Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The alluaudite-type crystal structures of Na2(Fe/Co)2Co(VO4)3 and Ag2(Fe/Co)2Co(VO4)3

Identifieur interne : 000350 ( Pmc/Corpus ); précédent : 000349; suivant : 000351

The alluaudite-type crystal structures of Na2(Fe/Co)2Co(VO4)3 and Ag2(Fe/Co)2Co(VO4)3

Auteurs : Mohammed Hadouchi ; Abderrazzak Assani ; Mohamed Saadi ; Lahcen El Ammari

Source :

RBID : PMC:4992929

Abstract

The transition metal orthovanadates Na2(Fe/Co)2Co(VO4)3 and Ag2(Fe/Co)2Co(VO4)3 are isotypic and crystallize in an alluaudite-type structure.


Url:
DOI: 10.1107/S2056989016009981
PubMed: 27555954
PubMed Central: 4992929

Links to Exploration step

PMC:4992929

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The alluaudite-type crystal structures of Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
and Ag
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
</title>
<author>
<name sortKey="Hadouchi, Mohammed" sort="Hadouchi, Mohammed" uniqKey="Hadouchi M" first="Mohammed" last="Hadouchi">Mohammed Hadouchi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Assani, Abderrazzak" sort="Assani, Abderrazzak" uniqKey="Assani A" first="Abderrazzak" last="Assani">Abderrazzak Assani</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saadi, Mohamed" sort="Saadi, Mohamed" uniqKey="Saadi M" first="Mohamed" last="Saadi">Mohamed Saadi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="El Ammari, Lahcen" sort="El Ammari, Lahcen" uniqKey="El Ammari L" first="Lahcen" last="El Ammari">Lahcen El Ammari</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27555954</idno>
<idno type="pmc">4992929</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992929</idno>
<idno type="RBID">PMC:4992929</idno>
<idno type="doi">10.1107/S2056989016009981</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000350</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000350</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The alluaudite-type crystal structures of Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
and Ag
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
</title>
<author>
<name sortKey="Hadouchi, Mohammed" sort="Hadouchi, Mohammed" uniqKey="Hadouchi M" first="Mohammed" last="Hadouchi">Mohammed Hadouchi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Assani, Abderrazzak" sort="Assani, Abderrazzak" uniqKey="Assani A" first="Abderrazzak" last="Assani">Abderrazzak Assani</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saadi, Mohamed" sort="Saadi, Mohamed" uniqKey="Saadi M" first="Mohamed" last="Saadi">Mohamed Saadi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="El Ammari, Lahcen" sort="El Ammari, Lahcen" uniqKey="El Ammari L" first="Lahcen" last="El Ammari">Lahcen El Ammari</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta Crystallographica Section E: Crystallographic Communications</title>
<idno type="eISSN">2056-9890</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The transition metal orthovanadates Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
and Ag
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
are isotypic and crystallize in an alluaudite-type structure.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Acta Crystallogr E Crystallogr Commun</journal-id>
<journal-id journal-id-type="iso-abbrev">Acta Crystallogr E Crystallogr Commun</journal-id>
<journal-id journal-id-type="publisher-id">Acta Cryst. E</journal-id>
<journal-title-group>
<journal-title>Acta Crystallographica Section E: Crystallographic Communications</journal-title>
</journal-title-group>
<issn pub-type="epub">2056-9890</issn>
<publisher>
<publisher-name>International Union of Crystallography</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27555954</article-id>
<article-id pub-id-type="pmc">4992929</article-id>
<article-id pub-id-type="publisher-id">wm5292</article-id>
<article-id pub-id-type="doi">10.1107/S2056989016009981</article-id>
<article-id pub-id-type="coden">ACSECI</article-id>
<article-id pub-id-type="pii">S2056989016009981</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Communications</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The alluaudite-type crystal structures of Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
and Ag
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
</article-title>
<alt-title>
<italic>Na
<sub>2</sub>
(Co
<sub>0.5</sub>
Fe
<sub>0.5</sub>
)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
and Ag
<sub>1.97</sub>
(Co
<sub>0.49</sub>
Fe
<sub>0.51</sub>
)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Hadouchi</surname>
<given-names>Mohammed</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
<xref ref-type="corresp" rid="cor">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Assani</surname>
<given-names>Abderrazzak</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Saadi</surname>
<given-names>Mohamed</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>El Ammari</surname>
<given-names>Lahcen</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<aff id="a">
<label>a</label>
Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor">Correspondence e-mail:
<email>mhadouchi@yahoo.com</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<day>01</day>
<month>7</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>24</day>
<month>6</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>24</day>
<month>6</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>72</volume>
<issue>Pt 7</issue>
<issue-id pub-id-type="publisher-id">e160700</issue-id>
<fpage>1017</fpage>
<lpage>1020</lpage>
<history>
<date date-type="received">
<day>07</day>
<month>5</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>19</day>
<month>6</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© Hadouchi et al. 2016</copyright-statement>
<copyright-year>2016</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0/uk/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.</license-p>
</license>
</permissions>
<self-uri xlink:type="simple" xlink:href="http://dx.doi.org/10.1107/S2056989016009981">A full version of this article is available from Crystallography Journals Online.</self-uri>
<abstract abstract-type="toc">
<p>The transition metal orthovanadates Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
and Ag
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
are isotypic and crystallize in an alluaudite-type structure.</p>
</abstract>
<abstract>
<p>Single crystals of the title compounds, disodium di(cobalt/iron) cobalt tris­(orthovanadate), Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
, and disilver di(cobalt/iron) cobalt tris­(orthovanadate), Ag
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
, were grown from a melt consisting of stoichiometric mixtures of three metallic cation precursors and vanadium pentoxide. The difficulty to distinguish between cobalt and iron by using X-ray diffraction alone forced us to explore several models, assuming an oxidation state of +II for Co and +III for Fe and a partial cationic disorder in the Wyckoff site 8
<italic>f</italic>
containing a mixture of Co and Fe with a statistical distribution for the Na compound and an occupancy ratio of 0.4875:0.5125 (Co:Fe) for the Ag compound. The alluaudite-type structure is made up from [10-1] chains of [(Co,Fe)
<sub>2</sub>
O
<sub>10</sub>
] double octa­hedra linked by highly distorted [CoO
<sub>6</sub>
] octa­hedra
<italic>via</italic>
a common edge. The chains are linked through VO
<sub>4</sub>
tetra­hedra, forming polyhedral sheets perpendicular to [010]. The stacking of the sheets defines two types of channels parallel to [001] where the Na
<sup>+</sup>
cations (both with full occupancy) or Ag
