Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distrontium trimanganese(II) bis­(hydro­gen­phosphate) bis­(ortho­phosphate)

Identifieur interne : 000371 ( Pmc/Corpus ); précédent : 000370; suivant : 000372

Distrontium trimanganese(II) bis­(hydro­gen­phosphate) bis­(ortho­phosphate)

Auteurs : Jamal Khmiyas ; Abderrazzak Assani ; Mohamed Saadi ; Lahcen El Ammari

Source :

RBID : PMC:3793668

Abstract

The title compound, Sr2Mn3(HPO4)2(PO4)2, was synthesized under hydro­thermal conditions. In the structure, one of two Mn atoms is located on an inversion centre, whereas all others atoms are located in general positions. The framework structure is built up from two types of MnO6 octa­hedra (one almost undistorted, one considerably distorted), one PO3OH and one PO4 tetra­hedron. The centrosymmetric MnO6 octa­hedron is linked to two other MnO6 octa­hedra by edge-sharing, forming infinite zigzag chains parallel to [010]. The PO3OH and PO4 tetra­hedra connect these chains through common vertices or edges, resulting in the formation of sheets parallel to (100). The Sr2+ cation is located in the inter­layer space and is bonded to nine O atoms in form of a distorted polyhedron and enhances the cohesion of the layers. Additional stabilization is achieved by a strong inter­layer O—H⋯O hydrogen bond between the PO3OH and PO4 units. The structure of the title phosphate is isotypic to that of Pb2Mn3(HPO4)2(PO4)2.


Url:
DOI: 10.1107/S1600536813018898
PubMed: 24109255
PubMed Central: 3793668

Links to Exploration step

PMC:3793668

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Distrontium trimanganese(II) bis­(hydro­gen­phosphate) bis­(ortho­phosphate)</title>
<author>
<name sortKey="Khmiyas, Jamal" sort="Khmiyas, Jamal" uniqKey="Khmiyas J" first="Jamal" last="Khmiyas">Jamal Khmiyas</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Assani, Abderrazzak" sort="Assani, Abderrazzak" uniqKey="Assani A" first="Abderrazzak" last="Assani">Abderrazzak Assani</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saadi, Mohamed" sort="Saadi, Mohamed" uniqKey="Saadi M" first="Mohamed" last="Saadi">Mohamed Saadi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="El Ammari, Lahcen" sort="El Ammari, Lahcen" uniqKey="El Ammari L" first="Lahcen" last="El Ammari">Lahcen El Ammari</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24109255</idno>
<idno type="pmc">3793668</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793668</idno>
<idno type="RBID">PMC:3793668</idno>
<idno type="doi">10.1107/S1600536813018898</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000371</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000371</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Distrontium trimanganese(II) bis­(hydro­gen­phosphate) bis­(ortho­phosphate)</title>
<author>
<name sortKey="Khmiyas, Jamal" sort="Khmiyas, Jamal" uniqKey="Khmiyas J" first="Jamal" last="Khmiyas">Jamal Khmiyas</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Assani, Abderrazzak" sort="Assani, Abderrazzak" uniqKey="Assani A" first="Abderrazzak" last="Assani">Abderrazzak Assani</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saadi, Mohamed" sort="Saadi, Mohamed" uniqKey="Saadi M" first="Mohamed" last="Saadi">Mohamed Saadi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="El Ammari, Lahcen" sort="El Ammari, Lahcen" uniqKey="El Ammari L" first="Lahcen" last="El Ammari">Lahcen El Ammari</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta Crystallographica Section E: Structure Reports Online</title>
<idno type="eISSN">1600-5368</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The title compound, Sr
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
, was synthesized under hydro­thermal conditions. In the structure, one of two Mn atoms is located on an inversion centre, whereas all others atoms are located in general positions. The framework structure is built up from two types of MnO
<sub>6</sub>
octa­hedra (one almost undistorted, one considerably distorted), one PO
<sub>3</sub>
OH and one PO
<sub>4</sub>
tetra­hedron. The centrosymmetric MnO
<sub>6</sub>
octa­hedron is linked to two other MnO
<sub>6</sub>
octa­hedra by edge-sharing, forming infinite zigzag chains parallel to [010]. The PO
<sub>3</sub>
OH and PO
<sub>4</sub>
tetra­hedra connect these chains through common vertices or edges, resulting in the formation of sheets parallel to (100). The Sr
<sup>2+</sup>
cation is located in the inter­layer space and is bonded to nine O atoms in form of a distorted polyhedron and enhances the cohesion of the layers. Additional stabilization is achieved by a strong inter­layer O—H⋯O hydrogen bond between the PO
<sub>3</sub>
OH and PO
<sub>4</sub>
units. The structure of the title phosphate is isotypic to that of Pb
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Acta Crystallogr Sect E Struct Rep Online</journal-id>
<journal-id journal-id-type="iso-abbrev">Acta Crystallogr Sect E Struct Rep Online</journal-id>
<journal-id journal-id-type="publisher-id">Acta Cryst. E</journal-id>
<journal-title-group>
<journal-title>Acta Crystallographica Section E: Structure Reports Online</journal-title>
</journal-title-group>
<issn pub-type="epub">1600-5368</issn>
<publisher>
<publisher-name>International Union of Crystallography</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24109255</article-id>
<article-id pub-id-type="pmc">3793668</article-id>
<article-id pub-id-type="publisher-id">wm2758</article-id>
<article-id pub-id-type="doi">10.1107/S1600536813018898</article-id>
<article-id pub-id-type="coden">ACSEBH</article-id>
<article-id pub-id-type="pii">S1600536813018898</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Inorganic Papers</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Distrontium trimanganese(II) bis­(hydro­gen­phosphate) bis­(ortho­phosphate)</article-title>
<alt-title>
<italic>Sr
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Khmiyas</surname>
<given-names>Jamal</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
<xref ref-type="corresp" rid="cor">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Assani</surname>
<given-names>Abderrazzak</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Saadi</surname>
<given-names>Mohamed</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>El Ammari</surname>
