Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

LiCo2As3O10: une nouvelle structure à tunnels inter­connectés

Identifieur interne : 000365 ( Pmc/Corpus ); précédent : 000364; suivant : 000366

LiCo2As3O10: une nouvelle structure à tunnels inter­connectés

Auteurs : Youssef Ben Smida ; Abderrahmen Guesmi ; Ahmed Driss

Source :

RBID : PMC:3684868

Abstract

The title compound, lithium dicobalt(II) triarsenate, LiCo2As3O10, was synthesized by a solid-state reaction. The As atoms and four out of seven O atoms lie on special positions, all with site symmetry m. The Li atoms are disordered over two independent special (site symmetry -1) and general positions with occupancies of 0.54 (7) and 0.23 (4), respectively. The structure model is supported by bond-valence-sum (BVS) and charge-distribution (CHARDI) methods. The structure can be described as a three-dimensional framework constructed from bi-octahedral Co2O10 dimers edge-connected to As3O10 groups. It delimits two sets of tunnels, running parallel to the a and b axes, the latter being the larger. The Li+ ions are located within the inter­sections of the tunnels. The possible motion of the alkali cations has been investigated by means of the BVS model. This simulation shows that the Li+ motion appears to be easier mainly along the b-axis direction and that this material may possess inter­esting conduction properties.


Url:
DOI: 10.1107/S1600536813013548
PubMed: 23794970
PubMed Central: 3684868

Links to Exploration step

PMC:3684868

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">LiCo
<sub>2</sub>
As
<sub>3</sub>
O
<sub>10</sub>
: une nouvelle structure à tunnels inter­connectés</title>
<author>
<name sortKey="Ben Smida, Youssef" sort="Ben Smida, Youssef" uniqKey="Ben Smida Y" first="Youssef" last="Ben Smida">Youssef Ben Smida</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar II, 2092 Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guesmi, Abderrahmen" sort="Guesmi, Abderrahmen" uniqKey="Guesmi A" first="Abderrahmen" last="Guesmi">Abderrahmen Guesmi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar II, 2092 Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="b">Institut Préparatoire aux Etudes d’Ingénieurs d’El Manar, BP 244 El Manar II, 2092 Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Driss, Ahmed" sort="Driss, Ahmed" uniqKey="Driss A" first="Ahmed" last="Driss">Ahmed Driss</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar II, 2092 Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23794970</idno>
<idno type="pmc">3684868</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684868</idno>
<idno type="RBID">PMC:3684868</idno>
<idno type="doi">10.1107/S1600536813013548</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000365</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000365</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">LiCo
<sub>2</sub>
As
<sub>3</sub>
O
<sub>10</sub>
: une nouvelle structure à tunnels inter­connectés</title>
<author>
<name sortKey="Ben Smida, Youssef" sort="Ben Smida, Youssef" uniqKey="Ben Smida Y" first="Youssef" last="Ben Smida">Youssef Ben Smida</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar II, 2092 Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guesmi, Abderrahmen" sort="Guesmi, Abderrahmen" uniqKey="Guesmi A" first="Abderrahmen" last="Guesmi">Abderrahmen Guesmi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar II, 2092 Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="b">Institut Préparatoire aux Etudes d’Ingénieurs d’El Manar, BP 244 El Manar II, 2092 Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Driss, Ahmed" sort="Driss, Ahmed" uniqKey="Driss A" first="Ahmed" last="Driss">Ahmed Driss</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar II, 2092 Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta Crystallographica Section E: Structure Reports Online</title>
<idno type="eISSN">1600-5368</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The title compound, lithium dicobalt(II) triarsenate, LiCo
<sub>2</sub>
As
<sub>3</sub>
O
<sub>10</sub>
, was synthesized by a solid-state reaction. The As atoms and four out of seven O atoms lie on special positions, all with site symmetry
<italic>m</italic>
. The Li atoms are disordered over two independent special (site symmetry -1) and general positions with occupancies of 0.54 (7) and 0.23 (4), respectively. The structure model is supported by bond-valence-sum (BVS) and charge-distribution (CHARDI) methods. The structure can be described as a three-dimensional framework constructed from bi-octahedral Co
<sub>2</sub>
O
<sub>10</sub>
dimers edge-connected to As
<sub>3</sub>
O
<sub>10</sub>
groups. It delimits two sets of tunnels, running parallel to the
<italic>a</italic>
and
<italic>b</italic>
axes, the latter being the larger. The Li
<sup>+</sup>
ions are located within the inter­sections of the tunnels. The possible motion of the alkali cations has been investigated by means of the BVS model. This simulation shows that the Li
<sup>+</sup>
motion appears to be easier mainly along the
<italic>b</italic>
-axis direction and that this material may possess inter­esting conduction properties.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Acta Crystallogr Sect E Struct Rep Online</journal-id>
<journal-id journal-id-type="iso-abbrev">Acta Crystallogr Sect E Struct Rep Online</journal-id>
<journal-id journal-id-type="publisher-id">Acta Cryst. E</journal-id>
<journal-title-group>
<journal-title>Acta Crystallographica Section E: Structure Reports Online</journal-title>
</journal-title-group>
<issn pub-type="epub">1600-5368</issn>
<publisher>
<publisher-name>International Union of Crystallography</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23794970</article-id>
<article-id pub-id-type="pmc">3684868</article-id>
<article-id pub-id-type="publisher-id">br2224</article-id>
<article-id pub-id-type="doi">10.1107/S1600536813013548</article-id>
<article-id pub-id-type="coden">ACSEBH</article-id>
<article-id pub-id-type="pii">S1600536813013548</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Inorganic Papers</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>LiCo