<sup>+</sup>
cations (one with occupancy 0.97) are located.</p>
</abstract>
<kwd-group>
<kwd>crystal structure</kwd>
<kwd>transition metal vanadates</kwd>
<kwd>solid-state reaction synthesis</kwd>
<kwd>alluaudite-like structure</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Chemical context   </title>
<p>The needs of the society on the ‘energy front’ is one of the greatest challenges for present and future times. Materials with three-dimensional framework structures delimiting channels, as built of transition metal cations and polyanions (
<italic>X</italic>
O
<sub>4</sub>
)
<sup>
<italic>n</italic>
</sup>
, have become a subject of very intensive research worldwide since the discovery of the electrochemical activity of LiFePO
<sub>4</sub>
(Padhi
<italic>et al.</italic>
, 1997
<italic>a</italic>
<xref ref-type="bibr" rid="bb14"></xref>
,
<italic>b</italic>
<xref ref-type="bibr" rid="bb15"></xref>
). Hence, new transition metal-based materials adopting open three-dimensional framework structures have been synthesized and investigated by us over the last years. Thereby our attention has focused on the synthesis and characterization of new materials belonging to the family of alluaudites that, according to Moore (1971
<xref ref-type="bibr" rid="bb12"></xref>
), has the general formula
<italic>A</italic>
(1)
<italic>A</italic>
(2)
<italic>M</italic>
(1)
<italic>M</italic>
(2)
<sub>2</sub>
(
<italic>X</italic>
O
<sub>4</sub>
)
<sub>3</sub>
. The
<italic>A</italic>
sites may be occupied by larger mono- and/or divalent cations, while the
<italic>M</italic>
sites correspond to bi- or trivalent transition metal cations in an octa­hedral environment. Alluaudite-like compounds, having open-framework structures, allow a certain prediction of physical properties and promising practical applications in several fields. For instance, alluaudite-like compounds exhibit electronic and/or ionic conductivity, as has been shown by Warner
<italic>et al.</italic>
(1993
<xref ref-type="bibr" rid="bb18"></xref>
, 1994
<xref ref-type="bibr" rid="bb19"></xref>
), which make them worthy of investigating their electrochemical performance. Mainly, several alluaudite-like phosphates have been tested as anode and/or cathode materials in Li-ion and/or Na-ion batteries. For example, Li
<sub>0.78</sub>
Na
<sub>0.22</sub>
MnPO
<sub>4</sub>
was proposed by Kim
<italic>et al.</italic>
(2014
<xref ref-type="bibr" rid="bb11"></xref>
) as a promising new positive electrode for Li-ion batteries. The sulfates Na
<sub>2.44</sub>
Mn
<sub>1.79</sub>
(SO
<sub>4</sub>
)
<sub>3</sub>
(Dwibedi
<italic>et al.</italic>
, 2015
<xref ref-type="bibr" rid="bb7"></xref>
) and Na
<sub>2+2
<italic>x</italic>
</sub>
Fe
<sub>2−
<italic>x</italic>
</sub>
(SO
<sub>4</sub>
)
<sub>3</sub>
(Dwibedi
<italic>et al.</italic>
, 2016
<xref ref-type="bibr" rid="bb8"></xref>
) were tested as electroactive materials for Na-ion batteries. In this context, we have investigated
<italic>pseudo</italic>
-ternary
<italic>A</italic>
<sub>2</sub>
O/
<italic>M</italic>
O/P
<sub>2</sub>
O
<sub>5</sub>
,
<italic>pseudo</italic>
-quaternary
<italic>A</italic>
<sub>2</sub>
O/
<italic>M</italic>
O/Fe
<sub>2</sub>
O
<sub>3</sub>
/P
<sub>2</sub>
O
<sub>5</sub>
, and more recently,
<italic>A</italic>
<sub>2</sub>
O/
<italic>M</italic>
O/Fe
<sub>2</sub>
O
<sub>3</sub>
/V
<sub>2</sub>
O
<sub>5</sub>
systems synthesized
<italic>via</italic>
hydro­thermal or solid-state routes, resulting in new alluaudite-like phosphates AgMg
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
PO
<sub>4</sub>
(Assani
<italic>et al.</italic>
, 2011
<xref ref-type="bibr" rid="bb1"></xref>
), NaMg
<sub>3</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
PO
<sub>4</sub>
(Ould Saleck
<italic>et al.</italic>
, 2015
<xref ref-type="bibr" rid="bb13"></xref>
), Na
<sub>2</sub>
Co
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
(Bouraima
<italic>et al.</italic>
, 2015
<xref ref-type="bibr" rid="bb3"></xref>
), Na
<sub>1.67</sub>
Zn
<sub>1.67</sub>
Fe
<sub>1.33</sub>
(PO
<sub>4</sub>
)
<sub>3</sub>
(Khmiyas
<italic>et al.</italic>
, 2015
<xref ref-type="bibr" rid="bb10"></xref>
), and most lately, the first alluaudite-like vanadate (Na
<sub>0.70</sub>
)(Na
<sub>0.70</sub>
Mn
<sub>0.30</sub>
)(Fe
<sup>3+</sup>
/Fe
<sup>2+</sup>
)
<sub>2</sub>
Fe
<sup>2+</sup>
(VO
<sub>4</sub>
)
<sub>3</sub>
(Benhsina
<italic>et al.</italic>
, 2016
<xref ref-type="bibr" rid="bb2"></xref>
). As a continuation of our studies of phases with alluaudite-like structures, the present work reports details of the synthesis and crystal structures of the compounds
<italic>M</italic>
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
(
<italic>M</italic>
= Na, Ag).</p>
</sec>
<sec id="sec2">
<title>Structural commentary   </title>
<p>The two alluaudite-like vanadates, Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
and Ag
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
, are isotypic. In the structure of Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
all sites are fully occupied and only the cationic site on Wyckoff position 8
<italic>f</italic>
shows disorder with a statistical distribution of Co and Fe, assuming oxidation state +II for Co and +III for Fe. In the structure of Ag
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
a small deficit in the Ag2 site was considered (occupancy 0.97) that is compensated by a slight excess of Fe (occupancy 0.51) compared with Co (occupancy 0.49) in the 8
<italic>f</italic>
mixed site, again under the assumption of oxidation state +II for Co and +III for Fe. The (Fe1,Co1) and Co2 sites have octa­hedral environments while the vanadium atoms are located in tetra­hedral environments. The sequence of different polyhedra forming the principal building units are shown in Figs. 1
<xref ref-type="fig" rid="fig1"></xref>
and 2
<xref ref-type="fig" rid="fig2"></xref>
. The mixed-occupied sites containing the (Fe1,Co1) atoms form [(Co,Fe)
<sub>2</sub>
O
<sub>10</sub>
] dimers through edge-sharing of a single octa­hedron and are linked by highly distorted [CoO
<sub>6</sub>
] octa­hedra. The linkage of alternating [CoO
<sub>6</sub>
] octa­hedra and [(Co,Fe)
<sub>2</sub>
O
<sub>10</sub>
] double octa­hedra leads to the formation of infinite chains along the [10
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
] direction (Fig. 3
<xref ref-type="fig" rid="fig3"></xref>
). The connection of these chains through VO
<sub>4</sub>
tetra­hedra makes up sheets perpendicular to [010], as shown in Fig. 4
<xref ref-type="fig" rid="fig4"></xref>
. The stacking of these sheets defines an open three-dimensional framework delimiting two types of channels parallel to [001] where the
<italic>M</italic>
<sup>+</sup>
cations (
<italic>M</italic>
= Na, Ag) are situated (Fig. 5
<xref ref-type="fig" rid="fig5"></xref>
). In the sodium compound, the Na1 site is coordinated by eight oxygen atoms with Na1—O distances in the range between 2.4118 (14) and 2.8820 (15) Å, while Na2 is surrounded by six oxygen atoms in a range between 2.4347 (14) and 2.780 (2) Å. In the silver compound, the Ag1 site is coordinated by six oxygen atoms in a range between 2.4244 (12) and 2.5960 (13) Å, whereas the Ag2 site is surrounded by four oxygen atoms in a range between 2.4708 (14) and 2.4779 (14) Å.</p>
</sec>
<sec id="sec3">
<title>Synthesis and crystallization   </title>
<p>The target compounds were obtained by solid-state reactions. A starting mixture of metallic iron (+ a few drops of HNO
<sub>3</sub>
), Co(CH
<sub>3</sub>
COO)
<sub>2</sub>
·4H
<sub>2</sub>
O, NH
<sub>4</sub>
VO
<sub>3</sub>
and NaNO
<sub>3</sub>
or AgNO
<sub>3</sub>
was mixed in molar ratios
<italic>M</italic>
: Co: Fe: V = 2: 2: 1: 3 (
<italic>M</italic>