<given-names>Lahcen</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<aff id="a">
<label>a</label>
Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor">Correspondence e-mail:
<email>j_khmiyas@yahoo.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<day>01</day>
<month>8</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>13</day>
<month>7</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>13</day>
<month>7</month>
<year>2013</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>69</volume>
<issue>Pt 8</issue>
<issue-id pub-id-type="publisher-id">e130800</issue-id>
<fpage>i50</fpage>
<lpage>i50</lpage>
<history>
<date date-type="received">
<day>04</day>
<month>7</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>08</day>
<month>7</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>© Khmiyas et al. 2013</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0/uk/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.</license-p>
</license>
</permissions>
<self-uri xlink:type="simple" xlink:href="http://dx.doi.org/10.1107/S1600536813018898">A full version of this article is available from Crystallography Journals Online.</self-uri>
<abstract>
<p>The title compound, Sr
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
, was synthesized under hydro­thermal conditions. In the structure, one of two Mn atoms is located on an inversion centre, whereas all others atoms are located in general positions. The framework structure is built up from two types of MnO
<sub>6</sub>
octa­hedra (one almost undistorted, one considerably distorted), one PO
<sub>3</sub>
OH and one PO
<sub>4</sub>
tetra­hedron. The centrosymmetric MnO
<sub>6</sub>
octa­hedron is linked to two other MnO
<sub>6</sub>
octa­hedra by edge-sharing, forming infinite zigzag chains parallel to [010]. The PO
<sub>3</sub>
OH and PO
<sub>4</sub>
tetra­hedra connect these chains through common vertices or edges, resulting in the formation of sheets parallel to (100). The Sr
<sup>2+</sup>
cation is located in the inter­layer space and is bonded to nine O atoms in form of a distorted polyhedron and enhances the cohesion of the layers. Additional stabilization is achieved by a strong inter­layer O—H⋯O hydrogen bond between the PO
<sub>3</sub>
OH and PO
<sub>4</sub>
units. The structure of the title phosphate is isotypic to that of Pb
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Related literature   </title>
<p>For isotypic Pb
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
, see: Assani
<italic>et al.</italic>
(2012
<italic>b</italic>
<xref ref-type="bibr" rid="bb2"></xref>
). For related structures, see: Assani
<italic>et al.</italic>
(2012
<italic>a</italic>
<xref ref-type="bibr" rid="bb1"></xref>
); Effenberger (1999
<xref ref-type="bibr" rid="bb7"></xref>
). For the thermal stability of similar compounds, see: Morozov
<italic>et al.</italic>
(2003
<xref ref-type="bibr" rid="bb11"></xref>
). For applications of phosphates, see: Cheetham
<italic>et al.</italic>
(1999
<xref ref-type="bibr" rid="bb5"></xref>
); Viter & Nagornyi (2009
<xref ref-type="bibr" rid="bb14"></xref>
); Forster
<italic>et al.</italic>
(2003
<xref ref-type="bibr" rid="bb9"></xref>
); Clearfield (1988
<xref ref-type="bibr" rid="bb6"></xref>
); Joschi
<italic>et al.</italic>
(2008
<xref ref-type="bibr" rid="bb10"></xref>
); Trad
<italic>et al.</italic>
(2010
<xref ref-type="bibr" rid="bb13"></xref>
).</p>
</sec>
<sec id="sec2">
<title>Experimental   </title>
<sec id="sec2.1">
<title></title>
<sec id="sec2.1.1">
<title>Crystal data   </title>
<p>
<list list-type="simple" id="l1">
<list-item>
<p>Sr
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
</p>
</list-item>
<list-item>
<p>
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 721.96</p>
</list-item>
<list-item>
<p>Monoclinic,
<inline-formula>
<inline-graphic xlink:href="e-69-00i50-efi11.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
</p>
</list-item>
<list-item>
<p>
<italic>a</italic>
= 7.8535 (1) Å</p>
</list-item>
<list-item>
<p>
<italic>b</italic>
= 8.7793 (2) Å</p>
</list-item>
<list-item>
<p>
<italic>c</italic>
= 9.6165 (2) Å</p>
</list-item>
<list-item>
<p>β = 101.434 (1)°</p>
</list-item>
<list-item>
<p>
<italic>V</italic>
= 649.88 (2) Å
<sup>3</sup>
</p>
</list-item>
<list-item>
<p>
<italic>Z</italic>
= 2</p>
</list-item>
<list-item>
<p>Mo
<italic>K</italic>
α radiation</p>
</list-item>
<list-item>
<p>μ = 11.58 mm
<sup>−1</sup>
</p>
</list-item>
<list-item>
<p>
<italic>T</italic>
= 296 K</p>
</list-item>
<list-item>
<p>0.33 × 0.24 × 0.12 mm</p>
</list-item>
</list>
</p>
</sec>
<sec id="sec2.1.2">
<title>Data collection   </title>
<p>
<list list-type="simple" id="l2">
<list-item>
<p>Bruker APEXII CCD diffractometer</p>
</list-item>
<list-item>
<p>Absorption correction: multi-scan (
<italic>SADABS</italic>
; Bruker, 2009
<xref ref-type="bibr" rid="bb4"></xref>
)
<italic>T</italic>
<sub>min</sub>
= 0.046,
<italic>T</italic>
<sub>max</sub>
= 0.215</p>
</list-item>
<list-item>
<p>12425 measured reflections</p>
</list-item>
<list-item>
<p>3138 independent reflections</p>
</list-item>
<list-item>
<p>2874 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</p>
</list-item>
<list-item>
<p>
<italic>R</italic>
<sub>int</sub>
= 0.025</p>
</list-item>
</list>
</p>
</sec>
<sec id="sec2.1.3">
<title>Refinement   </title>
<p>
<list list-type="simple" id="l3">
<list-item>
<p>
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.019</p>
</list-item>
<list-item>
<p>
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.045</p>
</list-item>
<list-item>
<p>
<italic>S</italic>
= 1.06</p>
</list-item>
<list-item>
<p>3138 reflections</p>
</list-item>
<list-item>
<p>115 parameters</p>
</list-item>
<list-item>
<p>H-atom parameters constrained</p>
</list-item>
<list-item>
<p>Δρ
<sub>max</sub>
= 0.58 e Å
<sup>−3</sup>
</p>
</list-item>
<list-item>
<p>Δρ
<sub>min</sub>
= −0.54 e Å
<sup>−3</sup>
</p>
</list-item>
</list>
</p>
</sec>
</sec>
<sec id="d5e638">
<title></title>
<p>Data collection:
<italic>APEX2</italic>
(Bruker, 2009
<xref ref-type="bibr" rid="bb4"></xref>
); cell refinement:
<italic>SAINT</italic>
(Bruker, 2009
<xref ref-type="bibr" rid="bb4"></xref>
); data reduction:
<italic>SAINT</italic>
; program(s) used to solve structure:
<italic>SHELXS97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb12"></xref>
); program(s) used to refine structure:
<italic>SHELXL97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb12"></xref>
); molecular graphics:
<italic>ORTEP-3 for Windows</italic>
(Farrugia, 2012
<xref ref-type="bibr" rid="bb8"></xref>
) and
<italic>DIAMOND</italic>
(Brandenburg, 2006
<xref ref-type="bibr" rid="bb3"></xref>
); software used to prepare material for publication:
<italic>publCIF</italic>
(Westrip, 2010
<xref ref-type="bibr" rid="bb15"></xref>
).</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="loca-data">
<p>Crystal structure: contains datablock(s) I, global. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536813018898/wm2758sup1.cif">10.1107/S1600536813018898/wm2758sup1.cif</ext-link>
</p>
<media mimetype="chemical" mime-subtype="x-cif" xlink:href="e-69-00i50-sup1.cif" xlink:type="simple" id="d35e133" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="loca-data">
<p>Structure factors: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536813018898/wm2758Isup2.hkl">10.1107/S1600536813018898/wm2758Isup2.hkl</ext-link>
</p>
<media mimetype="text" mime-subtype="plain" xlink:href="e-69-00i50-Isup2.hkl" xlink:type="simple" id="d35e140" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Additional supplementary materials:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsupfiles?wm2758&file=wm2758sup0.html&mime=text/html"> crystallographic information</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendcif?wm2758sup1&Qmime=cif">3D view</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?wm2758&checkcif=yes">checkCIF report</ext-link>
</p>
</supplementary-material>
</sec>
</body>
<back>
<fn-group>
<fn id="fnu1">
<p>Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsup?wm2758">WM2758</ext-link>
).</p>
</fn>
</fn-group>
<ack>
<p>The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.</p>
</ack>
<app-group>
<app>
<title>supplementary crystallographic information</title>
<sec id="comment">
<title>Comment </title>
<p>Widespread studies were devoted to metal-based phosphates, either with open-framework structures, or in terms of porous materials. Within those materials, the anionic framework, generally constructed from PO
<sub>4</sub>
tetrahedra connected to metal (
<italic>M</italic>
) cations in different coordination environments
<italic>M</italic>
O
<italic>
<sub>n</sub>
</italic>
(with
<italic>n</italic>
= 4, 5 and 6), can generate pores and channels offering a suitable environment to accommodate various other cations. Besides their high chemical activity and their thermal stability (Morozov
<italic>et al.</italic>
, 2003), such metal-based phosphates have some interesting properties leading to applications such as in catalysis (Cheetham
<italic>et al.</italic>
, 1999; Viter & Nagornyi, 2009), ion-exchangers (Clearfield, 1988; Joschi
<italic>et al.</italic>
, 2008), gas sorption (Forster
<italic>et al.</italic>
, 2003), or batteries (Trad
<italic>et al.</italic>
, 2010).</p>
<p>Our interest is particularly focused on hydrothermally synthesized orthophosphates within the ternary systems
<italic>M</italic>
O–
<italic>M</italic>
'O–P
<sub>2</sub>
O
<sub>5</sub>
with
<italic>M</italic>
and
<italic>M</italic>
' = divalent cations. We have recently characterized some new lead cobalt or manganese phosphates,
<italic>viz</italic>
. Co
<sub>2</sub>
Pb(HPO
<sub>4</sub>
)(PO
<sub>4</sub>
)OH
<sup>.</sup>
H
<sub>2</sub>
O (Assani
<italic>et al.</italic>
, 2012
<italic>a</italic>
) and Pb
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
(Assani
<italic>et al.</italic>
, 2012
<italic>b</italic>
). In line with the focus of our research, the present paper describes the hydrothermal synthesis and the structural characterization of a new strontium manganese phosphate, Sr
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
, that is isotypic with its lead analogue, Pb
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
. These two phosphates are characterized by an Mn:P ratio = 3:4, which is rarely observed, with the exception of some copper-based orthophosphates, Pb
<sub>3</sub>
Cu
<sub>3</sub>
(PO
<sub>4</sub>
)
<sub>4</sub>
and Sr
<sub>3</sub>
Cu
<sub>3</sub>
(PO
<sub>4</sub>
)
<sub>4</sub>
(Effenberger, 1999), also with Cu:P = 3:4.</p>
<p>In the structure of the title compound, one of the two manganese sites (Mn1) is located on a centre of inversion, while all remaining atoms are in general positions. A part of the structure, as given in Fig. 1, shows the different types of polyhedra around the metal positions and the P atoms. The centrosymmetric Mn1O
<sub>6</sub>
octahedron is linked to two distorted Mn2O
<sub>6</sub>
octahedra by a common edge, thus forming infinite zigzag chains with composition [Mn
<sub>3</sub>
O
<sub>14</sub>
]
<sub></sub>
running parallel to [010] (Fig. 2). Adjacent chains are linked to each other through PO
<sub>4</sub>
and PO
<sub>3</sub>
OH tetrahedra,
<italic>via</italic>
common corners or edges, leading to the formation of layers parallel to (100). The cohesion of the crystal structure is ensured on one hand by the presence of the Sr
<sup>2+</sup>
cations in the interlayer space and on the other hand by strong O—H···O hydrogen bonds between sheets (Fig. 2 and Table 2).</p>
<p>In the structure of the title compound, the Sr
<sup>2+</sup>
cation is surrounded by nine O atoms instead of eight as in the case of Pb
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
. All other bond lengths and angles are similar in the two structures, with the exception of the Mn2—O bond lengths. In the title structure, four medium-long bonds in the range 2.1189 (10) to 2.1875 (9) Å and two longer bonds of 2.4079 (12) and 2.4609 (11) Å are observed, whereas in the lead analogue five medium-long bonds in the range 2.094 (4) to 2.235 (4) Å and one considerably long bond of 2.610 (4) Å is observed.</p>
</sec>
<sec id="experimental">
<title>Experimental </title>
<p>Transparent crystals of Sr
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
were isolated from hydrothermal treatment of the reaction mixture of strontium, manganese, sodium and phosphate precursors in a proportion corresponding to the molar ratio Sr: Mn: Na: P: = 4: 4.5: 1: 6. The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave filled to 50% with distilled water and under autogenously pressure at 473 K for five days. After being filtered off, washed with deionized water and air-dried, the reaction product consisted of colourless crystals with a platy form.</p>