<sub>2</sub>
As
<sub>3</sub>
O
<sub>10</sub>
: une nouvelle structure à tunnels inter­connectés</article-title>
<alt-title>
<italic>LiCo
<sub>2</sub>
As
<sub>3</sub>
O
<sub>10</sub>
</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Ben Smida</surname>
<given-names>Youssef</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guesmi</surname>
<given-names>Abderrahmen</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
<xref ref-type="aff" rid="b">b</xref>
<xref ref-type="corresp" rid="cor">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Driss</surname>
<given-names>Ahmed</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<aff id="a">
<label>a</label>
Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar II, 2092 Tunis,
<country>Tunisia</country>
</aff>
<aff id="b">
<label>b</label>
Institut Préparatoire aux Etudes d’Ingénieurs d’El Manar, BP 244 El Manar II, 2092 Tunis,
<country>Tunisia</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor">Correspondence e-mail:
<email>abderrahmen.guesmi@ipeim.rnu.tn</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<day>01</day>
<month>6</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>31</day>
<month>5</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>31</day>
<month>5</month>
<year>2013</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>69</volume>
<issue>Pt 6</issue>
<issue-id pub-id-type="publisher-id">e130600</issue-id>
<fpage>i39</fpage>
<lpage>i39</lpage>
<history>
<date date-type="received">
<day>18</day>
<month>3</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>5</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>© Ben Smida et al. 2013</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0/uk/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.</license-p>
</license>
</permissions>
<self-uri xlink:type="simple" xlink:href="http://dx.doi.org/10.1107/S1600536813013548">A full version of this article is available from Crystallography Journals Online.</self-uri>
<abstract>
<p>The title compound, lithium dicobalt(II) triarsenate, LiCo
<sub>2</sub>
As
<sub>3</sub>
O
<sub>10</sub>
, was synthesized by a solid-state reaction. The As atoms and four out of seven O atoms lie on special positions, all with site symmetry
<italic>m</italic>
. The Li atoms are disordered over two independent special (site symmetry -1) and general positions with occupancies of 0.54 (7) and 0.23 (4), respectively. The structure model is supported by bond-valence-sum (BVS) and charge-distribution (CHARDI) methods. The structure can be described as a three-dimensional framework constructed from bi-octahedral Co
<sub>2</sub>
O
<sub>10</sub>
dimers edge-connected to As
<sub>3</sub>
O
<sub>10</sub>
groups. It delimits two sets of tunnels, running parallel to the
<italic>a</italic>
and
<italic>b</italic>
axes, the latter being the larger. The Li
<sup>+</sup>
ions are located within the inter­sections of the tunnels. The possible motion of the alkali cations has been investigated by means of the BVS model. This simulation shows that the Li
<sup>+</sup>
motion appears to be easier mainly along the
<italic>b</italic>
-axis direction and that this material may possess inter­esting conduction properties.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Related literature   </title>
<p>The investigated compound is the only arsenic member of the isotypic analogues Li
<italic>M</italic>
<sub>2</sub>
<italic>X</italic>
<sub>3</sub>
O
<sub>10</sub>
(
<italic>M =</italic>
Fe, Co, Ni;
<italic>X =</italic>
P, As; Erragh
<italic>et al.</italic>
, 1996
<xref ref-type="bibr" rid="bb5"></xref>
; Ramana
<italic>et al.</italic>
, 2006
<xref ref-type="bibr" rid="bb14"></xref>
). For bond-valence-sum analysis, see: Brown (2002
<xref ref-type="bibr" rid="bb3"></xref>
); Adams (2003
<xref ref-type="bibr" rid="bb1"></xref>
). For the charge-distribution method, see: Nespolo (2001
<xref ref-type="bibr" rid="bb10"></xref>
); Nespolo
<italic>et al.</italic>
(2001
<xref ref-type="bibr" rid="bb11"></xref>
); Guesmi
<italic>et al.</italic>
(2006
<xref ref-type="bibr" rid="bb7"></xref>
). For BVS pathway simulation, see: Mazza (2001
<xref ref-type="bibr" rid="bb9"></xref>
); Ouerfelli
<italic>et al.</italic>
(2007
<xref ref-type="bibr" rid="bb13"></xref>
). For a related compound, see: Satya Kishore & Varadaraju (2006
<xref ref-type="bibr" rid="bb15"></xref>
).</p>
</sec>
<sec id="sec2">
<title>Experimental   </title>
<sec id="sec2.1">
<title></title>
<sec id="sec2.1.1">
<title>Crystal data   </title>
<p>
<list list-type="simple" id="l1">
<list-item>
<p>LiCo
<sub>2</sub>
As
<sub>3</sub>
O
<sub>10</sub>
</p>
</list-item>
<list-item>
<p>
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 509.56</p>
</list-item>
<list-item>
<p>Monoclinic,
<inline-formula>
<inline-graphic xlink:href="e-69-00i39-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
</p>
</list-item>
<list-item>
<p>
<italic>a</italic>
= 4.830 (2) Å</p>
</list-item>
<list-item>
<p>
<italic>b</italic>
= 8.721 (2) Å</p>
</list-item>
<list-item>
<p>
<italic>c</italic>
= 9.3269 (9) Å</p>
</list-item>
<list-item>
<p>β = 98.08 (3)°</p>
</list-item>
<list-item>
<p>
<italic>V</italic>
= 388.97 (19) Å
<sup>3</sup>
</p>
</list-item>
<list-item>
<p>
<italic>Z</italic>
= 2</p>
</list-item>
<list-item>
<p>Mo
<italic>K</italic>
α radiation</p>
</list-item>
<list-item>
<p>μ = 16.97 mm
<sup>−1</sup>
</p>
</list-item>
<list-item>
<p>
<italic>T</italic>
= 298 K</p>
</list-item>
<list-item>
<p>0.14 × 0.10 × 0.07 mm</p>
</list-item>
</list>
</p>
</sec>
<sec id="sec2.1.2">
<title>Data collection   </title>
<p>
<list list-type="simple" id="l2">
<list-item>
<p>Enraf–Nonius CAD-4 diffractometer</p>
</list-item>
<list-item>
<p>Absorption correction: ψ scan (North
<italic>et al.</italic>
, 1968
<xref ref-type="bibr" rid="bb12"></xref>
)
<italic>T</italic>
<sub>min</sub>
= 0.200,
<italic>T</italic>
<sub>max</sub>
= 0.383</p>
</list-item>
<list-item>
<p>2027 measured reflections</p>
</list-item>
<list-item>
<p>903 independent reflections</p>
</list-item>
<list-item>
<p>816 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</p>
</list-item>
<list-item>
<p>
<italic>R</italic>
<sub>int</sub>
= 0.024</p>
</list-item>
