Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000383 ( Pmc/Corpus ); précédent : 0003829; suivant : 0003840 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structure of alluaudite-type Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
</title>
<author>
<name sortKey="Nasri, Rawia" sort="Nasri, Rawia" uniqKey="Nasri R" first="Rawia" last="Nasri">Rawia Nasri</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fakhar Bourguiba, Noura" sort="Fakhar Bourguiba, Noura" uniqKey="Fakhar Bourguiba N" first="Noura" last="Fakhar Bourguiba">Noura Fakhar Bourguiba</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zid, Mohamed Faouzi" sort="Zid, Mohamed Faouzi" uniqKey="Zid M" first="Mohamed Faouzi" last="Zid">Mohamed Faouzi Zid</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Driss, Ahmed" sort="Driss, Ahmed" uniqKey="Driss A" first="Ahmed" last="Driss">Ahmed Driss</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25309171</idno>
<idno type="pmc">4186203</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186203</idno>
<idno type="RBID">PMC:4186203</idno>
<idno type="doi">10.1107/S1600536814016729</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000383</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000383</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Crystal structure of alluaudite-type Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
</title>
<author>
<name sortKey="Nasri, Rawia" sort="Nasri, Rawia" uniqKey="Nasri R" first="Rawia" last="Nasri">Rawia Nasri</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fakhar Bourguiba, Noura" sort="Fakhar Bourguiba, Noura" uniqKey="Fakhar Bourguiba N" first="Noura" last="Fakhar Bourguiba">Noura Fakhar Bourguiba</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zid, Mohamed Faouzi" sort="Zid, Mohamed Faouzi" uniqKey="Zid M" first="Mohamed Faouzi" last="Zid">Mohamed Faouzi Zid</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Driss, Ahmed" sort="Driss, Ahmed" uniqKey="Driss A" first="Ahmed" last="Driss">Ahmed Driss</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta Crystallographica Section E: Structure Reports Online</title>
<idno type="eISSN">1600-5368</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The title compound, tetra­sodium cobalt(II) tris­[molyb­date(IV)], was prepared by solid-state reactions. The structure is isotypic with Na
<sub>3</sub>
In
<sub>2</sub>
(AsO
<sub>4</sub>
)
<sub>3</sub>
and Na
<sub>3</sub>
In
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>3</sub>
. The main structural feature is the presence of infinite chains of edge-sharing
<italic>X</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>X</italic>
= Co/Na) dimers, which are linked by MoO
<sub>4</sub>
tetra­hedra, forming a three-dimensional framework enclosing two types of hexa­gonal tunnels in which Na
<sup>+</sup>
cations reside. In this alluaudite structure, Co and Na atoms are located at the same general site with occupancies of 0.503 (5) and 0.497 (6), respectively. The other three Na and one of the two Mo atoms lie on special positions (site symmetries 2, -1, 2 and 2, respectively). The structure is compared with similar structures and other members of alluaudite family.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Acta Crystallogr Sect E Struct Rep Online</journal-id>
<journal-id journal-id-type="iso-abbrev">Acta Crystallogr Sect E Struct Rep Online</journal-id>
<journal-id journal-id-type="publisher-id">Acta Cryst. E</journal-id>
<journal-title-group>
<journal-title>Acta Crystallographica Section E: Structure Reports Online</journal-title>
</journal-title-group>
<issn pub-type="epub">1600-5368</issn>
<publisher>
<publisher-name>International Union of Crystallography</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25309171</article-id>
<article-id pub-id-type="pmc">4186203</article-id>
<article-id pub-id-type="publisher-id">br2240</article-id>
<article-id pub-id-type="doi">10.1107/S1600536814016729</article-id>
<article-id pub-id-type="coden">ACSEBH</article-id>
<article-id pub-id-type="pii">S1600536814016729</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Data Reports</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Crystal structure of alluaudite-type Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
</article-title>
<alt-title>
<italic>Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Nasri</surname>
<given-names>Rawia</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fakhar Bourguiba</surname>
<given-names>Noura</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
<xref ref-type="corresp" rid="cor">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zid</surname>
<given-names>Mohamed Faouzi</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Driss</surname>
<given-names>Ahmed</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<aff id="a">
<label>a</label>
Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor">Correspondence e-mail:
<email>n.f.bourguiba@live.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<day>01</day>
<month>9</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>01</day>
<month>8</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>01</day>
<month>8</month>
<year>2014</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>70</volume>
<issue>Pt 9</issue>
<issue-id pub-id-type="publisher-id">e140900</issue-id>
<fpage>i47</fpage>
<lpage>i48</lpage>
<history>
<date date-type="received">
<day>10</day>
<month>7</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>18</day>
<month>7</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© Nasri et al. 2014</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0/uk/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.</license-p>
</license>
</permissions>
<self-uri xlink:type="simple" xlink:href="http://dx.doi.org/10.1107/S1600536814016729">A full version of this article is available from Crystallography Journals Online.</self-uri>
<abstract>
<p>The title compound, tetra­sodium cobalt(II) tris­[molyb­date(IV)], was prepared by solid-state reactions. The structure is isotypic with Na
<sub>3</sub>
In
<sub>2</sub>
(AsO
<sub>4</sub>
)
<sub>3</sub>
and Na
<sub>3</sub>
In
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>3</sub>
. The main structural feature is the presence of infinite chains of edge-sharing
<italic>X</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>X</italic>
= Co/Na) dimers, which are linked by MoO
<sub>4</sub>
tetra­hedra, forming a three-dimensional framework enclosing two types of hexa­gonal tunnels in which Na
<sup>+</sup>