</sec>
<sec id="refinement">
<title>Refinement </title>
<p>The O-bound H atom was initially located in a difference map and refined with O—H distance restraint of 0.82 (1) Å. In the last cycle it was refined in the riding model approximation with
<italic>U</italic>
<sub>iso</sub>
(H) set to 1.5Ueq(O). The highest peak and the deepest hole in the final Fourier map are at 0.64 Å and 0.55 Å, from Mn2.</p>
</sec>
<sec id="figures">
<title>Figures</title>
<fig id="Fap1">
<label>Fig. 1.</label>
<caption>
<p>: A partial plot of the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x + 1, y - 1/2, -z + 1/2; (ii) -x + 1, -y + 1, -z + 1; (iii) x, -y + 3/2, z - 1/2; (iv) -x + 2, -y + 1, -z + 1; (v) x + 1, -y + 3/2, z + 1/2; (vi) x + 1, y, z; (vii) -x + 1, y + 1/2, -z + 1/2; (viii) x, -y + 3/2, z + 1/2.</p>
</caption>
<graphic xlink:href="e-69-00i50-fig1"></graphic>
</fig>
<fig id="Fap2">
<label>Fig. 2.</label>
<caption>
<p>: Polyhedral representation of Sr2Mn3(HPO4)2(PO4)2, showing Sr2+ cations between layers and O—H···O hydrogen bonds (dashed lines) between the sheets.</p>
</caption>
<graphic xlink:href="e-69-00i50-fig2"></graphic>
</fig>
</sec>
<sec id="tablewrapcrystaldatalong">
<title>Crystal data</title>
<table-wrap position="anchor" id="d1e442">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Sr
<sub>2</sub>
Mn
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
(000) = 682</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 721.96</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
<sub>x</sub>
= 3.689 Mg m
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Monoclinic,
<italic>P</italic>
2
<sub>1</sub>
/
<italic>c</italic>
</td>
<td rowspan="1" colspan="1">Mo
<italic>K</italic>
α radiation, λ = 0.71073 Å</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hall symbol: -P 2ybc</td>
<td rowspan="1" colspan="1">Cell parameters from 3138 reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>a</italic>
= 7.8535 (1) Å</td>
<td rowspan="1" colspan="1">θ = 2.7–36.3°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>b</italic>
= 8.7793 (2) Å</td>
<td rowspan="1" colspan="1">µ = 11.58 mm
<sup></sup>
<sup>1</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>c</italic>
= 9.6165 (2) Å</td>
<td rowspan="1" colspan="1">
<italic>T</italic>
= 296 K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">β = 101.434 (1)°</td>
<td rowspan="1" colspan="1">Sheet, colourless</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>V</italic>
= 649.88 (2) Å
<sup>3</sup>
</td>
<td rowspan="1" colspan="1">0.33 × 0.24 × 0.12 mm</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>Z</italic>
= 2</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapdatacollectionlong">
<title>Data collection</title>
<table-wrap position="anchor" id="d1e579">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Bruker APEXII CCD diffractometer</td>
<td rowspan="1" colspan="1">3138 independent reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Radiation source: fine-focus sealed tube</td>
<td rowspan="1" colspan="1">2874 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Graphite monochromator</td>
<td rowspan="1" colspan="1">
<italic>R</italic>
<sub>int</sub>
= 0.025</td>
</tr>
<tr>
<td rowspan="1" colspan="1">φ and ω scans</td>
<td rowspan="1" colspan="1">θ
<sub>max</sub>
= 36.3°, θ
<sub>min</sub>
= 2.7°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Absorption correction: multi-scan (
<italic>SADABS</italic>
; Bruker (2009)</td>
<td rowspan="1" colspan="1">
<italic>h</italic>
= −13→12</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>T</italic>
<sub>min</sub>
= 0.046,
<italic>T</italic>
<sub>max</sub>
= 0.215</td>
<td rowspan="1" colspan="1">
<italic>k</italic>
= −14→14</td>
</tr>
<tr>
<td rowspan="1" colspan="1">12425 measured reflections</td>
<td rowspan="1" colspan="1">
<italic>l</italic>
= −16→16</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewraprefinementdatalong">
<title>Refinement</title>
<table-wrap position="anchor" id="d1e696">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Refinement on
<italic>F</italic>
<sup>2</sup>
</td>
<td rowspan="1" colspan="1">Primary atom site location: structure-invariant direct methods</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Least-squares matrix: full</td>
<td rowspan="1" colspan="1">Secondary atom site location: difference Fourier map</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.019</td>
<td rowspan="1" colspan="1">Hydrogen site location: difference Fourier map</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.045</td>
<td rowspan="1" colspan="1">H-atom parameters constrained</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>S</italic>
= 1.06</td>
<td rowspan="1" colspan="1">
<italic>w</italic>
= 1/[σ
<sup>2</sup>
(
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
) + (0.0211
<italic>P</italic>
)
<sup>2</sup>
+ 0.239
<italic>P</italic>
] where
<italic>P</italic>
= (
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
+ 2
<italic>F</italic>
<sub>c</sub>
<sup>2</sup>
)/3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">3138 reflections</td>
<td rowspan="1" colspan="1">(Δ/σ)
<sub>max</sub>
= 0.002</td>
</tr>
<tr>
<td rowspan="1" colspan="1">115 parameters</td>
<td rowspan="1" colspan="1">Δρ
<sub>max</sub>
= 0.58 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">0 restraints</td>
<td rowspan="1" colspan="1">Δρ
<sub>min</sub>
= −0.54 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="specialdetails">
<title>Special details</title>
<table-wrap position="anchor" id="d1e854">
<table rules="all" frame="box" style="table-layout:fixed">
<tr>
<td rowspan="1" colspan="1">Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Refinement. Refinement of
<italic>F</italic>
<sup>2</sup>
against all reflections. The weighted
<italic>R</italic>
-factor
<italic>wR</italic>
and goodness of fit
<italic>S</italic>
are based on
<italic>F</italic>
<sup>2</sup>
, conventional
<italic>R</italic>
-factors
<italic>R</italic>
are based on
<italic>F</italic>
, with
<italic>F</italic>
set to zero for negative
<italic>F</italic>
<sup>2</sup>
. The threshold expression of
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
) is used only for calculating
<italic>R</italic>
-factors(gt)
<italic>etc</italic>
. and is not relevant to the choice of reflections for refinement.