<list-item>
<p>2 standard reflections every 120 reflections intensity decay: 3%</p>
</list-item>
</list>
</p>
</sec>
<sec id="sec2.1.3">
<title>Refinement   </title>
<p>
<list list-type="simple" id="l3">
<list-item>
<p>
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.023</p>
</list-item>
<list-item>
<p>
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.063</p>
</list-item>
<list-item>
<p>
<italic>S</italic>
= 1.10</p>
</list-item>
<list-item>
<p>903 reflections</p>
</list-item>
<list-item>
<p>82 parameters</p>
</list-item>
<list-item>
<p>1 restraint</p>
</list-item>
<list-item>
<p>Δρ
<sub>max</sub>
= 1.13 e Å
<sup>−3</sup>
</p>
</list-item>
<list-item>
<p>Δρ
<sub>min</sub>
= −0.90 e Å
<sup>−3</sup>
</p>
</list-item>
</list>
</p>
</sec>
</sec>
<sec id="d5e425">
<title></title>
<p>Data collection:
<italic>CAD-4 EXPRESS</italic>
(Enraf–Nonius, 1995
<xref ref-type="bibr" rid="bb4"></xref>
); cell refinement:
<italic>CAD-4 EXPRESS</italic>
; data reduction:
<italic>XCAD4</italic>
(Harms & Wocadlo, 1995
<xref ref-type="bibr" rid="bb8"></xref>
); program(s) used to solve structure:
<italic>SHELXS97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb16"></xref>
); program(s) used to refine structure:
<italic>SHELXL97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb16"></xref>
); molecular graphics:
<italic>DIAMOND</italic>
(Brandenburg, 2001
<xref ref-type="bibr" rid="bb2"></xref>
); software used to prepare material for publication:
<italic>WinGX</italic>
(Farrugia, 2012
<xref ref-type="bibr" rid="bb6"></xref>
) and
<italic>publCIF</italic>
(Westrip, 2010
<xref ref-type="bibr" rid="bb17"></xref>
).</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data">
<media xlink:href="e-69-00i39-sup1.cif" mimetype="text" mime-subtype="plain">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
<p>Crystal structure: contains datablock(s) I, global. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536813013548/br2224sup1.cif">10.1107/S1600536813013548/br2224sup1.cif</ext-link>
</p>
<media xlink:href="e-69-00i39-sup1.cif" xlink:type="simple" id="d35e132" position="anchor" mimetype="text" mime-subtype="plain"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<media xlink:href="e-69-00i39-Isup2.hkl" mimetype="text" mime-subtype="plain">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
<p>Structure factors: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536813013548/br2224Isup2.hkl">10.1107/S1600536813013548/br2224Isup2.hkl</ext-link>
</p>
<media xlink:href="e-69-00i39-Isup2.hkl" xlink:type="simple" id="d35e139" position="anchor" mimetype="text" mime-subtype="plain"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Additional supplementary materials:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsupfiles?br2224&file=br2224sup0.html&mime=text/html"> crystallographic information</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendcif?br2224sup1&Qmime=cif">3D view</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?br2224&checkcif=yes">checkCIF report</ext-link>
</p>
</supplementary-material>
</sec>
</body>
<back>
<fn-group>
<fn id="fnu1">
<p>Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsup?br2224">BR2224</ext-link>
).</p>
</fn>
</fn-group>
<app-group>
<app>
<title>supplementary crystallographic information</title>
<sec id="comment">
<title>Comment </title>
<p>L'exploration du système Li–Co–As–O se situe dans un contexte général visant la synthèse de nouveaux arséniates cristallisés, la détermination de leurs structures cristallines et l'étude de leurs propriétés électriques, à la recherche de nouveaux conducteurs au lithium pouvant constituer de nouveaux vecteurs d'énergie. Par ailleurs, un seul composé dans ce système, LiCoAsO
<sub>4</sub>
, est mentionné dans la littérature (Satya Kishore & Varadaraju, 2006).</p>
<p>Le matériau étudié de formulation LiCo
<sub>2</sub>
As
<sub>3</sub>
O
<sub>10</sub>
a été synthétisé par réaction à l'état solide. Il est le seul arséniate de la famille des composés isotypes anhydres de formulation Li
<italic>M</italic>
<sub>2</sub>
<italic>X</italic>
<sub>3</sub>
O
<sub>10</sub>
(
<italic>M</italic>
: Fe, Co, Ni;
<italic>X</italic>
: P, As) (Erragh
<italic>et al.</italic>
, 1996; Ramana
<italic>et al.</italic>
, 2006). La structure est confirmée par les deux modèles de validation: le calcul des valences de liaisons BVS (Brown, 2002; Adams, 2003) et la méthode de distribution de charge CHARDI (Nespolo
<italic>et al.</italic>
, 2001; Nespolo, 2001) (Tableau 1).</p>
<p>L'unité asymétrique renferme un octaèdre de coordination du cobalt, trois tétraèdres formant le groupement As
<sub>3</sub>
O
<sub>10</sub>
et un cation alcalin statistiquement désordonné sur deux positions (Fig. 1). Les différentes coordinences sont assurées par sept atomes d'oxygène cristallographiquement indépendants. Les valences calculées des différents atomes sont en bon accord avec les degrés d'oxydation. Quelques écarts sont observés pour un atome d'oxygène et comme dans des cas similaires pour les cations désordonnés. L'écart observé pour ces derniers est dû au fait que le désordre de position et donc l'occupation partielle se répercute sur les distances interatomiques et certaines seront légèrement supérieures à celles pour une occupation totale, et la valence diminue ainsi avec l'accroissement de ces distances.</p>
<p>L'analyse CHARDI confirme aussi le modèle structural proposé, notamment les charges des cations. Le facteur de dispersion sur ces charges est de 3% (Nespolo, 2001). Pour les charges anioniques, bien que le modèle CHARDI ne présente pas le même formalisme pour les cations et les anions (un écart par rapport aux valeurs idéales pour les anions est attribué à un effet OUB (
<italic>Over-Under Bonding effect</italic>
) (Nespolo
<italic>et al.</italic>
2001), les charges anioniques sont confirmées avec un facteur de dispersion sur ces valeurs de 8%. L'effet OUB est observé pour les atomes d'oxygène tri-coordinés.</p>
<p>Le résultat de l'analyse CHARDI est fructueux et montre une autre vision des sphères de coordination par le biais du "nombre de coordination effectif ECoN". L'octaèdre de cobalt est assez distordu avec un nombre de coordination effectif de 5,94. Les distances moyenne classique d