cations reside. In this alluaudite structure, Co and Na atoms are located at the same general site with occupancies of 0.503 (5) and 0.497 (6), respectively. The other three Na and one of the two Mo atoms lie on special positions (site symmetries 2, -1, 2 and 2, respectively). The structure is compared with similar structures and other members of alluaudite family.</p>
</abstract>
<kwd-group>
<kwd>crystal structure</kwd>
<kwd>X-ray diffraction</kwd>
<kwd>molybdate</kwd>
<kwd>alluaudite</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Related literature   </title>
<p>For the bond-valance-sum method, see: Brown & Altermatt (1985
<xref ref-type="bibr" rid="bb2"></xref>
). For related structures, see: Chaalia
<italic>et al.</italic>
(2012
<xref ref-type="bibr" rid="bb3"></xref>
); Engel
<italic>et al.</italic>
(2005
<xref ref-type="bibr" rid="bb5"></xref>
); Frigui
<italic>et al.</italic>
(2012
<xref ref-type="bibr" rid="bb7"></xref>
); Hatert (2006
<xref ref-type="bibr" rid="bb9"></xref>
); Hidouri
<italic>et al.</italic>
(2006
<xref ref-type="bibr" rid="bb10"></xref>
); Kabbour
<italic>et al.</italic>
(2011
<xref ref-type="bibr" rid="bb11"></xref>
); Kelvtsova
<italic>et al.</italic>
(1991
<xref ref-type="bibr" rid="bb12"></xref>
); Lii & Ye (1997
<xref ref-type="bibr" rid="bb13"></xref>
); Marzouki
<italic>et al.</italic>
(2013
<xref ref-type="bibr" rid="bb15"></xref>
); Mikhailova
<italic>et al.</italic>
(2010
<xref ref-type="bibr" rid="bb16"></xref>
); Moore (1971
<xref ref-type="bibr" rid="bb17"></xref>
); Namsaraeva
<italic>et al.</italic>
(2011
<xref ref-type="bibr" rid="bb18"></xref>
); Solodovnikov
<italic>et al.</italic>
(1988
<xref ref-type="bibr" rid="bb21"></xref>
); Yakubovich
<italic>et al.</italic>
(2005
<xref ref-type="bibr" rid="bb22"></xref>
).</p>
</sec>
<sec id="sec2">
<title>Experimental   </title>
<sec id="sec2.1">
<title>Crystal data   </title>
<p>
<list list-type="simple" id="l1">
<list-item>
<p>Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
</p>
</list-item>
<list-item>
<p>
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 630.71</p>
</list-item>
<list-item>
<p>Monoclinic,
<inline-formula>
<inline-graphic xlink:href="e-70-00i47-efi6.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
</p>
</list-item>
<list-item>
<p>
<italic>a</italic>
= 12.8770 (8) Å</p>
</list-item>
<list-item>
<p>
<italic>b</italic>
= 13.4384 (9) Å</p>
</list-item>
<list-item>
<p>
<italic>c</italic>
= 7.1292 (7) Å</p>
</list-item>
<list-item>
<p>β = 112.072 (6)°</p>
</list-item>
<list-item>
<p>
<italic>V</italic>
= 1143.27 (15) Å
<sup>3</sup>
</p>
</list-item>
<list-item>
<p>
<italic>Z</italic>
= 4</p>
</list-item>
<list-item>
<p>Mo
<italic>K</italic>
α radiation</p>
</list-item>
<list-item>
<p>μ = 4.85 mm
<sup>−1</sup>
</p>
</list-item>
<list-item>
<p>
<italic>T</italic>
= 298 K</p>
</list-item>
<list-item>
<p>0.84 × 0.28 × 0.22 mm</p>
</list-item>
</list>
</p>
</sec>
<sec id="sec2.2">
<title>Data collection   </title>
<p>
<list list-type="simple" id="l2">
<list-item>
<p>Enraf–Nonius CAD-4 diffractometer</p>
</list-item>
<list-item>
<p>Absorption correction: ψ scan (North
<italic>et al.</italic>
, 1968
<xref ref-type="bibr" rid="bb19"></xref>
)
<italic>T</italic>
<sub>min</sub>
= 0.214,
<italic>T</italic>
<sub>max</sub>
= 0.344</p>
</list-item>
<list-item>
<p>2898 measured reflections</p>
</list-item>
<list-item>
<p>1242 independent reflections</p>
</list-item>
<list-item>
<p>1156 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</p>
</list-item>
<list-item>
<p>
<italic>R</italic>
<sub>int</sub>
= 0.036</p>
</list-item>
<list-item>
<p>2 standard reflections every 120 min intensity decay: 1.4%</p>
</list-item>
</list>
</p>
</sec>
<sec id="sec2.3">
<title>Refinement   </title>
<p>
<list list-type="simple" id="l3">
<list-item>
<p>
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.025</p>
</list-item>
<list-item>
<p>
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.065</p>
</list-item>
<list-item>
<p>
<italic>S</italic>
= 1.12</p>
</list-item>
<list-item>
<p>1242 reflections</p>
</list-item>
<list-item>
<p>95 parameters</p>
</list-item>
<list-item>
<p>Δρ
<sub>max</sub>
= 1.14 e Å
<sup>−3</sup>
</p>
</list-item>
<list-item>
<p>Δρ
<sub>min</sub>
= −0.81 e Å
<sup>−3</sup>
</p>
</list-item>
</list>
</p>
</sec>
<sec id="d5e607">
<title></title>
<p>Data collection:
<italic>CAD-4 EXPRESS</italic>
(Duisenberg, 1992
<xref ref-type="bibr" rid="bb4"></xref>
; Macíček & Yordanov, 1992
<xref ref-type="bibr" rid="bb14"></xref>
); cell refinement:
<italic>CAD-4 EXPRESS</italic>
; data reduction:
<italic>XCAD4</italic>
(Harms & Wocadlo, 1995
<xref ref-type="bibr" rid="bb8"></xref>
); program(s) used to solve structure:
<italic>SHELXS97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb20"></xref>
); program(s) used to refine structure:
<italic>SHELXL97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb20"></xref>
); molecular graphics:
<italic>DIAMOND</italic>
(Brandenburg & Putz, 1999
<xref ref-type="bibr" rid="bb1"></xref>
); software used to prepare material for publication:
<italic>WinGX</italic>
(Farrugia, 2012
<xref ref-type="bibr" rid="bb6"></xref>
).</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data">
<p>Crystal structure: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536814016729/br2240sup1.cif">10.1107/S1600536814016729/br2240sup1.cif</ext-link>
</p>
<media mimetype="chemical" mime-subtype="x-cif" xlink:href="e-70-00i47-sup1.cif" xlink:type="simple" id="d35e132" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Structure factors: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536814016729/br2240Isup2.hkl">10.1107/S1600536814016729/br2240Isup2.hkl</ext-link>
</p>
<media mimetype="text" mime-subtype="plain" xlink:href="e-70-00i47-Isup2.hkl" xlink:type="simple" id="d35e139" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<media xlink:href="e-70-00i47-fig1.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
<p>asym 4 4 3 Code de symétrie x y z x y z x y z x y z x y z x y z . DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536814016729/br2240fig1.tif">10.1107/S1600536814016729/br2240fig1.tif</ext-link>
</p>
<p>Unité
<italic>asym</italic>
étrique dans Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
. Les éllipsoïdes ont été définis avec 50% de probabilité. [
<italic>Code de symétrie</italic>
]: (i) −
<italic>x</italic>
,
<italic>y</italic>
,-
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-70-00i47-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (ii)
<italic>x</italic>
,
<italic>y</italic>
 + 1,
<italic>z</italic>
; (iii)
<italic>x</italic>
,-
<italic>y</italic>
 + 1,
<italic>z</italic>
 − 1/2; (iv) −
<italic>x</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-70-00i47-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,-