<italic>R</italic>
-factors based on
<italic>F</italic>
<sup>2</sup>
are statistically about twice as large as those based on
<italic>F</italic>
, and
<italic>R</italic>
- factors based on all data will be even larger.</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapcoords">
<title>Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e953">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>x</italic>
</td>
<td rowspan="1" colspan="1">
<italic>y</italic>
</td>
<td rowspan="1" colspan="1">
<italic>z</italic>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sub>iso</sub>
*/
<italic>U</italic>
<sub>eq</sub>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1</td>
<td rowspan="1" colspan="1">0.573794 (17)</td>
<td rowspan="1" colspan="1">0.478038 (15)</td>
<td rowspan="1" colspan="1">0.234323 (14)</td>
<td rowspan="1" colspan="1">0.00999 (3)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mn1</td>
<td rowspan="1" colspan="1">1.0000</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.00677 (5)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mn2</td>
<td rowspan="1" colspan="1">0.89650 (3)</td>
<td rowspan="1" colspan="1">0.85638 (2)</td>
<td rowspan="1" colspan="1">0.40357 (2)</td>
<td rowspan="1" colspan="1">0.00891 (4)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">P1</td>
<td rowspan="1" colspan="1">0.14462 (4)</td>
<td rowspan="1" colspan="1">0.70256 (4)</td>
<td rowspan="1" colspan="1">0.22974 (3)</td>
<td rowspan="1" colspan="1">0.00542 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">P2</td>
<td rowspan="1" colspan="1">0.65079 (4)</td>
<td rowspan="1" colspan="1">0.71451 (4)</td>
<td rowspan="1" colspan="1">0.56233 (3)</td>
<td rowspan="1" colspan="1">0.00649 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.06059 (13)</td>
<td rowspan="1" colspan="1">0.67784 (12)</td>
<td rowspan="1" colspan="1">0.35944 (10)</td>
<td rowspan="1" colspan="1">0.00966 (17)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.06622 (13)</td>
<td rowspan="1" colspan="1">0.59473 (11)</td>
<td rowspan="1" colspan="1">0.10796 (10)</td>
<td rowspan="1" colspan="1">0.01019 (17)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.11920 (13)</td>
<td rowspan="1" colspan="1">0.86980 (11)</td>
<td rowspan="1" colspan="1">0.18530 (11)</td>
<td rowspan="1" colspan="1">0.01016 (17)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.34252 (13)</td>
<td rowspan="1" colspan="1">0.67330 (12)</td>
<td rowspan="1" colspan="1">0.27411 (10)</td>
<td rowspan="1" colspan="1">0.01050 (17)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.70244 (14)</td>
<td rowspan="1" colspan="1">0.69325 (14)</td>
<td rowspan="1" colspan="1">0.72158 (10)</td>
<td rowspan="1" colspan="1">0.0141 (2)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.75819 (13)</td>
<td rowspan="1" colspan="1">0.62546 (12)</td>
<td rowspan="1" colspan="1">0.47491 (11)</td>
<td rowspan="1" colspan="1">0.01179 (18)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7</td>
<td rowspan="1" colspan="1">0.65059 (15)</td>
<td rowspan="1" colspan="1">0.88211 (12)</td>
<td rowspan="1" colspan="1">0.51673 (11)</td>
<td rowspan="1" colspan="1">0.01383 (19)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8</td>
<td rowspan="1" colspan="1">0.45824 (13)</td>
<td rowspan="1" colspan="1">0.65486 (13)</td>
<td rowspan="1" colspan="1">0.53325 (11)</td>
<td rowspan="1" colspan="1">0.01209 (19)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">H8</td>
<td rowspan="1" colspan="1">0.4169</td>
<td rowspan="1" colspan="1">0.6607</td>
<td rowspan="1" colspan="1">0.4482</td>
<td rowspan="1" colspan="1">0.018*</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapadps">
<title>Atomic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e1159">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>11</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>22</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>33</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>12</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>13</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>23</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1</td>
<td rowspan="1" colspan="1">0.00960 (6)</td>
<td rowspan="1" colspan="1">0.01026 (6)</td>
<td rowspan="1" colspan="1">0.01085 (5)</td>
<td rowspan="1" colspan="1">0.00204 (4)</td>
<td rowspan="1" colspan="1">0.00384 (4)</td>
<td rowspan="1" colspan="1">0.00216 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mn1</td>
<td rowspan="1" colspan="1">0.00742 (11)</td>
<td rowspan="1" colspan="1">0.00597 (11)</td>
<td rowspan="1" colspan="1">0.00692 (11)</td>
<td rowspan="1" colspan="1">0.00076 (8)</td>
<td rowspan="1" colspan="1">0.00144 (8)</td>
<td rowspan="1" colspan="1">−0.00002 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mn2</td>
<td rowspan="1" colspan="1">0.00962 (9)</td>
<td rowspan="1" colspan="1">0.00758 (9)</td>
<td rowspan="1" colspan="1">0.00837 (8)</td>
<td rowspan="1" colspan="1">0.00006 (6)</td>
<td rowspan="1" colspan="1">−0.00103 (6)</td>
<td rowspan="1" colspan="1">−0.00030 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">P1</td>
<td rowspan="1" colspan="1">0.00572 (12)</td>
<td rowspan="1" colspan="1">0.00557 (12)</td>
<td rowspan="1" colspan="1">0.00475 (12)</td>
<td rowspan="1" colspan="1">−0.00013 (10)</td>
<td rowspan="1" colspan="1">0.00052 (9)</td>
<td rowspan="1" colspan="1">0.00000 (9)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">P2</td>
<td rowspan="1" colspan="1">0.00632 (13)</td>
<td rowspan="1" colspan="1">0.00796 (13)</td>
<td rowspan="1" colspan="1">0.00540 (12)</td>
<td rowspan="1" colspan="1">0.00034 (10)</td>
<td rowspan="1" colspan="1">0.00167 (10)</td>
<td rowspan="1" colspan="1">−0.00007 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.0108 (4)</td>
<td rowspan="1" colspan="1">0.0108 (4)</td>
<td rowspan="1" colspan="1">0.0085 (4)</td>
<td rowspan="1" colspan="1">0.0003 (3)</td>
<td rowspan="1" colspan="1">0.0047 (3)</td>
<td rowspan="1" colspan="1">0.0012 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.0137 (4)</td>
<td rowspan="1" colspan="1">0.0079 (4)</td>
<td rowspan="1" colspan="1">0.0073 (4)</td>
<td rowspan="1" colspan="1">−0.0001 (3)</td>
<td rowspan="1" colspan="1">−0.0019 (3)</td>
<td rowspan="1" colspan="1">−0.0020 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.0126 (4)</td>
<td rowspan="1" colspan="1">0.0057 (4)</td>
<td rowspan="1" colspan="1">0.0109 (4)</td>
<td rowspan="1" colspan="1">0.0000 (3)</td>
<td rowspan="1" colspan="1">−0.0007 (3)</td>