<sub>moy</sub>
et arithmétique pondérée d
<sub>med</sub>
sont cependant très proches et sont respectivement de 2,114 e t 2,110 Å. Les distances interatomiques As—O varient globalement de 1,64 à 1,76 Å. Deux distances longues sont relevées pour les oxygènes des ponts As—O—As et la coordinence de l'entité centrale As(3)O
<sub>3</sub>
du groupement As
<sub>3</sub>
O
<sub>10</sub>
est ainsi du type 2 + 2. Le tétraèdre As(1)O
<sub>4</sub>
avec une coordinence du type 3 + 1 présente la distance la plus longue. La distortion est ainsi plus prononcée pour ces deux tétraèdres avec des ECoNs de 3,92.</p>
<p>Les octaèdres partageant des arêtes sont arrangés en chaînes ondulées selon la direction [010], les distances Co—Co sont de 3,22 Å. Les groupements As
<sub>3</sub>
O
<sub>10</sub>
situés à
<italic>y</italic>
= ±1/4 relient ces chaînes par partage de sommets avec les octaèdres. Chaque groupement met en commun ses huit sommets avec dix octaèdres de quatre chaînes parallèles (Fig. 2) et quelques atomes d'oxygène sont donc tri-coordinés.</p>
<p>La charpente anionique résultante montre de larges tunnels selon la direction
<italic>b</italic>
et d'autres moins larges selon la direction
<italic>a</italic>
(Fig. 3). Les cations alcalins statistiquement désordonnés occupent ces tunnels et apparaissent à l'intersection de leurs sections. Les cations Li1A occupent un centre d'inversion (position
<italic>2d</italic>
) avec une coordination ayant la forme d'un plan carré; ces mêmes caractéristiques sont signalées dans les phosphates isotypes. La différence vient cependant de l'existence du désordre et donc de la deuxième position générale avec des distances Li—O allant jusqu'à 2,64 Å. Cet "éclatement" est attribué à l'augmentation des dimensions des tunnels et un cation petit comme le lithium tente à gagner la périphérie du tunnel ou de la cavité occupée pour compléter sa coordinence.</p>
<p>Pour avoir une idée préliminaire sur la mobilité des cations alcalins, le modèle BVS semble être, au delà de la validation, un moyen fructueux. Ce concept est détaillé dans plusieurs travaux antérieurs (Mazza, 2001; Ouerfelli
<italic>et al.</italic>
2007). L'analyse par le concept BVS de la structure de l'arséniate étudié montre que les directions [100] et [010] sont favorables pour la mobilité du lithium où la somme de valences est proche de la valence idéale (Fig. 4). En effet, la valence maximale Vmax selon la direction initiale
<italic>b</italic>
est au voisinage de 0,91 u.v. pour des distances de migration qui dépassent 10 Å. Les valences calculées pour la direction [100] dépassent légèrement la valence idéale (Vmax = 1,05 u.v.), cette direction est donc moins favorable que la première. Pour les autres directions, les valences calculées sont élevées (par exemple: Vmax > 1,7 u.v. pour [001]), le cation mobile rencontre donc des barrières énergétiques exercées par la charpente anionique. La modélisation BVS montre ainsi que cette classe de matériaux peut constituer des matrices importantes pour des propriétés électriques. Ceci n'exclut pas une étude expérimentale des ces propriétés, ce travail est actuellement en cours.</p>
</sec>
<sec id="experimental">
<title>Experimental </title>
<p>Le nouvel arséniate étudié a été synthétisé par réaction à l'état solide. Un mélange de Li
<sub>2</sub>
CO
<sub>3</sub>
(AZIENDA CHIMICA. 99,5%), CoCl
<sub>2</sub>
.6H
<sub>2</sub>
O (PARK. 99%) et de NH
<sub>4</sub>
H
<sub>2</sub>
AsO
<sub>4</sub>
(préparé au laboratoire, ASTM 01–775), pris dans les proportions molaires Li:Co:As =1:1:3 a été finement broyé dans un mortier en agate. Il a été mis dans une nacelle en porcelaine et calciné à 623 K pendant 12 heures. Après refroidissement, le mélange a été broyé de nouveau puis porté à 1003 K et maintenu à cette température pendant 3 jours. Il a été ensuite refroidi lentement avec une vitesse de 5 K/h jusqu'à 953 K puis finalement refroidi jusqu'à la température ambiante. Des cristaux de couleur rose sont apparus sur les parois de la nacelle. Cette dernière a été lavée à l'eau bouillante afin de séparer les cristaux du flux. Les cristaux ont été ensuite triés sous une loupe binoculaire et l'échantillon sélectionné pour la collecte des données a été choisi après examen sous un microscope à lumière polarisée.</p>
</sec>
<sec id="refinement">
<title>Refinement </title>
<p>L'affinement de l'un des atomes d'oxygène (O2) des ponts As—O—As n'était pas possible en anisotropie. Il a été contraint à avoir les mêmes facteurs d'agitation thermique anisotrope que l'atome O1 (option EADP du programme SHELX) des mêmes ponts. Pour les cations alcalins, la somme des taux d'occupation des deux sites correspond à la valeur qui assure la neutralité électrique.</p>
</sec>
<sec id="figures">
<title>Figures</title>
<fig id="Fap1">
<label>Fig. 1.</label>
<caption>
<p>L'unité asymétrique dans LiCo2As3O10 (ellipsoïdes d'agitation thermique à 50% de probabilité; codes de symétrie: (i) -x+2, -y+2, -z+2; (ii) x-1, -y+3/2, z; (iii) x-1, y, z; (iv) x-1, y, z-1; (v) x, y, z-1; (vi) x, -y+3/2, z-1; (vii) -x+1, y-1/2, -z+1; (viii) -x+1, -y+2, -z+1;(ix) -x+2, -y+2, -z+1).</p>
</caption>
<graphic xlink:href="e-69-00i39-fig1"></graphic>
</fig>
<fig id="Fap2">
<label>Fig. 2.</label>
<caption>
<p>Modes de connexion entre les tétraèdres d'arsenic et les octaèdres de cobalt.</p>
</caption>
<graphic xlink:href="e-69-00i39-fig2"></graphic>
</fig>
<fig id="Fap3">
<label>Fig. 3.</label>
<caption>
<p>Vue en perspective montrant les deux types de tunnels matérialisés par des tubes.</p>
</caption>
<graphic xlink:href="e-69-00i39-fig3"></graphic>
</fig>
<fig id="Fap4">
<label>Fig. 4.</label>
<caption>
<p>Analyse BVS de la mobilité des cations alcalins.</p>
</caption>
<graphic xlink:href="e-69-00i39-fig4"></graphic>
</fig>
</sec>
<sec id="tablewrapcrystaldatalong">
<title>Crystal data</title>
<table-wrap position="anchor" id="d1e252">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">LiCo
<sub>2</sub>
(As
<sub>3</sub>
O
<sub>10</sub>
)</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
(000) = 472</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 509.56</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