<italic>y</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-70-00i47-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,-
<italic>z</italic>
 + 1; (v)
<italic>x</italic>
,-
<italic>y</italic>
 + 1,
<italic>z</italic>
 + 1/2; (vi) −
<italic>x</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-70-00i47-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,
<italic>y</italic>
 − 1/2,-
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-70-00i47-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
.</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<media xlink:href="e-70-00i47-fig2.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
<p>a 8 b 2 2 14 . DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536814016729/br2240fig2.tif">10.1107/S1600536814016729/br2240fig2.tif</ext-link>
</p>
<p>Représentation: (
<italic>a</italic>
) des chaînes classiques CoMoO
<sub>8</sub>
, (
<italic>b</italic>
) des rubans de type Co
<sub>2</sub>
Mo
<sub>2</sub>
O
<sub>14</sub>
.</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<media xlink:href="e-70-00i47-fig3.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
<p>. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536814016729/br2240fig3.tif">10.1107/S1600536814016729/br2240fig3.tif</ext-link>
</p>
<p>Représentation des couches disposées parallèlement au plan (100).</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<media xlink:href="e-70-00i47-fig4.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
<p>4 4 3 c . DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536814016729/br2240fig4.tif">10.1107/S1600536814016729/br2240fig4.tif</ext-link>
</p>
<p>Projection de la structure de Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
selon
<italic>c</italic>
.</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<media xlink:href="e-70-00i47-fig5.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
<p>2 3 4 3 c 3+ 6 . DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536814016729/br2240fig5.tif">10.1107/S1600536814016729/br2240fig5.tif</ext-link>
</p>
<p>Projection de la structure de K
<sub>2</sub>
Mn
<sub>3</sub>
(AsO
<sub>4</sub>
)
<sub>3</sub>
, selon
<italic>c</italic>
, montrant la disposition des octa­èdres Mn
<sup>3+</sup>
O
<sub>6</sub>
.</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<media xlink:href="e-70-00i47-fig6.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
<p>1,09 3,46 4 3 a . DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536814016729/br2240fig6.tif">10.1107/S1600536814016729/br2240fig6.tif</ext-link>
</p>
<p>Projection de la structure de Ag
<sub>1,09</sub>
Mn
<sub>3,46</sub>
(AsO
<sub>4</sub>
)
<sub>3</sub>
, selon
<italic>a</italic>
, montrant la jonction des octa­èdes par arêtes.</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<media xlink:href="e-70-00i47-fig7.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
<p>4 4 3 b . DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536814016729/br2240fig7.tif">10.1107/S1600536814016729/br2240fig7.tif</ext-link>
</p>
<p>Projection de la structure de Cs
<sub>4</sub>
Fe(MoO
<sub>4</sub>
)
<sub>3</sub>
, selon
<italic>b</italic>
, mettant en évidence les espaces inter-couches.</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>CCDC reference:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/cr.cgi?rm=csd&csdid=1015075">1015075</ext-link>
</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Additional supporting information:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsupfiles?br2240&file=br2240sup0.html&mime=text/html"> crystallographic information</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendcif?br2240sup1&Qmime=cif">3D view</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?br2240&checkcif=yes">checkCIF report</ext-link>
</p>
</supplementary-material>
</sec>
</body>
<back>
<fn-group>
<fn id="fnu1">
<p>Supporting information for this paper is available from the IUCr electronic archives (Reference:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsup?br2240">BR2240</ext-link>
).</p>
</fn>
</fn-group>
<ack>
<p>The authors gratefully acknowledge the financial support of Ministry of Higher Education, Scientific Research and Technology of Tunisia.</p>
</ack>
<app-group>
<app>
<title>supplementary crystallographic information</title>
<sec id="comment">
<title>S1. Comment </title>
<p>Ces dernières années, plusieurs équipes de recherche s'intéressent à l'étude des systèmes quaternaires de type A–M–Mo–O (A = cation monovalent et
<italic>M</italic>
= métal de transition). En effet, la jonction octaèdres-tétraèdres conduit à des charpentes ouvertes ayant des caractéristiques structurales favorable à la mobilité des ions (Kabbour
<italic>et al.</italic>
, 2011). De plus, la substitution du métal de transition par un alcalin de petite taille (Li, Na) confère aux matériaux obtenus des propriétés physiques importantes notamment: magnétiques (Namsaraeva
<italic>et al.</italic>
, 2011; Hidouri
<italic>et al.</italic>
, 2006), d'insertion et d'extraction (Mikhailova
<italic>et al.</italic>
, 2010). C'est dans ce cadre, que nous avons choisi l'exploration des systèmes A–Co–Mo–O (A = ion monovalent). Une nouvelle phase de formulation Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
a été synthétisée par réaction à l'état solide.</p>
<p>Un examen bibliographique montre que le matériau étudié est isostructural aux composés: Na
<sub>3</sub>
In
<sub>2</sub>
As
<sub>3</sub>
O
<sub>12</sub>
et Na
<sub>3</sub>
In
<sub>2</sub>
P
<sub>3</sub>
O
<sub>12</sub>
(Lii & Ye, 1997) et membre de la famille alluaudite (Moore, 1971; Hatert, 2006; Yakubovich
<italic>et al.</italic>
, 2005). L'unité
<italic>asym</italic>
étrique, dans le composé étudié est construite à partir d'un octaèdre CoO
<sub>6</sub>
et de deux tétraèdres MoO
<sub>4</sub>
connectés par ponts mixtes de type Co–O–Mo (Fig. 1). Dans cette unité les atomes Co1 et Na1 sont situés dans le même site (8f: Wyckoff) avec des taux d'occupation respectivement égaux à 0,503 (5) et 0,497 (6). Alors que les trois autres atomes de sodium (Na2(4e), Na3(4a), Na4(4e)) et l'un des deux atomes de molybdène (Mo1(4e)) se trouvent sur des positions particulières.</p>
<p>Dans la charpente anionique les octaèdres CoO
<sub>6</sub>
et les tétraèdres MoO
<sub>4</sub>
se lient pour former des chaînes classiques de type CoMoO
<sub>8</sub>
avec une disposition en
<italic>cis</italic>
des tétraèdres Mo2O
<sub>4</sub>
(Fig. 2a). Ces dernières se connectent par mize en commun d'arêtes entre les octaèdres CoO
<sub>6</sub>
pour donner des rubans de type Co
<sub>2</sub>
Mo
<sub>2</sub>
O
<sub>14</sub>