= Na or Ag). The mixture was placed in a platinum crucible and then heated gradually until melting (1253 K). Single crystals were obtained by cooling the molten product to room temperature at rate of 5 Kh
<sup>−1</sup>
. The resulting mixtures contained pink crystals (for
<italic>M</italic>
= Na) or green crystals (for
<italic>M</italic>
= Ag) of a suitable size for the X-ray diffraction study. The powder X-ray diffraction patterns are in good agreement with the simulated patterns, generated from the final structure models of the two compounds (see supplementary material).</p>
</sec>
<sec id="sec4">
<title>Refinement   </title>
<p>Crystal data, data collection and structure refinement details for both structures are summarized in Table 1
<xref ref-type="table" rid="table1"></xref>
.</p>
<p>As a matter of fact, the distinction between cobalt and iron by X-ray diffraction is nearly impossible. Therefore we have examined several crystallographic models during crystal structure refinements of the title compounds. Based on the stoichiometric ratio of 1:2 for iron and cobalt in the starting materials, we assumed the same ratio in the crystal structures with oxidation states of +II for cobalt and and +III for iron. In the final model, Fe1 and Co1 atoms are constrained to share the same general position 8
<italic>f</italic>
of the space group
<italic>C</italic>
2/
<italic>c</italic>
. Electrical neutrality and bond valence sum calculations of all atoms (Brown & Altermatt, 1985
<xref ref-type="bibr" rid="bb5"></xref>
) in the structures are in reasonable agreement with the final models. Bond valence sums (in valence units) for Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
are 1.07 for Na1, 0.86 for Na2, 2.24 for Co1, 1.97 for Co2, 2.69 for Fe1, 5.01 for V1, and 4.99 for V2. Values of the bond valence sums calculated for all oxygen atoms are between 1.90 and 2.07. Bond valence sums for Ag
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
are 1.01 for Ag1, O.72 for Ag2, 2.27 for Co1, 1.98 for Co2, 2.72 for Fe1, 4.99 for V1, and 4.94 for V2. The values of the O atoms are in the range 1.94 to 2.03. A very similar cationic distribution was observed by Yakubovich
<italic>et al.</italic>
(1977
<xref ref-type="bibr" rid="bb21"></xref>
) in the alluaudite-type phosphate Na
<sub>2</sub>
(Fe
<sup>3+</sup>
/Fe
<sup>2+</sup>
)
<sub>2</sub>
Fe
<sup>2+</sup>
(PO
<sub>4</sub>
)
<sub>3</sub>
.</p>
<p>Refinement of Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
: Co1 and Fe1 were constrained to share the same site in a statistical occupation with common displacement parameters. Reflection (132) probably was affected by the beam-stop and was omitted from the refinement. The remaining electron densities (max/min) in the final Fourier map were 0.46 Å and 0.71 Å away from atoms Na1 and Na2, respectively.</p>
<p>Refinement of Ag
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
: The coordinates and displacement factors of Co1 and Fe1 atoms were refined independent from each other. An underoccupation of the Ag2 site was modelled with an occupancy of 0.97 which made it necessary to constrain the occupancies of the Co1 site (0.4875) and Fe1 site (0.5125) for electroneutrality. The remaining electron densities (max/min) in the final Fourier map were 0.61 Å and 0.66 Å away from Ag2.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data">
<p>Crystal structure: contains datablock(s) I, II, global. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S2056989016009981/wm5292sup1.cif">10.1107/S2056989016009981/wm5292sup1.cif</ext-link>
</p>
<media mimetype="chemical" mime-subtype="x-cif" xlink:href="e-72-01017-sup1.cif" xlink:type="simple" id="d36e177" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Structure factors: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S2056989016009981/wm5292Isup2.hkl">10.1107/S2056989016009981/wm5292Isup2.hkl</ext-link>
</p>
<media mimetype="text" mime-subtype="plain" xlink:href="e-72-01017-Isup2.hkl" xlink:type="simple" id="d36e184" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Structure factors: contains datablock(s) II. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S2056989016009981/wm5292IIsup3.hkl">10.1107/S2056989016009981/wm5292IIsup3.hkl</ext-link>
</p>
<media mimetype="text" mime-subtype="plain" xlink:href="e-72-01017-IIsup3.hkl" xlink:type="simple" id="d36e191" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>CCDC references:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/cr.cgi?rm=csd&csdid=1486597">1486597</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/cr.cgi?rm=csd&csdid=1486596">1486596</ext-link>
</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Additional supporting information:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsupfiles?wm5292&file=wm5292sup0.html&mime=text/html">crystallographic information</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendcif?wm5292sup1&Qmime=cif">3D view</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?wm5292&checkcif=yes">checkCIF report</ext-link>
</p>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>This work was done with the support of CNRST in the Excellence Research Scholarships Program. The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University in Rabat, Morocco, for the financial support.</p>
</ack>
<app-group>
<app>
<title>supplementary crystallographic information</title>
<sec id="tablewrapcrystaldatalong">
<title>Crystal data</title>
<table-wrap position="anchor" id="d1e34">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Ag
<sub>1.97</sub>
(Co
<sub>0.49</sub>
Fe
<sub>0.51</sub>
)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
(000) = 1350</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 730.96</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
<sub>x</sub>
= 5.053 Mg m
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Monoclinic,
<italic>C</italic>
2/
<italic>c</italic>
</td>
<td rowspan="1" colspan="1">Mo
<italic>K</italic>
α radiation, λ = 0.71073 Å</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>a</italic>
= 11.7846 (4) Å</td>
<td rowspan="1" colspan="1">Cell parameters from 2113 reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>b</italic>
= 12.8314 (4) Å</td>
<td rowspan="1" colspan="1">θ = 2.4–35.0°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>c</italic>
= 6.8064 (2) Å</td>
<td rowspan="1" colspan="1">µ = 11.60 mm
<sup></sup>
<sup>1</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">β = 111.001 (1)°</td>
<td rowspan="1" colspan="1">
<italic>T</italic>
= 296 K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>V</italic>
= 960.85 (5) Å
<sup>3</sup>
</td>
<td rowspan="1" colspan="1">Block, green</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>Z</italic>
= 4</td>
<td rowspan="1" colspan="1">0.34 × 0.22 × 0.17 mm</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapdatacollectionlong">
<title>Data collection</title>
<table-wrap position="anchor" id="d1e164">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Bruker X8 APEX diffractometer</td>
<td rowspan="1" colspan="1">2113 independent reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Radiation source: fine-focus sealed tube</td>
<td rowspan="1" colspan="1">1987 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Graphite monochromator</td>
<td rowspan="1" colspan="1">
<italic>R</italic>
<sub>int</sub>
= 0.039</td>
</tr>
<tr>
<td rowspan="1" colspan="1">φ and ω scans</td>
<td rowspan="1" colspan="1">θ
<sub>max</sub>
= 35.0°, θ
<sub>min</sub>
= 2.4°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Absorption correction: multi-scan (
<italic>SADABS</italic>
; Bruker, 2009)</td>
<td rowspan="1" colspan="1">
<italic>h</italic>