<sub>x</sub>
= 4.351 Mg m
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Monoclinic,
<italic>P</italic>
2
<sub>1</sub>
/
<italic>m</italic>
</td>
<td rowspan="1" colspan="1">Mo
<italic>K</italic>
α radiation, λ = 0.71073 Å</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hall symbol: -P 2yb</td>
<td rowspan="1" colspan="1">Cell parameters from 25 reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>a</italic>
= 4.830 (2) Å</td>
<td rowspan="1" colspan="1">θ = 12.4–14.8°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>b</italic>
= 8.721 (2) Å</td>
<td rowspan="1" colspan="1">µ = 16.97 mm
<sup></sup>
<sup>1</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>c</italic>
= 9.3269 (9) Å</td>
<td rowspan="1" colspan="1">
<italic>T</italic>
= 298 K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">β = 98.08 (3)°</td>
<td rowspan="1" colspan="1">Parallelepiped, pink</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>V</italic>
= 388.97 (19) Å
<sup>3</sup>
</td>
<td rowspan="1" colspan="1">0.14 × 0.10 × 0.07 mm</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>Z</italic>
= 2</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapdatacollectionlong">
<title>Data collection</title>
<table-wrap position="anchor" id="d1e380">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Enraf–Nonius CAD-4 diffractometer</td>
<td rowspan="1" colspan="1">816 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Radiation source: fine-focus sealed tube</td>
<td rowspan="1" colspan="1">
<italic>R</italic>
<sub>int</sub>
= 0.024</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Graphite monochromator</td>
<td rowspan="1" colspan="1">θ
<sub>max</sub>
= 27.0°, θ
<sub>min</sub>
= 2.2°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">ω/2θ scans</td>
<td rowspan="1" colspan="1">
<italic>h</italic>
= −6→6</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Absorption correction: ψ scan (North
<italic>et al.</italic>
, 1968)</td>
<td rowspan="1" colspan="1">
<italic>k</italic>
= −1→11</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>T</italic>
<sub>min</sub>
= 0.200,
<italic>T</italic>
<sub>max</sub>
= 0.383</td>
<td rowspan="1" colspan="1">
<italic>l</italic>
= −11→11</td>
</tr>
<tr>
<td rowspan="1" colspan="1">2027 measured reflections</td>
<td rowspan="1" colspan="1">2 standard reflections every 120 reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">903 independent reflections</td>
<td rowspan="1" colspan="1"> intensity decay: 3%</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewraprefinementdatalong">
<title>Refinement</title>
<table-wrap position="anchor" id="d1e505">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Refinement on
<italic>F</italic>
<sup>2</sup>
</td>
<td rowspan="1" colspan="1">Primary atom site location: structure-invariant direct methods</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Least-squares matrix: full</td>
<td rowspan="1" colspan="1">Secondary atom site location: difference Fourier map</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.023</td>
<td rowspan="1" colspan="1">
<italic>w</italic>
= 1/[σ
<sup>2</sup>
(
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
) + (0.0372
<italic>P</italic>
)
<sup>2</sup>
+ 0.4094
<italic>P</italic>
] where
<italic>P</italic>
= (
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
+ 2
<italic>F</italic>
<sub>c</sub>
<sup>2</sup>
)/3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.063</td>
<td rowspan="1" colspan="1">(Δ/σ)
<sub>max</sub>
= 0.007</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>S</italic>
= 1.10</td>
<td rowspan="1" colspan="1">Δρ
<sub>max</sub>
= 1.13 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">903 reflections</td>
<td rowspan="1" colspan="1">Δρ
<sub>min</sub>
= −0.90 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">82 parameters</td>
<td rowspan="1" colspan="1">Extinction correction:
<italic>SHELXL97</italic>
(Sheldrick, 2008), Fc
<sup>*</sup>
=kFc[1+0.001xFc
<sup>2</sup>
λ
<sup>3</sup>
/sin(2θ)]
<sup>-1/4</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1 restraint</td>
<td rowspan="1" colspan="1">Extinction coefficient: 0.0240 (13)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="specialdetails">
<title>Special details</title>
<table-wrap position="anchor" id="d1e681">
<table rules="all" frame="box" style="table-layout:fixed">
<tr>
<td rowspan="1" colspan="1">Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Refinement. Refinement of F
<sup>2</sup>
against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F
<sup>2</sup>
, conventional R-factors R are based on F, with F set to zero for negative F
<sup>2</sup>
. The threshold expression of F
<sup>2</sup>
> 2sigma(F
<sup>2</sup>
) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F
<sup>2</sup>
are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapcoords">
<title>Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e726">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>x</italic>
</td>
<td rowspan="1" colspan="1">
<italic>y</italic>
</td>
<td rowspan="1" colspan="1">
<italic>z</italic>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sub>iso</sub>
*/
<italic>U</italic>
<sub>eq</sub>
</td>
<td rowspan="1" colspan="1">Occ. (<1)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">1.03666 (8)</td>
<td rowspan="1" colspan="1">0.93447 (6)</td>
<td rowspan="1" colspan="1">0.83555 (4)</td>
<td rowspan="1" colspan="1">0.00531 (17)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1</td>
<td rowspan="1" colspan="1">0.45631 (9)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.65408 (5)</td>
<td rowspan="1" colspan="1">0.00377 (16)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">As2</td>
<td rowspan="1" colspan="1">0.61125 (9)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.02638 (5)</td>
<td rowspan="1" colspan="1">0.00327 (16)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">As3</td>
<td rowspan="1" colspan="1">0.33999 (10)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.32284 (5)</td>
<td rowspan="1" colspan="1">0.00419 (16)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.5921 (7)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.2116 (4)</td>
