02º</td>
<td align="center" valign="top" rowspan="1" colspan="1">99.8%</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Absorption correction</td>
<td align="center" valign="top" rowspan="1" colspan="1">Semi-empirical from equivalents</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Max. and min. transmission</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.6864 and 0.4966</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Refinement method</td>
<td align="center" valign="top" rowspan="1" colspan="1">Full-matrix least-squares on
<italic>F</italic>
<sup>2</sup>
</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Data/restraints/parameters</td>
<td align="center" valign="top" rowspan="1" colspan="1">5,327/8/379</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Goodness-of-fit on
<italic>F</italic>
<sup>2</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">1.062</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Final
<italic>R</italic>
indices [
<italic>I</italic>
> 2σ(
<italic>I</italic>
)]</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<italic>R</italic>
1 = 0.0369,
<italic>wR</italic>
2 = 0.0756</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">
<italic>R</italic>
indices (all data)</td>
<td align="center" valign="top" rowspan="1" colspan="1">
<italic>R</italic>
1 = 0.0472,
<italic>wR</italic>
2 = 0.0816</td>
</tr>
<tr>
<td align="center" valign="top" rowspan="1" colspan="1">Largest difference peak and hole</td>
<td align="center" valign="top" rowspan="1" colspan="1">0.395 and −0.313 e Å
<sup>−3</sup>
</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0004250 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0004250 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024