(Fig. 2b). Ces rubans se lient au moyen de sommets entre les polyèdres de nature différente pour conduire à des couches disposées parallèlement au plan (100) (Fig. 3). La formation de ce type de couches est la conséquence d'une disposition particulière des dimères Co2O
<sub>10</sub>
, selon les deux directions [011] et [011]. La jonction entre ces couches est assurée par insertion des tétraèdres Mo1O
<sub>4</sub>
et formation de ponts mixtes Co–O–Mo. En effet, chaque tétraèdre Mo1O
<sub>4</sub>
partage deux pairs de ses sommets avec respectivement deux couches adjacentes. Par contre dans une couche, chaque tétraèdre Mo2O
<sub>4</sub>
partage seulement trois de ses sommets avec les dimères Co2O
<sub>10</sub>
, le quatrième sommet restant libre forme un groupement molybdyl (
<italic>d</italic>
(
<italic>M</italic>
=O)= 1,750 (2) Å) et d'autre part il se dirige vers les canaux où se situent les cations Na3. Cette association conduit à une charpente tridimensionnelle, possédant deux types de canaux larges, à section hexagonale, parallèles à l'axe
<italic>c</italic>
où logent les cations Na
<sup>+</sup>
(Fig. 4).</p>
<p>L'examen des facteurs géométriques dans la structure révèle qu'ils sont conformes à ceux rencontrés dans la littérature (Engel
<italic>et al.</italic>
, 2005). De plus, le calcul des différentes valences de liaison (BVS), utilisant la formule empirique de Brown (Brown & Altermatt, 1985), conduit aux valeurs des charges des ions suivants: Mo1(5,769), Mo2(5,887), (Co1/Na1)(1,871), Na2(1,116) Na3(0,874), Na4(0,570).</p>
<p>La recherche de structures présentant des aspects communs avec celle de Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
, nous a conduit à la famille des alluaudites de formule générale AA'
<italic>M</italic>
'
<italic>M</italic>
<sub>2</sub>
(XO
<sub>4</sub>
)
<sub>3</sub>
(A = ion monovalent ou bivalent et
<italic>M</italic>
= métal de transition) (Moore, 1971). Cependant une diffénce nette est observée d'une part, dans l'arrangement des polyédres et d'autre part dans l'occupation des sites cristallographiques. En effet, dans le composé K
<sub>2</sub>
Mn
<sub>3</sub>
(AsO
<sub>4</sub>
)
<sub>3</sub>
(Chaalia
<italic>et al.</italic>
, 2012), le site (1/2,
<italic>y</italic>
,3/4) est occupé par l'octaèdre Mn1O
<sub>6</sub>
(Fig. 5) par contre dans notre composé, il est occupé par le cation Na2 (Fig. 4).</p>
<p>Une comparaison de la structure avec les formes de type wyllieites et rosemaryites montre qu'ils cristallisent dans le même systéme cristallin monoclinique, et présentent des paramétres de maille similaires, mais ils possédent des groupes d'espace différents: P21/c, P21/n respectivement. Tandisque pour les alluaudites, le groupe d'espace est
<italic>C</italic>
2/
<italic>c</italic>
. Pour le composé Ag
<sub>1,09</sub>
Mn
<sub>3,46</sub>
(AsO
<sub>4</sub>
)
<sub>3</sub>
de type wyllieite (Frigui
<italic>et al.</italic>
, 2012), une différence est observée dans la charpente. En effet, les couches sont liées d'une part, par des ponts mixtes Mn—O—As et d'autre part, par partage d'arêtes avec l'octaèdre Mn1O
<sub>6</sub>
(Fig. 6). Dans la variété
<italic>β</italic>
-xenophyllite (Marzouki
<italic>et al.</italic>
, 2013), le composé Na
<sub>4</sub>
Li
<sub>0.62</sub>
Co
<sub>5.67</sub>
Al
<sub>0.71</sub>
(AsO
<sub>4</sub>
)
<sub>6</sub>
possède des paramétres de maille, un groupe d'espace (C2/m) et une charpente anionique différente de ceux rencontrés dans notre phase Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
.</p>
<p>Une comparaison de notre structure avec celle des composés ayant une formulation analogue A
<sub>4</sub>
M(MoO
<sub>4</sub>
)
<sub>3</sub>
(A=Cs, Rb, Na) et (
<italic>M</italic>
=Fe, Cu, Mn) montre une différence nette d'une part, dans la
<italic>sym</italic>
étrie cristalline et d'autre part, dans l'arrangement des polyèdres. Les deux composés Cs
<sub>4</sub>
Fe(MoO
<sub>4</sub>
)
<sub>3</sub>
(Namsaraeva
<italic>et al.</italic>
, 2011), et Rb
<sub>4</sub>
Mn(MoO
<sub>4</sub>
)
<sub>3</sub>
(Solodovnikov
<italic>et al.</italic>
, 1988), sont de
<italic>sym</italic>
étrie hexagonale P-62
<italic>c</italic>
et présentent des charpentes bidimensionnelles. En effet, la connection des tétraèdres MoO
<sub>4</sub>
aux bipyramides trigonales FeO
<sub>5</sub>
engendre des couches disposées parallèlement au plan (001) (Fig. 7). Pour la variété Na
<sub>4</sub>
Cu(MoO
<sub>4</sub>
)
<sub>3</sub>
(Kelvtsova
<italic>et al.</italic>
, 1991), elle cristallise dans le systéme triclinique, groupe d'espace P-1. La jonction des différents polyédres conduit aussi à une structure bidimensionnelle. En conclusion, la phase élaboreée Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
de formulation générale A
<sub>4</sub>
M(MoO
<sub>4</sub>
)
<sub>3</sub>
est classée, contrairement à ses homologues précedemment cités, une forme Alluaudite.</p>
</sec>
<sec id="experimental">
<title>S2. Experimental </title>
<p>Les cristaux relatifs à Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
ont été obtenus par réaction à l'état solide à partir des réactifs: Na
<sub>2</sub>
CO
<sub>3</sub>
(PROLABO, 70128), Co(NO
<sub>3</sub>
)·6H
<sub>2</sub>
O (FLUKA, 60832) et (NH4)
<sub>2</sub>
MoO
<sub>4</sub>
O
<sub>13</sub>
(FLUKA, 69858) pris dans les proportions Na:Co:Mo=3:1:3. Aprés un broyage poussé dans un mortier en agate, le mélange a été mis dans un creuset en porcelaine préchauffé à l'air à 673 K pendant 24 heures en vue d'éliminer les composés volatils. Il est ensuite porté jusqu'à une température de synthèse proche de celle de la fusion à 953 K. Le mélange est abandonné à cette température pendant une semaine pour favoriser la germination et la croissance des cristaux. Par la suite, il a subi en premier lieu un refroidissement lent (5°/jour) jusqu'à 900 K puis rapide (50°/h) jusqu'à la température ambiante. Des cristaux de couleur bleu, de taille suffisante pour les mesures des intensités, ont été séparés du flux par l'eau chaude.</p>
</sec>
<sec id="refinement">
<title>S3. Refinement </title>
<p>L'affinement des taux d'occupation des atomes de cobalt et de sodium séparément conduit à une formule erronée de type Na
<sub>3</sub>
Co
<sub>1,4</sub>
Mo
<sub>3</sub>
O
<sub>12</sub>
où la neutralité électrique n'est pas vérifiée. De plus, La distance moyenne Co1–O égale à 2,19 (1) est supérieure à celle rencontrée dans la bibliographie. En effet, c'est une distance moyenne de type Co/Na–O. L'affinement final a été donc, réalisé en placant les atomes Co1 et Na1 dans le même site, il conduit aux taux d'occupation respectifs égaux à 0,503 (5) et 0,497 (6). La formule finale correspond à une alluaudite de type Na
<sub>4</sub>
CoMo
<sub>3</sub>
O
<sub>12</sub>
.