<td rowspan="1" colspan="1">0.0104 (5)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.5743 (7)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.4830 (4)</td>
<td rowspan="1" colspan="1">0.0104 (5)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">1.2865 (7)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.9368 (4)</td>
<td rowspan="1" colspan="1">0.0070 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.7674 (7)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.7587 (4)</td>
<td rowspan="1" colspan="1">0.0070 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.8393 (5)</td>
<td rowspan="1" colspan="1">1.0887 (3)</td>
<td rowspan="1" colspan="1">0.6836 (3)</td>
<td rowspan="1" colspan="1">0.0116 (5)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.7861 (5)</td>
<td rowspan="1" colspan="1">0.9132 (3)</td>
<td rowspan="1" colspan="1">1.0088 (3)</td>
<td rowspan="1" colspan="1">0.0071 (5)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7</td>
<td rowspan="1" colspan="1">1.2675 (5)</td>
<td rowspan="1" colspan="1">0.9089 (3)</td>
<td rowspan="1" colspan="1">0.6622 (3)</td>
<td rowspan="1" colspan="1">0.0086 (5)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Li1A</td>
<td rowspan="1" colspan="1">1.0000</td>
<td rowspan="1" colspan="1">1.0000</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.007 (3)*</td>
<td rowspan="1" colspan="1">0.54 (7)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Li1B</td>
<td rowspan="1" colspan="1">0.947 (8)</td>
<td rowspan="1" colspan="1">0.973 (4)</td>
<td rowspan="1" colspan="1">0.500 (3)</td>
<td rowspan="1" colspan="1">0.007 (3)*</td>
<td rowspan="1" colspan="1">0.23 (4)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapadps">
<title>Atomic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e922">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>11</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>22</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>33</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>12</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>13</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>23</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.0062 (3)</td>
<td rowspan="1" colspan="1">0.0054 (3)</td>
<td rowspan="1" colspan="1">0.0042 (3)</td>
<td rowspan="1" colspan="1">−0.00006 (14)</td>
<td rowspan="1" colspan="1">0.00014 (19)</td>
<td rowspan="1" colspan="1">−0.00079 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1</td>
<td rowspan="1" colspan="1">0.0035 (2)</td>
<td rowspan="1" colspan="1">0.0057 (3)</td>
<td rowspan="1" colspan="1">0.0019 (3)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">−0.00053 (18)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As2</td>
<td rowspan="1" colspan="1">0.0028 (2)</td>
<td rowspan="1" colspan="1">0.0041 (3)</td>
<td rowspan="1" colspan="1">0.0026 (3)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">−0.00044 (18)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As3</td>
<td rowspan="1" colspan="1">0.0043 (2)</td>
<td rowspan="1" colspan="1">0.0056 (3)</td>
<td rowspan="1" colspan="1">0.0024 (3)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">−0.00020 (17)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.0079 (10)</td>
<td rowspan="1" colspan="1">0.0216 (13)</td>
<td rowspan="1" colspan="1">0.0021 (11)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0021 (9)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.0079 (10)</td>
<td rowspan="1" colspan="1">0.0216 (13)</td>
<td rowspan="1" colspan="1">0.0021 (11)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0021 (9)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.0048 (15)</td>
<td rowspan="1" colspan="1">0.0064 (15)</td>
<td rowspan="1" colspan="1">0.0083 (17)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">−0.0039 (13)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.0074 (15)</td>
<td rowspan="1" colspan="1">0.0079 (15)</td>
<td rowspan="1" colspan="1">0.0045 (15)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">−0.0029 (13)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.0129 (12)</td>
<td rowspan="1" colspan="1">0.0103 (11)</td>
<td rowspan="1" colspan="1">0.0111 (12)</td>
<td rowspan="1" colspan="1">0.0059 (10)</td>
<td rowspan="1" colspan="1">−0.0006 (10)</td>
<td rowspan="1" colspan="1">0.0012 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.0071 (11)</td>
<td rowspan="1" colspan="1">0.0070 (10)</td>
<td rowspan="1" colspan="1">0.0076 (12)</td>
<td rowspan="1" colspan="1">−0.0045 (10)</td>
<td rowspan="1" colspan="1">0.0021 (9)</td>
<td rowspan="1" colspan="1">−0.0032 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7</td>
<td rowspan="1" colspan="1">0.0104 (11)</td>
<td rowspan="1" colspan="1">0.0088 (11)</td>
<td rowspan="1" colspan="1">0.0076 (11)</td>
<td rowspan="1" colspan="1">0.0050 (10)</td>
<td rowspan="1" colspan="1">0.0047 (9)</td>
<td rowspan="1" colspan="1">0.0020 (10)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapgeomlong">
<title>Geometric parameters (Å, º)</title>
<table-wrap position="anchor" id="d1e1153">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="4">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Co1—O6
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.063 (3)</td>
<td rowspan="1" colspan="1">As3—O5
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">1.649 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O5</td>
<td rowspan="1" colspan="1">2.085 (3)</td>
<td rowspan="1" colspan="1">As3—O1</td>
<td rowspan="1" colspan="1">1.707 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O7</td>
<td rowspan="1" colspan="1">2.100 (3)</td>
<td rowspan="1" colspan="1">As3—O2</td>
<td rowspan="1" colspan="1">1.743 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O4</td>
<td rowspan="1" colspan="1">2.129 (2)</td>
<td rowspan="1" colspan="1">Li1A—Li1B</td>
<td rowspan="1" colspan="1">0.35 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O3</td>
<td rowspan="1" colspan="1">2.148 (2)</td>
<td rowspan="1" colspan="1">Li1A—O7</td>
<td rowspan="1" colspan="1">2.010 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O6</td>