= −18→18</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>T</italic>
<sub>min</sub>
= 0.439,
<italic>T</italic>
<sub>max</sub>
= 0.747</td>
<td rowspan="1" colspan="1">
<italic>k</italic>
= −20→20</td>
</tr>
<tr>
<td rowspan="1" colspan="1">15366 measured reflections</td>
<td rowspan="1" colspan="1">
<italic>l</italic>
= −9→10</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewraprefinementdatalong">
<title>Refinement</title>
<table-wrap position="anchor" id="d1e281">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Refinement on
<italic>F</italic>
<sup>2</sup>
</td>
<td rowspan="1" colspan="1">0 restraints</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Least-squares matrix: full</td>
<td rowspan="1" colspan="1">
<italic>w</italic>
= 1/[σ
<sup>2</sup>
(
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
) + (0.0093
<italic>P</italic>
)
<sup>2</sup>
+ 2.3975
<italic>P</italic>
] where
<italic>P</italic>
= (
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
+ 2
<italic>F</italic>
<sub>c</sub>
<sup>2</sup>
)/3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.018</td>
<td rowspan="1" colspan="1">(Δ/σ)
<sub>max</sub>
= 0.001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.041</td>
<td rowspan="1" colspan="1">Δρ
<sub>max</sub>
= 0.80 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>S</italic>
= 1.14</td>
<td rowspan="1" colspan="1">Δρ
<sub>min</sub>
= −1.66 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">2113 reflections</td>
<td rowspan="1" colspan="1">Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc
<sup>*</sup>
=kFc[1+0.001xFc
<sup>2</sup>
λ
<sup>3</sup>
/sin(2θ)]
<sup>-1/4</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">104 parameters</td>
<td rowspan="1" colspan="1">Extinction coefficient: 0.00190 (7)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="specialdetails">
<title>Special details</title>
<table-wrap position="anchor" id="d1e448">
<table rules="all" frame="box" style="table-layout:fixed">
<tr>
<td rowspan="1" colspan="1">Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapcoords">
<title>Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e469">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>x</italic>
</td>
<td rowspan="1" colspan="1">
<italic>y</italic>
</td>
<td rowspan="1" colspan="1">
<italic>z</italic>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sub>iso</sub>
*/
<italic>U</italic>
<sub>eq</sub>
</td>
<td rowspan="1" colspan="1">Occ. (<1)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag1</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.02187 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag2</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.50840 (2)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.02578 (6)</td>
<td rowspan="1" colspan="1">0.97</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.2919 (4)</td>
<td rowspan="1" colspan="1">0.6616 (4)</td>
<td rowspan="1" colspan="1">0.3791 (8)</td>
<td rowspan="1" colspan="1">0.0066 (12)</td>
<td rowspan="1" colspan="1">0.4875</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Fe1</td>
<td rowspan="1" colspan="1">0.2923 (4)</td>
<td rowspan="1" colspan="1">0.6620 (4)</td>
<td rowspan="1" colspan="1">0.3814 (8)</td>
<td rowspan="1" colspan="1">0.0061 (12)</td>
<td rowspan="1" colspan="1">0.5125</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.73364 (2)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.00755 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">V1</td>
<td rowspan="1" colspan="1">0.27106 (2)</td>
<td rowspan="1" colspan="1">0.38672 (2)</td>
<td rowspan="1" colspan="1">0.38255 (4)</td>
<td rowspan="1" colspan="1">0.00573 (5)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">V2</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.70581 (3)</td>
<td rowspan="1" colspan="1">0.2500</td>
<td rowspan="1" colspan="1">0.00609 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.34160 (11)</td>
<td rowspan="1" colspan="1">0.32595 (9)</td>
<td rowspan="1" colspan="1">0.62391 (19)</td>
<td rowspan="1" colspan="1">0.0103 (2)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.28472 (11)</td>
<td rowspan="1" colspan="1">0.31626 (10)</td>
<td rowspan="1" colspan="1">0.17435 (19)</td>
<td rowspan="1" colspan="1">0.0109 (2)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.12124 (11)</td>
<td rowspan="1" colspan="1">0.39463 (10)</td>
<td rowspan="1" colspan="1">0.3352 (2)</td>
<td rowspan="1" colspan="1">0.0121 (2)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.33731 (12)</td>
<td rowspan="1" colspan="1">0.50845 (9)</td>
<td rowspan="1" colspan="1">0.3988 (2)</td>
<td rowspan="1" colspan="1">0.0123 (2)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.03699 (11)</td>
<td rowspan="1" colspan="1">0.77654 (10)</td>
<td rowspan="1" colspan="1">0.48520 (19)</td>
<td rowspan="1" colspan="1">0.0100 (2)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.11558 (11)</td>
<td rowspan="1" colspan="1">0.62338 (9)</td>
<td rowspan="1" colspan="1">0.2663 (2)</td>
<td rowspan="1" colspan="1">0.0114 (2)</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapadps">
<title>Atomic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e666">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>11</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>22</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>33</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>12</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>13</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>23</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag1</td>
<td rowspan="1" colspan="1">0.03724 (13)</td>
<td rowspan="1" colspan="1">0.01563 (9)</td>
<td rowspan="1" colspan="1">0.01248 (9)</td>
<td rowspan="1" colspan="1">−0.01172 (8)</td>
<td rowspan="1" colspan="1">0.00860 (8)</td>
<td rowspan="1" colspan="1">−0.00330 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag2</td>
<td rowspan="1" colspan="1">0.01181 (9)</td>
<td rowspan="1" colspan="1">0.04845 (15)</td>
<td rowspan="1" colspan="1">0.01618 (10)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.00390 (8)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.0072 (18)</td>
<td rowspan="1" colspan="1">0.0061 (17)</td>
<td rowspan="1" colspan="1">0.0085 (18)</td>
<td rowspan="1" colspan="1">0.0017 (12)</td>
<td rowspan="1" colspan="1">0.0052 (12)</td>
<td rowspan="1" colspan="1">−0.0004 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Fe1</td>
<td rowspan="1" colspan="1">0.0059 (17)</td>
<td rowspan="1" colspan="1">0.0082 (18)</td>
<td rowspan="1" colspan="1">0.0032 (15)</td>
<td rowspan="1" colspan="1">−0.0027 (12)</td>
<td rowspan="1" colspan="1">0.0007 (11)</td>
<td rowspan="1" colspan="1">−0.0007 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2</td>
<td rowspan="1" colspan="1">0.00710 (12)</td>
<td rowspan="1" colspan="1">0.00870 (12)</td>
<td rowspan="1" colspan="1">0.00779 (13)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.00380 (10)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">V1</td>
<td rowspan="1" colspan="1">0.00651 (10)</td>
<td rowspan="1" colspan="1">0.00586 (10)</td>
<td rowspan="1" colspan="1">0.00488 (10)</td>
<td rowspan="1" colspan="1">0.00018 (7)</td>
<td rowspan="1" colspan="1">0.00212 (8)</td>
<td rowspan="1" colspan="1">0.00004 (7)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">V2</td>
<td rowspan="1" colspan="1">0.00679 (14)</td>
<td rowspan="1" colspan="1">0.00648 (13)</td>
<td rowspan="1" colspan="1">0.00465 (14)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.00161 (11)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.0119 (5)</td>
<td rowspan="1" colspan="1">0.0111 (5)</td>