<italic>L</italic>
'utilisation des contraintes EADP et EXYZ, autorisées par le programme
<italic>SHELXL</italic>
-97 (Sheldrick, 2008), pour le couple Co1/Na1 conduit à des ellipsoïdes bien définis. Les densités d'électrons maximum et minimum restants dans la Fourier-différence sont acceptables et sont situées respectivements à 0,88 Å de Mo2 et à 0,51 Å de Na4.</p>
</sec>
<sec id="figures">
<title>Figures</title>
<fig id="Fap1">
<label>Fig. 1.</label>
<caption>
<p>Unité asymétrique dans Na4Co(MoO4)3. Les éllipsoïdes ont été définis avec 50% de probabilité. [Code de symétrie]: (i) -x,y,-z + 1/2; (ii) x,y + 1,z; (iii) x,-y + 1,z - 1/2; (iv) -x + 1/2,-y + 1/2,-z + 1; (v) x,-y + 1,z + 1/2; (vi) -x + 1/2,y - 1/2,-z + 1/2.</p>
</caption>
<graphic xlink:href="e-70-00i47-fig1"></graphic>
</fig>
<fig id="Fap2">
<label>Fig. 2.</label>
<caption>
<p>Représentation: (a) des chaînes classiques CoMoO8, (b) des rubans de type Co2Mo2O14.</p>
</caption>
<graphic xlink:href="e-70-00i47-fig2"></graphic>
</fig>
<fig id="Fap3">
<label>Fig. 3.</label>
<caption>
<p>Représentation des couches disposées parallèlement au plan (100).</p>
</caption>
<graphic xlink:href="e-70-00i47-fig3"></graphic>
</fig>
<fig id="Fap4">
<label>Fig. 4.</label>
<caption>
<p>Projection de la structure de Na4Co(MoO4)3 selon c.</p>
</caption>
<graphic xlink:href="e-70-00i47-fig4"></graphic>
</fig>
<fig id="Fap5">
<label>Fig. 5.</label>
<caption>
<p>Projection de la structure de K2Mn3(AsO4)3, selon c, montrant la disposition des octaèdres Mn3+O6.</p>
</caption>
<graphic xlink:href="e-70-00i47-fig5"></graphic>
</fig>
<fig id="Fap6">
<label>Fig. 6.</label>
<caption>
<p>Projection de la structure de Ag1,09Mn3,46(AsO4)3, selon a, montrant la jonction des octaèdres par arêtes.</p>
</caption>
<graphic xlink:href="e-70-00i47-fig6"></graphic>
</fig>
<fig id="Fap7">
<label>Fig. 7.</label>
<caption>
<p>Projection de la structure de Cs4Fe(MoO4)3, selon b, mettant en évidence les espaces inter-couches.</p>
</caption>
<graphic xlink:href="e-70-00i47-fig7"></graphic>
</fig>
</sec>
<sec id="tablewrapcrystaldatalong">
<title>Crystal data</title>
<table-wrap position="anchor" id="d1e686">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Na
<sub>4</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
(000) = 1172</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 630.71</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
<sub>x</sub>
= 3.664 Mg m
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Monoclinic,
<italic>C</italic>
2/
<italic>c</italic>
</td>
<td rowspan="1" colspan="1">Mo
<italic>K</italic>
α radiation, λ = 0.71073 Å</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hall symbol: -C 2yc</td>
<td rowspan="1" colspan="1">Cell parameters from 25 reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>a</italic>
= 12.8770 (8) Å</td>
<td rowspan="1" colspan="1">θ = 10–15°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>b</italic>
= 13.4384 (9) Å</td>
<td rowspan="1" colspan="1">µ = 4.85 mm
<sup></sup>
<sup>1</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>c</italic>
= 7.1292 (7) Å</td>
<td rowspan="1" colspan="1">
<italic>T</italic>
= 298 K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">β = 112.072 (6)°</td>
<td rowspan="1" colspan="1">Prism, blue</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>V</italic>
= 1143.27 (15) Å
<sup>3</sup>
</td>
<td rowspan="1" colspan="1">0.84 × 0.28 × 0.22 mm</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>Z</italic>
= 4</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapdatacollectionlong">
<title>Data collection</title>
<table-wrap position="anchor" id="d1e810">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Enraf–Nonius CAD-4 diffractometer</td>
<td rowspan="1" colspan="1">1156 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Radiation source: fine-focus sealed tube</td>
<td rowspan="1" colspan="1">
<italic>R</italic>
<sub>int</sub>
= 0.036</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Graphite monochromator</td>
<td rowspan="1" colspan="1">θ
<sub>max</sub>
= 27.0°, θ
<sub>min</sub>
= 2.3°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">ω/2θ scans</td>
<td rowspan="1" colspan="1">
<italic>h</italic>
= −16→16</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Absorption correction: ψ scan (North
<italic>et al.</italic>
, 1968)</td>
<td rowspan="1" colspan="1">
<italic>k</italic>
= −2→17</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>T</italic>
<sub>min</sub>
= 0.214,
<italic>T</italic>
<sub>max</sub>
= 0.344</td>
<td rowspan="1" colspan="1">
<italic>l</italic>
= −9→9</td>
</tr>
<tr>
<td rowspan="1" colspan="1">2898 measured reflections</td>
<td rowspan="1" colspan="1">2 standard reflections every 120 min</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1242 independent reflections</td>
<td rowspan="1" colspan="1"> intensity decay: 1.4%</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewraprefinementdatalong">
<title>Refinement</title>
<table-wrap position="anchor" id="d1e935">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Refinement on
<italic>F</italic>
<sup>2</sup>
</td>
<td rowspan="1" colspan="1">Primary atom site location: structure-invariant direct methods</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Least-squares matrix: full</td>
<td rowspan="1" colspan="1">Secondary atom site location: difference Fourier map</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.025</td>
<td rowspan="1" colspan="1">
<italic>w</italic>
= 1/[σ
<sup>2</sup>
(
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
) + (0.0303
<italic>P</italic>
)
<sup>2</sup>
+ 3.9296
<italic>P</italic>
] where
<italic>P</italic>
= (
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
+ 2
<italic>F</italic>
<sub>c</sub>
<sup>2</sup>
)/3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.065</td>
<td rowspan="1" colspan="1">(Δ/σ)
<sub>max</sub>
< 0.001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>S</italic>
= 1.12</td>
<td rowspan="1" colspan="1">Δρ
<sub>max</sub>
= 1.14 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1242 reflections</td>
<td rowspan="1" colspan="1">Δρ
<sub>min</sub>
= −0.81 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">95 parameters</td>
<td rowspan="1" colspan="1">Extinction correction:
<italic>SHELXL97</italic>
(Sheldrick, 2008), Fc
<sup>*</sup>
=kFc[1+0.001xFc
<sup>2</sup>
λ
<sup>3</sup>
/sin(2θ)]
<sup>-1/4</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">0 restraints</td>
<td rowspan="1" colspan="1">Extinction coefficient: 0.0136 (5)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="specialdetails">
<title>Special details</title>
<table-wrap position="anchor" id="d1e1112">
<table rules="all" frame="box" style="table-layout:fixed">
<tr>
<td rowspan="1" colspan="1">Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Refinement. Refinement of
<italic>F</italic>
<sup>2</sup>
against ALL reflections. The weighted
<italic>R</italic>
-factor
<italic>wR</italic>
and goodness of fit
<italic>S</italic>
are based on
<italic>F</italic>
<sup>2</sup>
, conventional
<italic>R</italic>
-factors
<italic>R</italic>
are based on
<italic>F</italic>
, with
<italic>F</italic>
set to zero for negative
<italic>F</italic>
<sup>2</sup>
. The threshold expression of
<italic>F</italic>
<sup>2</sup>
> σ(
<italic>F</italic>
<sup>2</sup>
) is used only for calculating
<italic>R</italic>
-factors(gt)
<italic>etc</italic>
. and is not relevant to the choice of reflections for refinement.