<td rowspan="1" colspan="1">2.159 (2)</td>
<td rowspan="1" colspan="1">Li1A—O7
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">2.010 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1—O7
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">1.667 (2)</td>
<td rowspan="1" colspan="1">Li1A—O5</td>
<td rowspan="1" colspan="1">2.123 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">1.667 (2)</td>
<td rowspan="1" colspan="1">Li1A—O5
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">2.123 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1—O4</td>
<td rowspan="1" colspan="1">1.673 (3)</td>
<td rowspan="1" colspan="1">Li1B—Li1B
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">0.70 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1—O2</td>
<td rowspan="1" colspan="1">1.768 (3)</td>
<td rowspan="1" colspan="1">Li1B—O7
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">1.99 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As2—O3
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">1.670 (3)</td>
<td rowspan="1" colspan="1">Li1B—O7</td>
<td rowspan="1" colspan="1">2.08 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As2—O6
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">1.675 (2)</td>
<td rowspan="1" colspan="1">Li1B—O5</td>
<td rowspan="1" colspan="1">2.11 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As2—O6
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">1.675 (2)</td>
<td rowspan="1" colspan="1">Li1B—O5
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">2.19 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As2—O1</td>
<td rowspan="1" colspan="1">1.743 (3)</td>
<td rowspan="1" colspan="1">Li1B—O2</td>
<td rowspan="1" colspan="1">2.64 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As3—O5
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">1.649 (3)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—Co1—O5</td>
<td rowspan="1" colspan="1">99.67 (12)</td>
<td rowspan="1" colspan="1">O7
<sup>iii</sup>
—As1—O4</td>
<td rowspan="1" colspan="1">115.20 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—Co1—O7</td>
<td rowspan="1" colspan="1">113.41 (10)</td>
<td rowspan="1" colspan="1">O7
<sup>ii</sup>
—As1—O2</td>
<td rowspan="1" colspan="1">106.80 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Co1—O7</td>
<td rowspan="1" colspan="1">77.67 (10)</td>
<td rowspan="1" colspan="1">O7
<sup>iii</sup>
—As1—O2</td>
<td rowspan="1" colspan="1">106.80 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—Co1—O4</td>
<td rowspan="1" colspan="1">153.78 (12)</td>
<td rowspan="1" colspan="1">O4—As1—O2</td>
<td rowspan="1" colspan="1">98.59 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Co1—O4</td>
<td rowspan="1" colspan="1">93.40 (11)</td>
<td rowspan="1" colspan="1">O3
<sup>iv</sup>
—As2—O6
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">113.71 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7—Co1—O4</td>
<td rowspan="1" colspan="1">91.49 (12)</td>
<td rowspan="1" colspan="1">O3
<sup>iv</sup>
—As2—O6
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">113.71 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—Co1—O3</td>
<td rowspan="1" colspan="1">91.20 (10)</td>
<td rowspan="1" colspan="1">O6
<sup>v</sup>
—As2—O6
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">116.39 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Co1—O3</td>
<td rowspan="1" colspan="1">163.09 (12)</td>
<td rowspan="1" colspan="1">O3
<sup>iv</sup>
—As2—O1</td>
<td rowspan="1" colspan="1">108.59 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7—Co1—O3</td>
<td rowspan="1" colspan="1">86.15 (12)</td>
<td rowspan="1" colspan="1">O6
<sup>v</sup>
—As2—O1</td>
<td rowspan="1" colspan="1">101.23 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Co1—O3</td>
<td rowspan="1" colspan="1">82.01 (11)</td>
<td rowspan="1" colspan="1">O6
<sup>vi</sup>
—As2—O1</td>
<td rowspan="1" colspan="1">101.23 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—Co1—O6</td>
<td rowspan="1" colspan="1">75.48 (10)</td>
<td rowspan="1" colspan="1">O5
<sup>vii</sup>
—As3—O5
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">117.15 (18)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Co1—O6</td>
<td rowspan="1" colspan="1">108.27 (10)</td>
<td rowspan="1" colspan="1">O5
<sup>vii</sup>
—As3—O1</td>
<td rowspan="1" colspan="1">113.20 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7—Co1—O6</td>
<td rowspan="1" colspan="1">168.82 (11)</td>
<td rowspan="1" colspan="1">O5
<sup>viii</sup>
—As3—O1</td>
<td rowspan="1" colspan="1">113.20 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Co1—O6</td>
<td rowspan="1" colspan="1">78.87 (11)</td>
<td rowspan="1" colspan="1">O5
<sup>vii</sup>
—As3—O2</td>
<td rowspan="1" colspan="1">107.79 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—Co1—O6</td>
<td rowspan="1" colspan="1">86.90 (12)</td>
<td rowspan="1" colspan="1">O5
<sup>viii</sup>
—As3—O2</td>
<td rowspan="1" colspan="1">107.79 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>ii</sup>
—As1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">112.51 (17)</td>
<td rowspan="1" colspan="1">O1—As3—O2</td>
<td rowspan="1" colspan="1">95.06 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>ii</sup>
—As1—O4</td>
<td rowspan="1" colspan="1">115.20 (10)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
<p>Symmetry codes: (i) −
<italic>x</italic>
+2, −
<italic>y</italic>
+2, −
<italic>z</italic>
+2; (ii)
<italic>x</italic>
−1, −
<italic>y</italic>
+3/2,
<italic>z</italic>
; (iii)
<italic>x</italic>
−1,
<italic>y</italic>
,
<italic>z</italic>
; (iv)
<italic>x</italic>
−1,
<italic>y</italic>
,
<italic>z</italic>
−1; (v)
<italic>x</italic>
,
<italic>y</italic>
,
<italic>z</italic>
−1; (vi)
<italic>x</italic>
, −
<italic>y</italic>
+3/2,
<italic>z</italic>
−1; (vii) −
<italic>x</italic>
+1,
<italic>y</italic>
−1/2, −
<italic>z</italic>
+1; (viii) −
<italic>x</italic>
+1, −
<italic>y</italic>
+2, −
<italic>z</italic>
+1; (ix) −
<italic>x</italic>
+2, −
<italic>y</italic>
+2, −
<italic>z</italic>
+1.</p>
</sec>
<sec id="d1e1686">
<title>Analyses CHARDI et BVS relatives aux cations dans LiCo
<sub>2</sub>
As