<td rowspan="1" colspan="1">0.0021 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.0064 (4)</td>
<td rowspan="1" colspan="1">0.0154 (5)</td>
<td rowspan="1" colspan="1">0.0093 (4)</td>
<td rowspan="1" colspan="1">0.0019 (3)</td>
<td rowspan="1" colspan="1">0.0007 (3)</td>
<td rowspan="1" colspan="1">0.0004 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.0105 (4)</td>
<td rowspan="1" colspan="1">0.0256 (6)</td>
<td rowspan="1" colspan="1">0.0055 (4)</td>
<td rowspan="1" colspan="1">−0.0009 (4)</td>
<td rowspan="1" colspan="1">0.0002 (3)</td>
<td rowspan="1" colspan="1">0.0008 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.0109 (4)</td>
<td rowspan="1" colspan="1">0.0151 (5)</td>
<td rowspan="1" colspan="1">0.0104 (4)</td>
<td rowspan="1" colspan="1">0.0054 (4)</td>
<td rowspan="1" colspan="1">0.0047 (3)</td>
<td rowspan="1" colspan="1">−0.0002 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7</td>
<td rowspan="1" colspan="1">0.0202 (5)</td>
<td rowspan="1" colspan="1">0.0076 (4)</td>
<td rowspan="1" colspan="1">0.0148 (4)</td>
<td rowspan="1" colspan="1">−0.0001 (4)</td>
<td rowspan="1" colspan="1">0.0061 (4)</td>
<td rowspan="1" colspan="1">0.0003 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8</td>
<td rowspan="1" colspan="1">0.0074 (4)</td>
<td rowspan="1" colspan="1">0.0203 (5)</td>
<td rowspan="1" colspan="1">0.0083 (4)</td>
<td rowspan="1" colspan="1">−0.0033 (4)</td>
<td rowspan="1" colspan="1">0.0008 (3)</td>
<td rowspan="1" colspan="1">0.0009 (3)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapgeomlong">
<title>Geometric parameters (Å, º)</title>
<table-wrap position="anchor" id="d1e1425">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="4">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Sr1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.5641 (10)</td>
<td rowspan="1" colspan="1">Mn2—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">2.1248 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O4</td>
<td rowspan="1" colspan="1">2.5806 (10)</td>
<td rowspan="1" colspan="1">Mn2—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.1256 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O8
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.5775 (11)</td>
<td rowspan="1" colspan="1">Mn2—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.1875 (9)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.5981 (11)</td>
<td rowspan="1" colspan="1">Mn2—O7</td>
<td rowspan="1" colspan="1">2.4079 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O5
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.7409 (11)</td>
<td rowspan="1" colspan="1">Mn2—O6</td>
<td rowspan="1" colspan="1">2.4609 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O4
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.7599 (11)</td>
<td rowspan="1" colspan="1">P1—O3</td>
<td rowspan="1" colspan="1">1.5312 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O6</td>
<td rowspan="1" colspan="1">2.7923 (10)</td>
<td rowspan="1" colspan="1">P1—O2</td>
<td rowspan="1" colspan="1">1.5365 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O7
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.8207 (11)</td>
<td rowspan="1" colspan="1">P1—O1</td>
<td rowspan="1" colspan="1">1.5377 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">3.0680 (12)</td>
<td rowspan="1" colspan="1">P1—O4</td>
<td rowspan="1" colspan="1">1.5494 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mn1—O6</td>
<td rowspan="1" colspan="1">2.1670 (10)</td>
<td rowspan="1" colspan="1">P2—O5</td>
<td rowspan="1" colspan="1">1.5160 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mn1—O6
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.1670 (10)</td>
<td rowspan="1" colspan="1">P2—O6</td>
<td rowspan="1" colspan="1">1.5201 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mn1—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.1672 (9)</td>
<td rowspan="1" colspan="1">P2—O7</td>
<td rowspan="1" colspan="1">1.5352 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mn1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.1672 (9)</td>
<td rowspan="1" colspan="1">P2—O8</td>
<td rowspan="1" colspan="1">1.5721 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mn1—O1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.1786 (10)</td>
<td rowspan="1" colspan="1">P2—Sr1
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">3.2838 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mn1—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">2.1786 (10)</td>
<td rowspan="1" colspan="1">O8—H8</td>
<td rowspan="1" colspan="1">0.8200</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mn2—O2
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">2.1189 (10)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Sr1—O4</td>
<td rowspan="1" colspan="1">148.09 (3)</td>
<td rowspan="1" colspan="1">O6
<sup>iv</sup>
—Mn1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">92.85 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Sr1—O8
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">79.54 (3)</td>
<td rowspan="1" colspan="1">O3
<sup>v</sup>
—Mn1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">180.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Sr1—O8
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">88.83 (3)</td>
<td rowspan="1" colspan="1">O6—Mn1—O1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">97.99 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Sr1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">93.63 (3)</td>
<td rowspan="1" colspan="1">O6
<sup>iv</sup>
—Mn1—O1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">82.01 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Sr1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">95.05 (3)</td>
<td rowspan="1" colspan="1">O3
<sup>v</sup>
—Mn1—O1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">88.84 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8
<sup>ii</sup>
—Sr1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">172.09 (3)</td>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Mn1—O1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">91.16 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Sr1—O5
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">118.41 (3)</td>
<td rowspan="1" colspan="1">O6—Mn1—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">82.01 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Sr1—O5
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">74.91 (4)</td>