<italic>R</italic>
-factors based on
<italic>F</italic>
<sup>2</sup>
are statistically about twice as large as those based on
<italic>F</italic>
, and
<italic>R</italic>
- factors based on ALL data will be even larger.</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapcoords">
<title>Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e1212">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>x</italic>
</td>
<td rowspan="1" colspan="1">
<italic>y</italic>
</td>
<td rowspan="1" colspan="1">
<italic>z</italic>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sub>iso</sub>
*/
<italic>U</italic>
<sub>eq</sub>
</td>
<td rowspan="1" colspan="1">Occ. (<1)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.21721 (3)</td>
<td rowspan="1" colspan="1">0.2500</td>
<td rowspan="1" colspan="1">0.01688 (16)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2</td>
<td rowspan="1" colspan="1">0.26106 (3)</td>
<td rowspan="1" colspan="1">0.89054 (2)</td>
<td rowspan="1" colspan="1">0.37349 (4)</td>
<td rowspan="1" colspan="1">0.01710 (15)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.28417 (6)</td>
<td rowspan="1" colspan="1">0.16208 (6)</td>
<td rowspan="1" colspan="1">0.37580 (10)</td>
<td rowspan="1" colspan="1">0.01443 (19)</td>
<td rowspan="1" colspan="1">0.503 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na1</td>
<td rowspan="1" colspan="1">0.28417 (6)</td>
<td rowspan="1" colspan="1">0.16208 (6)</td>
<td rowspan="1" colspan="1">0.37580 (10)</td>
<td rowspan="1" colspan="1">0.01443 (19)</td>
<td rowspan="1" colspan="1">0.497 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na2</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.23993 (19)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.0245 (5)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na3</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.0372 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na4</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.0060 (3)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.0454 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.2761 (3)</td>
<td rowspan="1" colspan="1">0.8197 (2)</td>
<td rowspan="1" colspan="1">0.1715 (4)</td>
<td rowspan="1" colspan="1">0.0283 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.3244 (3)</td>
<td rowspan="1" colspan="1">0.8298 (2)</td>
<td rowspan="1" colspan="1">0.6100 (4)</td>
<td rowspan="1" colspan="1">0.0264 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.1067 (3)</td>
<td rowspan="1" colspan="1">0.1352 (2)</td>
<td rowspan="1" colspan="1">0.2466 (5)</td>
<td rowspan="1" colspan="1">0.0324 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.3248 (3)</td>
<td rowspan="1" colspan="1">0.0080 (3)</td>
<td rowspan="1" colspan="1">0.3900 (5)</td>
<td rowspan="1" colspan="1">0.0345 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.1179 (3)</td>
<td rowspan="1" colspan="1">0.9099 (2)</td>
<td rowspan="1" colspan="1">0.3156 (5)</td>
<td rowspan="1" colspan="1">0.0290 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.0439 (2)</td>
<td rowspan="1" colspan="1">0.2916 (2)</td>
<td rowspan="1" colspan="1">0.4718 (4)</td>
<td rowspan="1" colspan="1">0.0238 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapadps">
<title>Atomic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e1408">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>11</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>22</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>33</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>12</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>13</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>23</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1</td>
<td rowspan="1" colspan="1">0.0256 (3)</td>
<td rowspan="1" colspan="1">0.0134 (2)</td>
<td rowspan="1" colspan="1">0.0097 (2)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.00436 (17)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2</td>
<td rowspan="1" colspan="1">0.0212 (2)</td>
<td rowspan="1" colspan="1">0.0184 (2)</td>
<td rowspan="1" colspan="1">0.0106 (2)</td>
<td rowspan="1" colspan="1">−0.00135 (12)</td>
<td rowspan="1" colspan="1">0.00467 (13)</td>
<td rowspan="1" colspan="1">0.00017 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.0183 (4)</td>
<td rowspan="1" colspan="1">0.0159 (4)</td>
<td rowspan="1" colspan="1">0.0092 (3)</td>
<td rowspan="1" colspan="1">0.0006 (3)</td>
<td rowspan="1" colspan="1">0.0054 (3)</td>
<td rowspan="1" colspan="1">−0.0009 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na1</td>
<td rowspan="1" colspan="1">0.0183 (4)</td>
<td rowspan="1" colspan="1">0.0159 (4)</td>
<td rowspan="1" colspan="1">0.0092 (3)</td>
<td rowspan="1" colspan="1">0.0006 (3)</td>
<td rowspan="1" colspan="1">0.0054 (3)</td>
<td rowspan="1" colspan="1">−0.0009 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na2</td>
<td rowspan="1" colspan="1">0.0248 (11)</td>
<td rowspan="1" colspan="1">0.0317 (12)</td>
<td rowspan="1" colspan="1">0.0208 (11)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0131 (9)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na3</td>
<td rowspan="1" colspan="1">0.0506 (16)</td>
<td rowspan="1" colspan="1">0.0234 (12)</td>
<td rowspan="1" colspan="1">0.0239 (13)</td>
<td rowspan="1" colspan="1">0.0014 (12)</td>
<td rowspan="1" colspan="1">−0.0018 (11)</td>
<td rowspan="1" colspan="1">−0.0011 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na4</td>
<td rowspan="1" colspan="1">0.0233 (12)</td>
<td rowspan="1" colspan="1">0.0505 (18)</td>
<td rowspan="1" colspan="1">0.0527 (19)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0031 (12)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.0368 (16)</td>
<td rowspan="1" colspan="1">0.0338 (17)</td>
<td rowspan="1" colspan="1">0.0165 (13)</td>
<td rowspan="1" colspan="1">−0.0011 (14)</td>
<td rowspan="1" colspan="1">0.0124 (12)</td>
<td rowspan="1" colspan="1">−0.0011 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.0339 (15)</td>
<td rowspan="1" colspan="1">0.0267 (15)</td>
<td rowspan="1" colspan="1">0.0142 (13)</td>
<td rowspan="1" colspan="1">0.0072 (13)</td>
<td rowspan="1" colspan="1">0.0041 (11)</td>
<td rowspan="1" colspan="1">0.0009 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.0363 (16)</td>
<td rowspan="1" colspan="1">0.0248 (15)</td>
<td rowspan="1" colspan="1">0.0289 (16)</td>
<td rowspan="1" colspan="1">0.0052 (13)</td>
<td rowspan="1" colspan="1">0.0042 (13)</td>
<td rowspan="1" colspan="1">−0.0075 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.0416 (18)</td>
<td rowspan="1" colspan="1">0.0309 (17)</td>
<td rowspan="1" colspan="1">0.0294 (16)</td>
<td rowspan="1" colspan="1">−0.0123 (15)</td>
<td rowspan="1" colspan="1">0.0114 (14)</td>
<td rowspan="1" colspan="1">0.0030 (14)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.0266 (15)</td>
<td rowspan="1" colspan="1">0.0268 (15)</td>
<td rowspan="1" colspan="1">0.0329 (16)</td>
<td rowspan="1" colspan="1">0.0042 (12)</td>
<td rowspan="1" colspan="1">0.0104 (13)</td>
<td rowspan="1" colspan="1">0.0043 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.0306 (15)</td>
<td rowspan="1" colspan="1">0.0293 (15)</td>
<td rowspan="1" colspan="1">0.0127 (12)</td>
<td rowspan="1" colspan="1">−0.0020 (12)</td>
<td rowspan="1" colspan="1">0.0094 (11)</td>
<td rowspan="1" colspan="1">−0.0047 (11)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapgeomlong">
<title>Geometric parameters (Å, º)</title>