<td rowspan="1" colspan="1">0.0081 (5)</td>
<td rowspan="1" colspan="1">0.0027 (4)</td>
<td rowspan="1" colspan="1">0.0038 (4)</td>
<td rowspan="1" colspan="1">0.0013 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.0129 (5)</td>
<td rowspan="1" colspan="1">0.0121 (5)</td>
<td rowspan="1" colspan="1">0.0083 (5)</td>
<td rowspan="1" colspan="1">−0.0007 (4)</td>
<td rowspan="1" colspan="1">0.0045 (4)</td>
<td rowspan="1" colspan="1">−0.0007 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.0094 (5)</td>
<td rowspan="1" colspan="1">0.0113 (5)</td>
<td rowspan="1" colspan="1">0.0156 (6)</td>
<td rowspan="1" colspan="1">0.0007 (4)</td>
<td rowspan="1" colspan="1">0.0045 (4)</td>
<td rowspan="1" colspan="1">−0.0005 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.0132 (5)</td>
<td rowspan="1" colspan="1">0.0087 (5)</td>
<td rowspan="1" colspan="1">0.0156 (6)</td>
<td rowspan="1" colspan="1">−0.0002 (4)</td>
<td rowspan="1" colspan="1">0.0060 (5)</td>
<td rowspan="1" colspan="1">0.0010 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.0091 (5)</td>
<td rowspan="1" colspan="1">0.0136 (5)</td>
<td rowspan="1" colspan="1">0.0078 (5)</td>
<td rowspan="1" colspan="1">−0.0018 (4)</td>
<td rowspan="1" colspan="1">0.0036 (4)</td>
<td rowspan="1" colspan="1">−0.0019 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.0088 (5)</td>
<td rowspan="1" colspan="1">0.0103 (5)</td>
<td rowspan="1" colspan="1">0.0137 (5)</td>
<td rowspan="1" colspan="1">0.0000 (4)</td>
<td rowspan="1" colspan="1">0.0024 (4)</td>
<td rowspan="1" colspan="1">−0.0021 (4)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapgeomlong">
<title>Geometric parameters (Å, º)</title>
<table-wrap position="anchor" id="d1e930">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="4">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Ag1—O6
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.4244 (12)</td>
<td rowspan="1" colspan="1">Fe1—O1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.040 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag1—O6</td>
<td rowspan="1" colspan="1">2.4244 (12)</td>
<td rowspan="1" colspan="1">Fe1—O5
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">2.045 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag1—O3
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.5051 (13)</td>
<td rowspan="1" colspan="1">Fe1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.047 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag1—O3
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.5051 (13)</td>
<td rowspan="1" colspan="1">Fe1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">2.154 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag1—O3</td>
<td rowspan="1" colspan="1">2.5960 (13)</td>
<td rowspan="1" colspan="1">Co2—O5
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">2.0747 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.5960 (13)</td>
<td rowspan="1" colspan="1">Co2—O5</td>
<td rowspan="1" colspan="1">2.0748 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag2—O4</td>
<td rowspan="1" colspan="1">2.4708 (14)</td>
<td rowspan="1" colspan="1">Co2—O1
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">2.1156 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag2—O4
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.4709 (14)</td>
<td rowspan="1" colspan="1">Co2—O1
<sup>xi</sup>
</td>
<td rowspan="1" colspan="1">2.1156 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag2—O4
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.4779 (14)</td>
<td rowspan="1" colspan="1">Co2—O3
<sup>xii</sup>
</td>
<td rowspan="1" colspan="1">2.1197 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag2—O4
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">2.4779 (14)</td>
<td rowspan="1" colspan="1">Co2—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.1197 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O6</td>
<td rowspan="1" colspan="1">2.001 (5)</td>
<td rowspan="1" colspan="1">V1—O3</td>
<td rowspan="1" colspan="1">1.6804 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.028 (6)</td>
<td rowspan="1" colspan="1">V1—O4</td>
<td rowspan="1" colspan="1">1.7319 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O4</td>
<td rowspan="1" colspan="1">2.028 (5)</td>
<td rowspan="1" colspan="1">V1—O2</td>
<td rowspan="1" colspan="1">1.7363 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O5
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">2.053 (5)</td>
<td rowspan="1" colspan="1">V1—O1</td>
<td rowspan="1" colspan="1">1.7375 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.061 (5)</td>
<td rowspan="1" colspan="1">V2—O6</td>
<td rowspan="1" colspan="1">1.6965 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">2.157 (5)</td>
<td rowspan="1" colspan="1">V2—O6
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">1.6965 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Fe1—O6</td>
<td rowspan="1" colspan="1">2.007 (5)</td>
<td rowspan="1" colspan="1">V2—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">1.7539 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Fe1—O4</td>
<td rowspan="1" colspan="1">2.033 (5)</td>
<td rowspan="1" colspan="1">V2—O5</td>
<td rowspan="1" colspan="1">1.7539 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—Ag1—O6</td>
<td rowspan="1" colspan="1">180.0</td>
<td rowspan="1" colspan="1">O6—Fe1—O5
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">170.5 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—Ag1—O3
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">105.99 (4)</td>
<td rowspan="1" colspan="1">O4—Fe1—O5
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">98.8 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Ag1—O3
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">74.01 (4)</td>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Fe1—O5
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">79.3 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—Ag1—O3
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">74.01 (4)</td>
<td rowspan="1" colspan="1">O6—Fe1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">90.7 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Ag1—O3
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">105.99 (4)</td>
<td rowspan="1" colspan="1">O4—Fe1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">100.2 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>ii</sup>
—Ag1—O3
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">180.0</td>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Fe1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">162.1 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—Ag1—O3</td>
<td rowspan="1" colspan="1">107.57 (4)</td>
<td rowspan="1" colspan="1">O5
<sup>vii</sup>
—Fe1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">83.95 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Ag1—O3</td>
<td rowspan="1" colspan="1">72.43 (4)</td>
<td rowspan="1" colspan="1">O6—Fe1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">81.09 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>ii</sup>
—Ag1—O3</td>
<td rowspan="1" colspan="1">116.87 (5)</td>
<td rowspan="1" colspan="1">O4—Fe1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">170.3 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>iii</sup>
—Ag1—O3</td>
<td rowspan="1" colspan="1">63.13 (5)</td>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Fe1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">90.6 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—Ag1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">72.43 (4)</td>
<td rowspan="1" colspan="1">O5
<sup>vii</sup>