<td rowspan="1" colspan="1">O6
<sup>iv</sup>
—Mn1—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">97.99 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8
<sup>ii</sup>
—Sr1—O5
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">53.21 (3)</td>
<td rowspan="1" colspan="1">O3
<sup>v</sup>
—Mn1—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">91.16 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>iii</sup>
—Sr1—O5
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">134.52 (3)</td>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Mn1—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">88.84 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Sr1—O4
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">55.56 (3)</td>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Mn1—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">180.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Sr1—O4
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">145.79 (2)</td>
<td rowspan="1" colspan="1">O2
<sup>vii</sup>
—Mn2—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">128.50 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8
<sup>ii</sup>
—Sr1—O4
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">69.60 (3)</td>
<td rowspan="1" colspan="1">O2
<sup>vii</sup>
—Mn2—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">104.08 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>iii</sup>
—Sr1—O4
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">109.86 (3)</td>
<td rowspan="1" colspan="1">O1
<sup>vi</sup>
—Mn2—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">92.78 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5
<sup>ii</sup>
—Sr1—O4
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">70.92 (3)</td>
<td rowspan="1" colspan="1">O2
<sup>vii</sup>
—Mn2—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">77.72 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Sr1—O6</td>
<td rowspan="1" colspan="1">67.65 (3)</td>
<td rowspan="1" colspan="1">O1
<sup>vi</sup>
—Mn2—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">92.21 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Sr1—O6</td>
<td rowspan="1" colspan="1">80.44 (3)</td>
<td rowspan="1" colspan="1">O5
<sup>iii</sup>
—Mn2—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">171.78 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8
<sup>ii</sup>
—Sr1—O6</td>
<td rowspan="1" colspan="1">67.36 (3)</td>
<td rowspan="1" colspan="1">O2
<sup>vii</sup>
—Mn2—O7</td>
<td rowspan="1" colspan="1">93.58 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>iii</sup>
—Sr1—O6</td>
<td rowspan="1" colspan="1">106.45 (3)</td>
<td rowspan="1" colspan="1">O1
<sup>vi</sup>
—Mn2—O7</td>
<td rowspan="1" colspan="1">137.06 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5
<sup>ii</sup>
—Sr1—O6</td>
<td rowspan="1" colspan="1">114.99 (3)</td>
<td rowspan="1" colspan="1">O5
<sup>iii</sup>
—Mn2—O7</td>
<td rowspan="1" colspan="1">83.28 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>i</sup>
—Sr1—O6</td>
<td rowspan="1" colspan="1">112.72 (3)</td>
<td rowspan="1" colspan="1">O2
<sup>v</sup>
—Mn2—O7</td>
<td rowspan="1" colspan="1">88.62 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Sr1—O7
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">122.54 (3)</td>
<td rowspan="1" colspan="1">O2
<sup>vii</sup>
—Mn2—O6</td>
<td rowspan="1" colspan="1">154.34 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Sr1—O7
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">89.23 (3)</td>
<td rowspan="1" colspan="1">O1
<sup>vi</sup>
—Mn2—O6</td>
<td rowspan="1" colspan="1">76.51 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8
<sup>ii</sup>
—Sr1—O7
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">117.08 (3)</td>
<td rowspan="1" colspan="1">O5
<sup>iii</sup>
—Mn2—O6</td>
<td rowspan="1" colspan="1">77.09 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>iii</sup>
—Sr1—O7
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">69.95 (4)</td>
<td rowspan="1" colspan="1">O2
<sup>v</sup>
—Mn2—O6</td>
<td rowspan="1" colspan="1">97.77 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5
<sup>ii</sup>
—Sr1—O7
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">65.75 (3)</td>
<td rowspan="1" colspan="1">O7—Mn2—O6</td>
<td rowspan="1" colspan="1">60.88 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>i</sup>
—Sr1—O7
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">78.31 (3)</td>
<td rowspan="1" colspan="1">O3—P1—O2</td>
<td rowspan="1" colspan="1">111.57 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Sr1—O7
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">168.81 (3)</td>
<td rowspan="1" colspan="1">O3—P1—O1</td>
<td rowspan="1" colspan="1">107.97 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>i</sup>
—Sr1—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">93.62 (3)</td>
<td rowspan="1" colspan="1">O2—P1—O1</td>
<td rowspan="1" colspan="1">111.08 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Sr1—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">68.17 (3)</td>
<td rowspan="1" colspan="1">O3—P1—O4</td>
<td rowspan="1" colspan="1">107.70 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8
<sup>ii</sup>
—Sr1—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">123.36 (3)</td>
<td rowspan="1" colspan="1">O2—P1—O4</td>
<td rowspan="1" colspan="1">109.65 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>iii</sup>
—Sr1—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">52.59 (3)</td>
<td rowspan="1" colspan="1">O1—P1—O4</td>
<td rowspan="1" colspan="1">108.76 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5
<sup>ii</sup>
—Sr1—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">143.06 (3)</td>
<td rowspan="1" colspan="1">O5—P2—O6</td>
<td rowspan="1" colspan="1">115.38 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>i</sup>
—Sr1—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">145.93 (3)</td>
<td rowspan="1" colspan="1">O5—P2—O7</td>
<td rowspan="1" colspan="1">113.04 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Sr1—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">58.42 (3)</td>
<td rowspan="1" colspan="1">O6—P2—O7</td>
<td rowspan="1" colspan="1">107.71 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>i</sup>
—Sr1—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">113.67 (3)</td>
<td rowspan="1" colspan="1">O5—P2—O8</td>
<td rowspan="1" colspan="1">101.19 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Mn1—O6