<table-wrap position="anchor" id="d1e1670">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="4">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Mo1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">1.769 (3)</td>
<td rowspan="1" colspan="1">Na2—O6</td>
<td rowspan="1" colspan="1">2.361 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1—O3</td>
<td rowspan="1" colspan="1">1.769 (3)</td>
<td rowspan="1" colspan="1">Na2—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">2.424 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1—O6</td>
<td rowspan="1" colspan="1">1.774 (3)</td>
<td rowspan="1" colspan="1">Na2—O2
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">2.424 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1—O6
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">1.774 (3)</td>
<td rowspan="1" colspan="1">Na2—O5
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">2.458 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2—O5</td>
<td rowspan="1" colspan="1">1.750 (3)</td>
<td rowspan="1" colspan="1">Na2—O5
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.458 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2—O4
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">1.762 (3)</td>
<td rowspan="1" colspan="1">Na3—O5
<sup>xi</sup>
</td>
<td rowspan="1" colspan="1">2.503 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2—O2</td>
<td rowspan="1" colspan="1">1.772 (3)</td>
<td rowspan="1" colspan="1">Na3—O5
<sup>xii</sup>
</td>
<td rowspan="1" colspan="1">2.503 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2—O1</td>
<td rowspan="1" colspan="1">1.796 (3)</td>
<td rowspan="1" colspan="1">Na3—O3
<sup>xiii</sup>
</td>
<td rowspan="1" colspan="1">2.543 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O4</td>
<td rowspan="1" colspan="1">2.129 (4)</td>
<td rowspan="1" colspan="1">Na3—O3</td>
<td rowspan="1" colspan="1">2.543 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O2
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.146 (3)</td>
<td rowspan="1" colspan="1">Na3—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.646 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O3</td>
<td rowspan="1" colspan="1">2.149 (3)</td>
<td rowspan="1" colspan="1">Na3—O5
<sup>xiv</sup>
</td>
<td rowspan="1" colspan="1">2.646 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O6
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.159 (3)</td>
<td rowspan="1" colspan="1">Na4—O4
<sup>xv</sup>
</td>
<td rowspan="1" colspan="1">2.706 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O1
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.164 (3)</td>
<td rowspan="1" colspan="1">Na4—O4</td>
<td rowspan="1" colspan="1">2.706 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">2.237 (3)</td>
<td rowspan="1" colspan="1">Na4—O4
<sup>xvi</sup>
</td>
<td rowspan="1" colspan="1">2.795 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na2—O6
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">2.361 (3)</td>
<td rowspan="1" colspan="1">Na4—O4
<sup>xvii</sup>
</td>
<td rowspan="1" colspan="1">2.795 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Mo1—O3</td>
<td rowspan="1" colspan="1">102.9 (2)</td>
<td rowspan="1" colspan="1">O2
<sup>iii</sup>
—Co1—O3</td>
<td rowspan="1" colspan="1">101.57 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Mo1—O6</td>
<td rowspan="1" colspan="1">109.14 (14)</td>
<td rowspan="1" colspan="1">O4—Co1—O6
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">93.97 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—Mo1—O6</td>
<td rowspan="1" colspan="1">111.98 (14)</td>
<td rowspan="1" colspan="1">O2
<sup>iii</sup>
—Co1—O6
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">83.55 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Mo1—O6
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">111.98 (14)</td>
<td rowspan="1" colspan="1">O3—Co1—O6
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">171.19 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—Mo1—O6
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">109.14 (14)</td>
<td rowspan="1" colspan="1">O4—Co1—O1
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">99.48 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Mo1—O6
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">111.42 (19)</td>
<td rowspan="1" colspan="1">O2
<sup>iii</sup>
—Co1—O1
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">166.02 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Mo2—O4
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">107.81 (16)</td>
<td rowspan="1" colspan="1">O3—Co1—O1
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">90.22 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Mo2—O2</td>
<td rowspan="1" colspan="1">111.10 (15)</td>
<td rowspan="1" colspan="1">O6
<sup>iv</sup>
—Co1—O1
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">83.85 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>ii</sup>
—Mo2—O2</td>
<td rowspan="1" colspan="1">108.20 (15)</td>
<td rowspan="1" colspan="1">O4—Co1—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">173.29 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Mo2—O1</td>
<td rowspan="1" colspan="1">108.10 (15)</td>
<td rowspan="1" colspan="1">O2
<sup>iii</sup>
—Co1—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">90.23 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>ii</sup>
—Mo2—O1</td>
<td rowspan="1" colspan="1">109.90 (15)</td>
<td rowspan="1" colspan="1">O3—Co1—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">80.90 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Mo2—O1</td>
<td rowspan="1" colspan="1">111.66 (14)</td>
<td rowspan="1" colspan="1">O6
<sup>iv</sup>
—Co1—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">92.00 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Co1—O2
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">87.41 (13)</td>
<td rowspan="1" colspan="1">O1
<sup>v</sup>
—Co1—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">84.19 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Co1—O3</td>
<td rowspan="1" colspan="1">93.43 (13)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
<p>Symmetry codes: (i) −
<italic>x</italic>
,
<italic>y</italic>
, −
<italic>z</italic>
+1/2; (ii)
<italic>x</italic>
,
<italic>y</italic>
+1,
<italic>z</italic>
; (iii)
<italic>x</italic>
, −
<italic>y</italic>
+1,
<italic>z</italic>
−1/2; (iv) −
<italic>x</italic>
+1/2, −
<italic>y</italic>
+1/2, −
<italic>z</italic>
+1; (v)
<italic>x</italic>
, −
<italic>y</italic>
+1,
<italic>z</italic>
+1/2; (vi) −
<italic>x</italic>
+1/2,
<italic>y</italic>
−1/2, −
<italic>z</italic>
+1/2; (vii) −
<italic>x</italic>
,
<italic>y</italic>
, −
<italic>z</italic>
+3/2; (viii) −
<italic>x</italic>
+1/2,
<italic>y</italic>
−1/2, −
<italic>z</italic>
+3/2; (ix)
<italic>x</italic>
−1/2,
<italic>y</italic>
−1/2,
<italic>z</italic>
; (x) −
<italic>x</italic>
, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (xi) −
<italic>x</italic>
, −
<italic>y</italic>
+1, −
<italic>z</italic>
; (xii)
<italic>x</italic>
,
<italic>y</italic>
−1,
<italic>z</italic>
; (xiii) −
<italic>x</italic>
, −
<italic>y</italic>
, −
<italic>z</italic>
; (xiv) −
<italic>x</italic>
,
<italic>y</italic>
−1, −
<italic>z</italic>
+1/2; (xv) −
<italic>x</italic>
+1,
<italic>y</italic>
, −
<italic>z</italic>
+3/2; (xvi) −
<italic>x</italic>
+1, −
<italic>y</italic>
, −
<italic>z</italic>
+1; (xvii)
<italic>x</italic>
, −
<italic>y</italic>
,
<italic>z</italic>
+1/2.</p>
</sec>
</app>
</app-group>
<ref-list>
<title>References</title>
<ref id="bb1">
<mixed-citation publication-type="other">Brandenburg, K. & Putz, H. (1999).