—Fe1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">90.5 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Ag1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">107.57 (4)</td>
<td rowspan="1" colspan="1">O2
<sup>v</sup>
—Fe1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">83.31 (18)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>ii</sup>
—Ag1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">63.13 (5)</td>
<td rowspan="1" colspan="1">O5
<sup>ix</sup>
—Co2—O5</td>
<td rowspan="1" colspan="1">149.23 (7)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>iii</sup>
—Ag1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">116.87 (5)</td>
<td rowspan="1" colspan="1">O5
<sup>ix</sup>
—Co2—O1
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">85.91 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—Ag1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">180.0</td>
<td rowspan="1" colspan="1">O5—Co2—O1
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">76.96 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Ag2—O4
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">179.97 (6)</td>
<td rowspan="1" colspan="1">O5
<sup>ix</sup>
—Co2—O1
<sup>xi</sup>
</td>
<td rowspan="1" colspan="1">76.96 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Ag2—O4
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">87.12 (4)</td>
<td rowspan="1" colspan="1">O5—Co2—O1
<sup>xi</sup>
</td>
<td rowspan="1" colspan="1">85.91 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>iv</sup>
—Ag2—O4
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">92.89 (4)</td>
<td rowspan="1" colspan="1">O1
<sup>x</sup>
—Co2—O1
<sup>xi</sup>
</td>
<td rowspan="1" colspan="1">111.91 (7)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Ag2—O4
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">92.89 (4)</td>
<td rowspan="1" colspan="1">O5
<sup>ix</sup>
—Co2—O3
<sup>xii</sup>
</td>
<td rowspan="1" colspan="1">96.48 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>iv</sup>
—Ag2—O4
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">87.12 (4)</td>
<td rowspan="1" colspan="1">O5—Co2—O3
<sup>xii</sup>
</td>
<td rowspan="1" colspan="1">107.40 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>v</sup>
—Ag2—O4
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">169.99 (6)</td>
<td rowspan="1" colspan="1">O1
<sup>x</sup>
—Co2—O3
<sup>xii</sup>
</td>
<td rowspan="1" colspan="1">162.94 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Co1—O1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">105.6 (2)</td>
<td rowspan="1" colspan="1">O1
<sup>xi</sup>
—Co2—O3
<sup>xii</sup>
</td>
<td rowspan="1" colspan="1">85.03 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Co1—O4</td>
<td rowspan="1" colspan="1">90.1 (2)</td>
<td rowspan="1" colspan="1">O5
<sup>ix</sup>
—Co2—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">107.40 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Co1—O4</td>
<td rowspan="1" colspan="1">89.02 (19)</td>
<td rowspan="1" colspan="1">O5—Co2—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">96.48 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Co1—O5
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">170.0 (3)</td>
<td rowspan="1" colspan="1">O1
<sup>x</sup>
—Co2—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">85.03 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Co1—O5
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">79.4 (2)</td>
<td rowspan="1" colspan="1">O1
<sup>xi</sup>
—Co2—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">162.94 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Co1—O5
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">98.73 (19)</td>
<td rowspan="1" colspan="1">O3
<sup>xii</sup>
—Co2—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">78.12 (7)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Co1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">90.4 (2)</td>
<td rowspan="1" colspan="1">O3—V1—O4</td>
<td rowspan="1" colspan="1">112.11 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Co1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">161.7 (3)</td>
<td rowspan="1" colspan="1">O3—V1—O2</td>
<td rowspan="1" colspan="1">105.86 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Co1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">99.9 (2)</td>
<td rowspan="1" colspan="1">O4—V1—O2</td>
<td rowspan="1" colspan="1">110.50 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5
<sup>vii</sup>
—Co1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">83.40 (18)</td>
<td rowspan="1" colspan="1">O3—V1—O1</td>
<td rowspan="1" colspan="1">108.79 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Co1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">81.15 (16)</td>
<td rowspan="1" colspan="1">O4—V1—O1</td>
<td rowspan="1" colspan="1">107.01 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Co1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">90.9 (2)</td>
<td rowspan="1" colspan="1">O2—V1—O1</td>
<td rowspan="1" colspan="1">112.65 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Co1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">170.8 (3)</td>
<td rowspan="1" colspan="1">O6—V2—O6
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">102.86 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5
<sup>vii</sup>
—Co1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">90.3 (2)</td>
<td rowspan="1" colspan="1">O6—V2—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">108.27 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2
<sup>v</sup>
—Co1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">82.90 (17)</td>
<td rowspan="1" colspan="1">O6
<sup>iii</sup>
—V2—O5
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">109.38 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Fe1—O4</td>
<td rowspan="1" colspan="1">89.8 (2)</td>
<td rowspan="1" colspan="1">O6—V2—O5</td>
<td rowspan="1" colspan="1">109.37 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Fe1—O1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">105.0 (2)</td>
<td rowspan="1" colspan="1">O6
<sup>iii</sup>
—V2—O5</td>
<td rowspan="1" colspan="1">108.27 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Fe1—O1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">88.6 (2)</td>
<td rowspan="1" colspan="1">O5
<sup>iii</sup>
—V2—O5</td>
<td rowspan="1" colspan="1">117.68 (8)</td>
</tr>
</table>
</table-wrap>
<p>Symmetry codes: (i) −
<italic>x</italic>
, −
<italic>y</italic>
+1, −
<italic>z</italic>
; (ii)
<italic>x</italic>
, −
<italic>y</italic>
+1,
<italic>z</italic>
−1/2; (iii) −
<italic>x</italic>
,
<italic>y</italic>
, −
<italic>z</italic>
+1/2; (iv) −
<italic>x</italic>
+1,
<italic>y</italic>
, −
<italic>z</italic>
+3/2; (v)
<italic>x</italic>
, −
<italic>y</italic>
+1,
<italic>z</italic>
+1/2; (vi) −
<italic>x</italic>
+1, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (vii) −
<italic>x</italic>
+1/2, −
<italic>y</italic>
+3/2, −
<italic>z</italic>
+1; (viii) −
<italic>x</italic>
+1/2,
<italic>y</italic>
+1/2, −
<italic>z</italic>
+1/2; (ix) −
<italic>x</italic>
,
<italic>y</italic>
, −
<italic>z</italic>
+3/2; (x) −
<italic>x</italic>
+1/2,
<italic>y</italic>
+1/2, −
<italic>z</italic>
+3/2; (xi)
<italic>x</italic>
−1/2,
<italic>y</italic>
+1/2,
<italic>z</italic>
; (xii) −
<italic>x</italic>
, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1.</p>
</sec>
</app>
</app-group>
<ref-list>
<title>References</title>
<ref id="bb1">
<mixed-citation publication-type="other">Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011).
<italic>Acta Cryst.</italic>
E
<bold>67</bold>
, i5.</mixed-citation>
</ref>
<ref id="bb2">
<mixed-citation publication-type="other">Benhsina, E., Assani, A., Saadi, M. & El Ammari, L. (2016).