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">180.0</td>
<td rowspan="1" colspan="1">O6—P2—O8</td>
<td rowspan="1" colspan="1">110.48 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Mn1—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">92.85 (4)</td>
<td rowspan="1" colspan="1">O7—P2—O8</td>
<td rowspan="1" colspan="1">108.78 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>iv</sup>
—Mn1—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">87.15 (4)</td>
<td rowspan="1" colspan="1">O5—P2—Mn2</td>
<td rowspan="1" colspan="1">120.08 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Mn1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">87.15 (4)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
<p>Symmetry codes: (i) −
<italic>x</italic>
+1,
<italic>y</italic>
−1/2, −
<italic>z</italic>
+1/2; (ii) −
<italic>x</italic>
+1, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (iii)
<italic>x</italic>
, −
<italic>y</italic>
+3/2,
<italic>z</italic>
−1/2; (iv) −
<italic>x</italic>
+2, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (v)
<italic>x</italic>
+1, −
<italic>y</italic>
+3/2,
<italic>z</italic>
+1/2; (vi)
<italic>x</italic>
+1,
<italic>y</italic>
,
<italic>z</italic>
; (vii) −
<italic>x</italic>
+1,
<italic>y</italic>
+1/2, −
<italic>z</italic>
+1/2; (viii)
<italic>x</italic>
, −
<italic>y</italic>
+3/2,
<italic>z</italic>
+1/2.</p>
</sec>
<sec id="tablewraphbondslong">
<title>Hydrogen-bond geometry (Å, º)</title>
<table-wrap position="anchor" id="d1e2349">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="5">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">
<italic>D</italic>
—H···
<italic>A</italic>
</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
—H</td>
<td rowspan="1" colspan="1">H···
<italic>A</italic>
</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
···
<italic>A</italic>
</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
—H···
<italic>A</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8—H8···O4</td>
<td rowspan="1" colspan="1">0.82</td>
<td rowspan="1" colspan="1">1.66</td>
<td rowspan="1" colspan="1">2.4828 (14)</td>
<td rowspan="1" colspan="1">177</td>
</tr>
</table>
</table-wrap>
</sec>
</app>
</app-group>
<ref-list>
<title>References</title>
<ref id="bb1">
<mixed-citation publication-type="other">Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2012
<italic>a</italic>
).
<italic>Acta Cryst.</italic>
E
<bold>68</bold>
, i30.</mixed-citation>
</ref>
<ref id="bb2">
<mixed-citation publication-type="other">Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2012
<italic>b</italic>
).
<italic>Acta Cryst.</italic>
E
<bold>68</bold>
, i66.</mixed-citation>
</ref>
<ref id="bb3">
<mixed-citation publication-type="other">Brandenburg, K. (2006).
<italic>DIAMOND</italic>
Crystal Impact GbR, Bonn, Germany.</mixed-citation>
</ref>
<ref id="bb4">
<mixed-citation publication-type="other">Bruker (2009).
<italic>APEX2</italic>
,
<italic>SAINT</italic>
and
<italic>SADABS</italic>
Bruker AXS Inc., Madison, Wisconsin, USA.</mixed-citation>
</ref>
<ref id="bb5">
<mixed-citation publication-type="other">Cheetham, A. K., Férey, G. & Loiseau, T. (1999).
<italic>Angew. Chem. Int. Ed.</italic>
<bold>38</bold>
, 3268–3292.</mixed-citation>
</ref>
<ref id="bb6">
<mixed-citation publication-type="other">Clearfield, A. (1988).
<italic>Chem. Rev.</italic>
<bold>88</bold>
, 125–148.</mixed-citation>
</ref>
<ref id="bb7">
<mixed-citation publication-type="other">Effenberger, H. (1999).
<italic>J. Solid State Chem.</italic>
<bold>142</bold>
, 6–13.</mixed-citation>
</ref>
<ref id="bb8">
<mixed-citation publication-type="other">Farrugia, L. J. (2012).
<italic>J. Appl. Cryst.</italic>
<bold>45</bold>
, 849–854.</mixed-citation>
</ref>
<ref id="bb9">
<mixed-citation publication-type="other">Forster, P. M., Eckert, J., Chang, J.-S., Park, J.-S., Férey, G. & Cheatham, A. K. (2003).
<italic>J. Am. Chem. Soc.</italic>
<bold>125</bold>
, 1309–1312.</mixed-citation>
</ref>
<ref id="bb10">
<mixed-citation publication-type="other">Joschi, R., Patel, H. & Chudasama, U. (2008).
<italic>Indian J. Chem. Technol.</italic>
<bold>15</bold>
, 238–243.</mixed-citation>
</ref>
<ref id="bb11">
<mixed-citation publication-type="other">Morozov, V. A., Pokholok, K. V., Lazoryak, B. I., Malakho, A. P., Lachgar, A., Lebedev, O. I. & Van Tendeloo, G. (2003).
<italic>J. Solid State Chem.</italic>
<bold>170</bold>
, 411–417.</mixed-citation>
</ref>
<ref id="bb12">
<mixed-citation publication-type="other">Sheldrick, G. M. (2008).
<italic>Acta Cryst.</italic>
A
<bold>64</bold>
, 112–122.</mixed-citation>
</ref>
<ref id="bb13">
<mixed-citation publication-type="other">Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010).
<italic>Chem. Mater.</italic>
<bold>22</bold>
, 5554–5562.</mixed-citation>
</ref>
<ref id="bb14">
<mixed-citation publication-type="other">Viter, V. N. & Nagornyi, P. G. (2009).
<italic>Russ. J. Appl. Chem.</italic>
<bold>82</bold>
, 935–939.</mixed-citation>
</ref>
<ref id="bb15">
<mixed-citation publication-type="other">Westrip, S. P. (2010).
<italic>J. Appl. Cryst.</italic>
<bold>43</bold>
, 920–925.</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<table-wrap id="table1" position="float">
<label>Table 1</label>
<caption>
<title>Hydrogen-bond geometry (Å, °)</title>
</caption>
<table frame="hsides" rules="groups">
<thead valign="bottom">
<tr>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">
<italic>D</italic>
—H⋯
<italic>A</italic>
</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">
<italic>D</italic>
—H</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">H⋯
<italic>A</italic>
</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">
<italic>D</italic>
<italic>A</italic>
</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">
<italic>D</italic>
—H⋯
<italic>A</italic>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">O8—H8⋯O4</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">0.82</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">1.66</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">2.4828 (14)</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">177</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000371 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000371 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3793668
   |texte=   Distrontium trimanganese(II) bis­(hydro­gen­phosphate) bis­(ortho­phosphate)
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24109255" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024