<italic>DIAMOND</italic>
Crystal Impact GbR, Bonn, Germany.</mixed-citation>
</ref>
<ref id="bb2">
<mixed-citation publication-type="other">Brown, I. D. & Altermatt, D. (1985).
<italic>Acta Cryst.</italic>
B
<bold>41</bold>
, 244–247.</mixed-citation>
</ref>
<ref id="bb3">
<mixed-citation publication-type="other">Chaalia, S., Ayed, I. & Haddad, A. (2012).
<italic>J. Chem. Crystallogr.</italic>
<bold>42</bold>
, 941–946.</mixed-citation>
</ref>
<ref id="bb4">
<mixed-citation publication-type="other">Duisenberg, A. J. M. (1992).
<italic>J. Appl. Cryst.</italic>
<bold>25</bold>
, 92–96.</mixed-citation>
</ref>
<ref id="bb5">
<mixed-citation publication-type="other">Engel, J. M., Ehrenberg, H. & Fuess, H. (2005).
<italic>Acta Cryst.</italic>
C
<bold>61</bold>
, i111–i112.</mixed-citation>
</ref>
<ref id="bb6">
<mixed-citation publication-type="other">Farrugia, L. J. (2012).
<italic>J. Appl. Cryst.</italic>
<bold>45</bold>
, 849–854.</mixed-citation>
</ref>
<ref id="bb7">
<mixed-citation publication-type="other">Frigui, W., Zid, M. F. & Driss, A. (2012).
<italic>Acta Cryst.</italic>
E
<bold>68</bold>
, i40–i41.</mixed-citation>
</ref>
<ref id="bb8">
<mixed-citation publication-type="other">Harms, K. & Wocadlo, S. (1995).
<italic>XCAD4</italic>
University of Marburg, Germany.</mixed-citation>
</ref>
<ref id="bb9">
<mixed-citation publication-type="other">Hatert, F. (2006).
<italic>Acta Cryst.</italic>
C
<bold>62</bold>
, i1–i2.</mixed-citation>
</ref>
<ref id="bb10">
<mixed-citation publication-type="other">Hidouri, M., Lajmi, B., Wattiaux, A., Fournés, L., Darriet, J. & Ben Amara, M. (2006).
<italic>J. Solid State Chem.</italic>
<bold>179</bold>
, 1808–1813.</mixed-citation>
</ref>
<ref id="bb11">
<mixed-citation publication-type="other">Kabbour, H., Coillot, D., Colmont, M., Masquelier, C. & Olivier, M. (2011).
<italic>J. Am. Chem. Soc.</italic>
<bold>133</bold>
, 11900–11903.</mixed-citation>
</ref>
<ref id="bb12">
<mixed-citation publication-type="other">Kelvtsova, R. F., Borlsov, S. V., Bliznyuk, N. A., Glinskaya, L. A. & Kelvtsov, P. V. (1991).
<italic>J. Struct. Chem.</italic>
<bold>32</bold>
, 885–893.</mixed-citation>
</ref>
<ref id="bb13">
<mixed-citation publication-type="other">Lii, K.-H. & Ye, J. (1997).
<italic>J. Solid State Chem.</italic>
<bold>133</bold>
, 131–137.</mixed-citation>
</ref>
<ref id="bb14">
<mixed-citation publication-type="other">Macíček, J. & Yordanov, A. (1992).
<italic>J. Appl. Cryst.</italic>
<bold>25</bold>
, 73–80.</mixed-citation>
</ref>
<ref id="bb15">
<mixed-citation publication-type="other">Marzouki, R., Frigui, W., Guesmi, A., Zid, M. F. & Driss, A. (2013).
<italic>Acta Cryst.</italic>
E
<bold>69</bold>
, i65–i66.</mixed-citation>
</ref>
<ref id="bb16">
<mixed-citation publication-type="other">Mikhailova, D., Sarapulova, A., Voss, A., Thomas, A., Oswald, S., Gruner, W., Trots, D. M., Bramnik, N. N. & Ehrenberg, H. (2010).
<italic>J. Mater. Chem.</italic>
<bold>22</bold>
, 3165–3173.</mixed-citation>
</ref>
<ref id="bb17">
<mixed-citation publication-type="other">Moore, P. B. (1971).
<italic>Am. Mineral.</italic>
<bold>56</bold>
, 1955–1975.</mixed-citation>
</ref>
<ref id="bb18">
<mixed-citation publication-type="other">Namsaraeva, T., Bazarov, B., Mikhailova, D., Kuratieva, N., Sarapulova, A., Senyshyn, A. & Ehrenberg, H. (2011).
<italic>Eur. J. Inorg. Chem.</italic>
pp. 2832–2841.</mixed-citation>
</ref>
<ref id="bb19">
<mixed-citation publication-type="other">North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).
<italic>Acta Cryst.</italic>
A
<bold>24</bold>
, 351–359.</mixed-citation>
</ref>
<ref id="bb20">
<mixed-citation publication-type="other">Sheldrick, G. M. (2008).
<italic>Acta Cryst.</italic>
A
<bold>64</bold>
, 112–122.</mixed-citation>
</ref>
<ref id="bb21">
<mixed-citation publication-type="other">Solodovnikov, S. F., Kelvtsova, R. F., Glinskaya, L. A. & Kelvtsov, P. V. (1988).
<italic>Kristallografiya</italic>
,
<bold>33</bold>
, 1380–1386.</mixed-citation>
</ref>
<ref id="bb22">
<mixed-citation publication-type="other">Yakubovich, O. V., Massa, W., Gavrilenko, P. G. & Dimitrova, O. V. (2005).
<italic>Eur. J. Mineral.</italic>
<bold>17</bold>
, 741–747.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000383  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000383  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024