<italic>Acta Cryst.</italic>
E
<bold>72</bold>
, 220–222.</mixed-citation>
</ref>
<ref id="bb3">
<mixed-citation publication-type="other">Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015).
<italic>Acta Cryst.</italic>
E
<bold>71</bold>
, 558–560.</mixed-citation>
</ref>
<ref id="bb4">
<mixed-citation publication-type="other">Brandenburg, K. (2006).
<italic>DIAMOND</italic>
. Crystal Impact GbR, Bonn, Germany.</mixed-citation>
</ref>
<ref id="bb5">
<mixed-citation publication-type="other">Brown, I. D. & Altermatt, D. (1985).
<italic>Acta Cryst.</italic>
B
<bold>41</bold>
, 244–247.</mixed-citation>
</ref>
<ref id="bb6">
<mixed-citation publication-type="other">Bruker (2009).
<italic>APEX2</italic>
,
<italic>SAINT</italic>
and
<italic>SADABS</italic>
. Bruker AXS Inc., Madison, Wisconsin, USA.</mixed-citation>
</ref>
<ref id="bb7">
<mixed-citation publication-type="other">Dwibedi, D., Araujo, R. B., Chakraborty, S., Shanbogh, P. P., Sundaram, N. G., Ahuja, R. & Barpanda, P. (2015).
<italic>J. Mater. Chem. A</italic>
,
<bold>3</bold>
, 18564–18571.</mixed-citation>
</ref>
<ref id="bb8">
<mixed-citation publication-type="other">Dwibedi, D., Ling, C. D., Araujo, R. B., Chakraborty, S., Duraisamy, S., Munichandraiah, N., Ahuja, R. & Barpanda, P. (2016).
<italic>Appl. Mater. Interfaces</italic>
,
<bold>8</bold>
, 6982–6991.</mixed-citation>
</ref>
<ref id="bb9">
<mixed-citation publication-type="other">Farrugia, L. J. (2012).
<italic>J. Appl. Cryst.</italic>
<bold>45</bold>
, 849–854.</mixed-citation>
</ref>
<ref id="bb10">
<mixed-citation publication-type="other">Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015).
<italic>Acta Cryst.</italic>
E
<bold>71</bold>
, 690–692.</mixed-citation>
</ref>
<ref id="bb11">
<mixed-citation publication-type="other">Kim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo, H.-I. & Kang, K. (2014).
<italic>J. Mater. Chem. A</italic>
,
<bold>2</bold>
, 8632–8636.</mixed-citation>
</ref>
<ref id="bb12">
<mixed-citation publication-type="other">Moore, P. B. (1971).
<italic>Am. Mineral.</italic>
<bold>56</bold>
, 1955–1975.</mixed-citation>
</ref>
<ref id="bb13">
<mixed-citation publication-type="other">Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015).
<italic>Acta Cryst.</italic>
E
<bold>71</bold>
, 813–815.</mixed-citation>
</ref>
<ref id="bb14">
<mixed-citation publication-type="other">Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1997
<italic>a</italic>
).
<italic>J. Electrochem. Soc.</italic>
<bold>144</bold>
, 1188–1194.</mixed-citation>
</ref>
<ref id="bb15">
<mixed-citation publication-type="other">Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. & Goodenough, J. B. (1997
<italic>b</italic>
).
<italic>J. Electrochem. Soc.</italic>
<bold>144</bold>
, 1609–1613.</mixed-citation>
</ref>
<ref id="bb16">
<mixed-citation publication-type="other">Sheldrick, G. M. (2015
<italic>a</italic>
).
<italic>Acta Cryst.</italic>
A
<bold>71</bold>
, 3–8.</mixed-citation>
</ref>
<ref id="bb17">
<mixed-citation publication-type="other">Sheldrick, G. M. (2015
<italic>b</italic>
).
<italic>Acta Cryst.</italic>
C
<bold>71</bold>
, 3–8.</mixed-citation>
</ref>
<ref id="bb18">
<mixed-citation publication-type="other">Warner, T. E., Milius, W. & Maier, J. (1993).
<italic>J. Solid State Chem.</italic>
<bold>106</bold>
, 301–309.</mixed-citation>
</ref>
<ref id="bb19">
<mixed-citation publication-type="other">Warner, T. E., Milius, W. & Maier, J. (1994).
<italic>Solid State Ionics</italic>
,
<bold>74</bold>
, 119–123.</mixed-citation>
</ref>
<ref id="bb20">
<mixed-citation publication-type="other">Westrip, S. P. (2010).
<italic>J. Appl. Cryst.</italic>
<bold>43</bold>
, 920–925.</mixed-citation>
</ref>
<ref id="bb21">
<mixed-citation publication-type="other">Yakubovich, O. V., Simonov, M. A., Egorov-Tismenko, Yu. K. & belov, N. V. (1977).
<italic>Sov. Phys. Dokl.</italic>
<bold>22</bold>
, 550–552.</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>The principal building units in the structure of Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i)
<italic>x</italic>
, −
<italic>y</italic>
 + 1,
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi2.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (ii) −
<italic>x</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>y</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>z</italic>
 + 2; (iii)
<italic>x</italic>
,
<italic>y</italic>
,
<italic>z</italic>
 + 1; (iv) −
<italic>x</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>y</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>z</italic>
 + 1; (v) −
<italic>x</italic>
 + 1,
<italic>y</italic>
, −
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (vi)
<italic>x</italic>
,
<italic>y</italic>
,
<italic>z</italic>
 − 1; (vii) −
<italic>x</italic>
 + 1,
<italic>y</italic>
, −
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi2.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (viii)
<italic>x</italic>
 − 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi2.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>y</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,
<italic>z</italic>
 − 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi2.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (ix) −
<italic>x</italic>
 + 1, −
<italic>y</italic>
 + 1, −
<italic>z</italic>
 + 1; (
<italic>x</italic>
)
<italic>x</italic>
, −
<italic>y</italic>
 + 1,
<italic>z</italic>
 − 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi2.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (xi) −
<italic>x</italic>
 + 2,
<italic>y</italic>
, −
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (xii) −
<italic>x</italic>
 + 2, −
<italic>y</italic>
 + 1, −
<italic>z</italic>
 + 1.]</p>
</caption>
<graphic xlink:href="e-72-01017-fig1"></graphic>
</fig>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>The principal building units in the structure of Ag
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i)
<italic>x</italic>
, −
<italic>y</italic>
 + 1,
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi2.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (ii) −
<italic>x</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>y</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>z</italic>
 + 2; (iii)
<italic>x</italic>
,
<italic>y</italic>
,
<italic>z</italic>
 + 1; (iv) −
<italic>x</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>y</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>z</italic>
 + 1; (v) −
<italic>x</italic>
 + 1,
<italic>y</italic>
, −
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (vi)
<italic>x</italic>
,
<italic>y</italic>
,
<italic>z</italic>
 − 1; (vii) −
<italic>x</italic>
 + 1,
<italic>y</italic>
, −
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi2.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (viii)
<italic>x</italic>
 − 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi2.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>y</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,
<italic>z</italic>
 − 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi2.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (ix) −
<italic>x</italic>
 + 1, −
<italic>y</italic>
 + 1, −
<italic>z</italic>
 + 1; (
<italic>x</italic>
)
<italic>x</italic>
, −
<italic>y</italic>
 + 1,
<italic>z</italic>
 − 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi2.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (xi) −
<italic>x</italic>
 + 2,
<italic>y</italic>
, −
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (xii) −
<italic>x</italic>
 + 2, −
<italic>y</italic>
 + 1, −
<italic>z</italic>
 + 1.]</p>
</caption>
<graphic xlink:href="e-72-01017-fig2"></graphic>
</fig>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>Edge-sharing octa­hedra forming an infinite zigzag chain running along [10