<sub>3</sub>
O
<sub>10</sub>
.</title>
<table-wrap position="anchor" id="d1e1704">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1">Cation</td>
<td rowspan="1" colspan="1">q(i).sof(i)</td>
<td rowspan="1" colspan="1">Q(i)</td>
<td rowspan="1" colspan="1">V(i)</td>
<td rowspan="1" colspan="1">CN(i)</td>
<td rowspan="1" colspan="1">ECoN(i)</td>
<td rowspan="1" colspan="1">d
<sub>moy</sub>
</td>
<td rowspan="1" colspan="1">d
<sub>med</sub>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1</td>
<td rowspan="1" colspan="1">5,00</td>
<td rowspan="1" colspan="1">5,043</td>
<td rowspan="1" colspan="1">4,987</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">3,915</td>
<td rowspan="1" colspan="1">1,693</td>
<td rowspan="1" colspan="1">1,687</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As2</td>
<td rowspan="1" colspan="1">5,00</td>
<td rowspan="1" colspan="1">4,967</td>
<td rowspan="1" colspan="1">5,039</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">3,958</td>
<td rowspan="1" colspan="1">1,690</td>
<td rowspan="1" colspan="1">1,687</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As3</td>
<td rowspan="1" colspan="1">5,00</td>
<td rowspan="1" colspan="1">4,958</td>
<td rowspan="1" colspan="1">5,007</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">3,921</td>
<td rowspan="1" colspan="1">1,686</td>
<td rowspan="1" colspan="1">1,681</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">2,00</td>
<td rowspan="1" colspan="1">2,015</td>
<td rowspan="1" colspan="1">2,014</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">5,944</td>
<td rowspan="1" colspan="1">2,114</td>
<td rowspan="1" colspan="1">2,110</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Li1
<italic>A</italic>
</td>
<td rowspan="1" colspan="1">0,54</td>
<td rowspan="1" colspan="1">0,540</td>
<td rowspan="1" colspan="1">0,464</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">3,894</td>
<td rowspan="1" colspan="1">2,067</td>
<td rowspan="1" colspan="1">2,056</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Li1
<italic>B</italic>
</td>
<td rowspan="1" colspan="1">0,23</td>
<td rowspan="1" colspan="1">0,230</td>
<td rowspan="1" colspan="1">0,194</td>
<td rowspan="1" colspan="1">5</td>
<td rowspan="1" colspan="1">3,951</td>
<td rowspan="1" colspan="1">2,205</td>
<td rowspan="1" colspan="1">2,085</td>
</tr>
</table>
</table-wrap>
<p>q(i)= nombre d'oxydation, sof(i)= taux d'occupation du site, Q(i)= charge calculée, CN= nombre de coordination classique, ECoN= nombre de coordination effectif, σ=[Σi(q
<sub>i</sub>
-Q
<sub>i</sub>
)
<sup>2</sup>
/N-1]
<sup>1/2</sup>
=0,032.</p>
</sec>
</app>
</app-group>
<ref-list>
<title>References</title>
<ref id="bb1">
<mixed-citation publication-type="other">Adams, S. (2003).
<italic>softBV</italic>
University of Göttingen, Germany. http://kristall.uni-mki.gwdg.de/softBV/.</mixed-citation>
</ref>
<ref id="bb2">
<mixed-citation publication-type="other">Brandenburg, K. (2001).
<italic>DIAMOND</italic>
University of Bonn, Germany.</mixed-citation>
</ref>
<ref id="bb3">
<mixed-citation publication-type="other">Brown, I. D. (2002).
<italic>The Chemical Bond in Inorganic Chemistry - The Bond Valence Model</italic>
IUCr Monographs on Crystallography, No. 12. Oxford University Press.</mixed-citation>
</ref>
<ref id="bb4">
<mixed-citation publication-type="other">Enraf–Nonius (1995).
<italic>CAD-4 EXPRESS</italic>
Enraf–Nonius, Delft, The Netherlands.</mixed-citation>
</ref>
<ref id="bb5">
<mixed-citation publication-type="other">Erragh, F., Boukhari, A. & Holt, E. M. (1996).
<italic>Acta Cryst.</italic>
C
<bold>52</bold>
, 1867–1869.</mixed-citation>
</ref>
<ref id="bb6">
<mixed-citation publication-type="other">Farrugia, L. J. (2012).
<italic>J. Appl. Cryst.</italic>
<bold>45</bold>
, 849–854.</mixed-citation>
</ref>
<ref id="bb7">
<mixed-citation publication-type="other">Guesmi, A., Nespolo, M. & Driss, A. (2006).
<italic>J. Solid State Chem.</italic>
<bold>179</bold>
, 2466–2471.</mixed-citation>
</ref>
<ref id="bb8">
<mixed-citation publication-type="other">Harms, K. & Wocadlo, S. (1995).
<italic>XCAD4</italic>
University of Marburg, Germany.</mixed-citation>
</ref>
<ref id="bb9">
<mixed-citation publication-type="other">Mazza, D. (2001).
<italic>J. Solid State Chem.</italic>
<bold>156</bold>
, 154–160.</mixed-citation>
</ref>
<ref id="bb10">
<mixed-citation publication-type="other">Nespolo, M. (2001).
<italic>CHARDI-IT</italic>
Laboratoire CRM
<sup>2</sup>
, Université de Nancy I, France.</mixed-citation>
</ref>
<ref id="bb11">
<mixed-citation publication-type="other">Nespolo, M., Ferraris, G., Ivaldi, G. & Hoppe, R. (2001).
<italic>Acta Cryst.</italic>
B
<bold>57</bold>
, 652–664.</mixed-citation>
</ref>
<ref id="bb12">
<mixed-citation publication-type="other">North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).
<italic>Acta Cryst.</italic>
A
<bold>24</bold>
, 351–359.</mixed-citation>
</ref>
<ref id="bb13">
<mixed-citation publication-type="other">Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007).
<italic>J. Solid State Chem.</italic>
<bold>180</bold>
, 1224–1229.</mixed-citation>
</ref>
<ref id="bb14">
<mixed-citation publication-type="other">Ramana, C. V., Ait-Salah, A. & Julien, C. M. (2006).
<italic>Mater. Sci. Eng. B</italic>
,
<bold>135</bold>
, 78–81.</mixed-citation>
</ref>
<ref id="bb15">
<mixed-citation publication-type="other">Satya Kishore, M. V. V. M. & Varadaraju, U. V. (2006).
<italic>Mater. Res. Bull.</italic>
<bold>41</bold>
, 601–607.</mixed-citation>
</ref>
<ref id="bb16">
<mixed-citation publication-type="other">Sheldrick, G. M. (2008).
<italic>Acta Cryst.</italic>
A
<bold>64</bold>
, 112–122.</mixed-citation>
</ref>
<ref id="bb17">
<mixed-citation publication-type="other">Westrip, S. P. (2010).
<italic>J. Appl. Cryst.</italic>
<bold>43</bold>
, 920–925.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000365 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000365 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3684868
   |texte=   LiCo2As3O10: une nouvelle structure à tunnels inter­connectés
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:23794970" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024