<inline-formula>
<inline-graphic xlink:href="e-72-01017-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
]. Data from Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
.</p>
</caption>
<graphic xlink:href="e-72-01017-fig3"></graphic>
</fig>
<fig id="fig4" position="float">
<label>Figure 4</label>
<caption>
<p>A sheet perpendicular to [010], resulting from the connection of individual chains
<italic>via</italic>
VO
<sub>4</sub>
tetra­hedra. Data from Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
.</p>
</caption>
<graphic xlink:href="e-72-01017-fig4"></graphic>
</fig>
<fig id="fig5" position="float">
<label>Figure 5</label>
<caption>
<p>Polyhedral representation of Na
<sub>2</sub>
(Fe/Co)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
showing sodium cations in the channels extending along [001].</p>
</caption>
<graphic xlink:href="e-72-01017-fig5"></graphic>
</fig>
<table-wrap id="table1" position="float">
<label>Table 1</label>
<caption>
<title>Experimental details</title>
</caption>
<table frame="hsides" rules="groups">
<thead valign="top">
<tr>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="top"> </th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="top">(I)</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="top">(II)</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td rowspan="1" colspan="3" align="left" valign="top">Crystal data</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Chemical formula</td>
<td rowspan="1" colspan="1" align="left" valign="top">Na
<sub>2</sub>
(Co
<sub>0.5</sub>
Fe
<sub>0.5</sub>
)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">Ag
<sub>1.97</sub>
(Co
<sub>0.49</sub>
Fe
<sub>0.51</sub>
)
<sub>2</sub>
Co(VO
<sub>4</sub>
)
<sub>3</sub>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>M</italic>
<sub>r</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">564.51</td>
<td rowspan="1" colspan="1" align="left" valign="top">730.96</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Crystal system, space group</td>
<td rowspan="1" colspan="1" align="left" valign="top">Monoclinic,
<italic>C</italic>
2/
<italic>c</italic>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">Monoclinic,
<italic>C</italic>
2/
<italic>c</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Temperature (K)</td>
<td rowspan="1" colspan="1" align="left" valign="top">296</td>
<td rowspan="1" colspan="1" align="left" valign="top">296</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>a</italic>
,
<italic>b</italic>
,
<italic>c</italic>
(Å)</td>
<td rowspan="1" colspan="1" align="left" valign="top">11.7258 (2), 12.7819 (2), 6.8264 (1)</td>
<td rowspan="1" colspan="1" align="left" valign="top">11.7846 (4), 12.8314 (4), 6.8064 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">β (°)</td>
<td rowspan="1" colspan="1" align="left" valign="top">111.069 (1)</td>
<td rowspan="1" colspan="1" align="left" valign="top">111.001 (1)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>V</italic>
<sup>3</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">954.73 (3)</td>
<td rowspan="1" colspan="1" align="left" valign="top">960.85 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>Z</italic>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">4</td>
<td rowspan="1" colspan="1" align="left" valign="top">4</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Radiation type</td>
<td rowspan="1" colspan="1" align="left" valign="top">Mo
<italic>K</italic>
α</td>
<td rowspan="1" colspan="1" align="left" valign="top">Mo
<italic>K</italic>
α</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">μ (mm
<sup>−1</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">7.85</td>
<td rowspan="1" colspan="1" align="left" valign="top">11.60</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Crystal size (mm)</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.32 × 0.25 × 0.19</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.34 × 0.22 × 0.17</td>
</tr>
<tr>
<td rowspan="1" colspan="3" align="left" valign="top"> </td>
</tr>
<tr>
<td rowspan="1" colspan="3" align="left" valign="top">Data collection</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Diffractometer</td>
<td rowspan="1" colspan="1" align="left" valign="top">Bruker X8 APEX</td>
<td rowspan="1" colspan="1" align="left" valign="top">Bruker X8 APEX</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Absorption correction</td>
<td rowspan="1" colspan="1" align="left" valign="top">Multi-scan (
<italic>SADABS</italic>
; Bruker, 2009
<xref ref-type="bibr" rid="bb6"></xref>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">Multi-scan (
<italic>SADABS</italic>
; Bruker, 2009
<xref ref-type="bibr" rid="bb6"></xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>T</italic>
<sub>min</sub>
,
<italic>T</italic>
<sub>max</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.572, 0.747</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.439, 0.747</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">No. of measured, independent and observed [
<italic>I</italic>
> 2σ(
<italic>I</italic>
)] reflections</td>
<td rowspan="1" colspan="1" align="left" valign="top">17675, 2094, 1893</td>
<td rowspan="1" colspan="1" align="left" valign="top">15366, 2113, 1987</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>R</italic>
<sub>int</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.047</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.039</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">(sin θ/λ)
<sub>max</sub>
<sup>−1</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.806</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.806</td>
</tr>
<tr>
<td rowspan="1" colspan="3" align="left" valign="top"> </td>
</tr>
<tr>
<td rowspan="1" colspan="3" align="left" valign="top">Refinement</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)],
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
),
<italic>S</italic>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.022, 0.054, 1.10</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.018, 0.041, 1.14</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">No. of reflections</td>
<td rowspan="1" colspan="1" align="left" valign="top">2094</td>
<td rowspan="1" colspan="1" align="left" valign="top">2113</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">No. of parameters</td>
<td rowspan="1" colspan="1" align="left" valign="top">95</td>
<td rowspan="1" colspan="1" align="left" valign="top">104</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Δρ
<sub>max</sub>
, Δρ
<sub>min</sub>
(e Å
<sup>−3</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.88, −1.00</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.80, −1.66</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Computer programs:
<italic>APEX2</italic>
and
<italic>SAINT</italic>
(Bruker, 2009
<xref ref-type="bibr" rid="bb6"></xref>
),
<italic>SHELXT2014</italic>
(Sheldrick, 2015
<italic>a</italic>
<xref ref-type="bibr" rid="bb16"></xref>
),
<italic>SHELXL2014</italic>
(Sheldrick, 2015
<italic>b</italic>
<xref ref-type="bibr" rid="bb17"></xref>
),
<italic>ORTEP-3 for Windows</italic>
(Farrugia, 2012
<xref ref-type="bibr" rid="bb9"></xref>
),
<italic>DIAMOND</italic>
(Brandenburg, 2006
<xref ref-type="bibr" rid="bb4"></xref>
) and
<italic>publCIF</italic>
(Westrip, 2010
<xref ref-type="bibr" rid="bb20"></xref>
).</p>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000350 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000350 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4992929
   |texte=   The alluaudite-type crystal structures of Na2(Fe/Co)2Co(VO4)3 and Ag2(Fe/Co)2Co(VO4)3
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27555954" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024