Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal structure of strontium dicobalt iron(III) tris­(orthophosphate): SrCo2Fe(PO4)3

Identifieur interne : 000057 ( Pmc/Corpus ); précédent : 000056; suivant : 000058

Crystal structure of strontium dicobalt iron(III) tris­(orthophosphate): SrCo2Fe(PO4)3

Auteurs : Adam Bouraima ; Thomas Makani ; Abderrazzak Assani ; Mohamed Saadi ; Lahcen El Ammari

Source :

RBID : PMC:4971858

Abstract

The transition metal orthophosphate, SrCo2Fe(PO4)3, crystallizes in an alluaudite-type structure. The chains characterizing the alluaudite structure are built up from edge-sharing [CoO6] octa­hedra linked together by PO4 tetra­hedra.


Url:
DOI: 10.1107/S2056989016011373
PubMed: 27536399
PubMed Central: 4971858

Links to Exploration step

PMC:4971858

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structure of strontium dicobalt iron(III) tris­(orthophosphate): SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
</title>
<author>
<name sortKey="Bouraima, Adam" sort="Bouraima, Adam" uniqKey="Bouraima A" first="Adam" last="Bouraima">Adam Bouraima</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="b">Département de Chimie, Faculté des Sciences, Université des Sciences et Techniques de Masuku, BP 943, Franceville,
<country>Gabon</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Makani, Thomas" sort="Makani, Thomas" uniqKey="Makani T" first="Thomas" last="Makani">Thomas Makani</name>
<affiliation>
<nlm:aff id="b">Département de Chimie, Faculté des Sciences, Université des Sciences et Techniques de Masuku, BP 943, Franceville,
<country>Gabon</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Assani, Abderrazzak" sort="Assani, Abderrazzak" uniqKey="Assani A" first="Abderrazzak" last="Assani">Abderrazzak Assani</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saadi, Mohamed" sort="Saadi, Mohamed" uniqKey="Saadi M" first="Mohamed" last="Saadi">Mohamed Saadi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="El Ammari, Lahcen" sort="El Ammari, Lahcen" uniqKey="El Ammari L" first="Lahcen" last="El Ammari">Lahcen El Ammari</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27536399</idno>
<idno type="pmc">4971858</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971858</idno>
<idno type="RBID">PMC:4971858</idno>
<idno type="doi">10.1107/S2056989016011373</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000057</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000057</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Crystal structure of strontium dicobalt iron(III) tris­(orthophosphate): SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
</title>
<author>
<name sortKey="Bouraima, Adam" sort="Bouraima, Adam" uniqKey="Bouraima A" first="Adam" last="Bouraima">Adam Bouraima</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="b">Département de Chimie, Faculté des Sciences, Université des Sciences et Techniques de Masuku, BP 943, Franceville,
<country>Gabon</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Makani, Thomas" sort="Makani, Thomas" uniqKey="Makani T" first="Thomas" last="Makani">Thomas Makani</name>
<affiliation>
<nlm:aff id="b">Département de Chimie, Faculté des Sciences, Université des Sciences et Techniques de Masuku, BP 943, Franceville,
<country>Gabon</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Assani, Abderrazzak" sort="Assani, Abderrazzak" uniqKey="Assani A" first="Abderrazzak" last="Assani">Abderrazzak Assani</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saadi, Mohamed" sort="Saadi, Mohamed" uniqKey="Saadi M" first="Mohamed" last="Saadi">Mohamed Saadi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="El Ammari, Lahcen" sort="El Ammari, Lahcen" uniqKey="El Ammari L" first="Lahcen" last="El Ammari">Lahcen El Ammari</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta Crystallographica Section E: Crystallographic Communications</title>
<idno type="eISSN">2056-9890</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The transition metal orthophosphate, SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
, crystallizes in an alluaudite-type structure. The chains characterizing the alluaudite structure are built up from edge-sharing [CoO
<sub>6</sub>
] octa­hedra linked together by PO
<sub>4</sub>
tetra­hedra.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Acta Crystallogr E Crystallogr Commun</journal-id>
<journal-id journal-id-type="iso-abbrev">Acta Crystallogr E Crystallogr Commun</journal-id>
<journal-id journal-id-type="publisher-id">Acta Cryst. E</journal-id>
<journal-title-group>
<journal-title>Acta Crystallographica Section E: Crystallographic Communications</journal-title>
</journal-title-group>
<issn pub-type="epub">2056-9890</issn>
<publisher>
<publisher-name>International Union of Crystallography</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27536399</article-id>
<article-id pub-id-type="pmc">4971858</article-id>
<article-id pub-id-type="publisher-id">pk2584</article-id>
<article-id pub-id-type="doi">10.1107/S2056989016011373</article-id>
<article-id pub-id-type="coden">ACSECI</article-id>
<article-id pub-id-type="pii">S2056989016011373</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Communications</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Crystal structure of strontium dicobalt iron(III) tris­(orthophosphate): SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
</article-title>
<alt-title>
<italic>SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Bouraima</surname>
<given-names>Adam</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
<xref ref-type="aff" rid="b">b</xref>
<xref ref-type="corresp" rid="cor">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Makani</surname>
<given-names>Thomas</given-names>
</name>
<xref ref-type="aff" rid="b">b</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Assani</surname>
<given-names>Abderrazzak</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Saadi</surname>
<given-names>Mohamed</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>El Ammari</surname>
<given-names>Lahcen</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<aff id="a">
<label>a</label>
Laboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</aff>
<aff id="b">
<label>b</label>
Département de Chimie, Faculté des Sciences, Université des Sciences et Techniques de Masuku, BP 943, Franceville,
<country>Gabon</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor">Correspondence e-mail:
<email>adam_bouraima@yahoo.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<day>01</day>
<month>8</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>19</day>
<month>7</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>19</day>
<month>7</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>72</volume>
<issue>Pt 8</issue>
<issue-id pub-id-type="publisher-id">e160800</issue-id>
<fpage>1143</fpage>
<lpage>1146</lpage>
<history>
<date date-type="received">
<day>24</day>
<month>6</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>12</day>
<month>7</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© Bouraima et al. 2016</copyright-statement>
<copyright-year>2016</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0/uk/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.</license-p>
</license>
</permissions>
<self-uri xlink:type="simple" xlink:href="http://dx.doi.org/10.1107/S2056989016011373">A full version of this article is available from Crystallography Journals Online.</self-uri>
<abstract abstract-type="toc">
<p>The transition metal orthophosphate, SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
, crystallizes in an alluaudite-type structure. The chains characterizing the alluaudite structure are built up from edge-sharing [CoO
<sub>6</sub>
] octa­hedra linked together by PO
<sub>4</sub>
tetra­hedra.</p>
</abstract>
<abstract>
<p>The title compound, SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
, has been synthesized by a solid-state reaction. It crystallizes with the α-CrPO
<sub>4</sub>
type structure. In this structure, all atoms are on special positions of the
<italic>Imma</italic>
space group, except for two O atoms which are located on general positions. The three-dimensional network in the crystal structure is made up of two types of layers stacked normal to (100). The first layer is built from two edge-sharing CoO
<sub>6</sub>
octa­hedra, leading to the formation of Co
<sub>2</sub>
O
<sub>10</sub>
dimers that are connected to two PO
<sub>4</sub>
tetra­hedra by a common edge and corners. The second layer results from apex-sharing FeO
<sub>6</sub>
octa­hedra and PO
<sub>4</sub>
tetra­hedra, which form linear chains alternating with a zigzag chain of Sr
<sup>II</sup>
cations. These layers are linked together by common vertices of PO
<sub>4</sub>
tetra­hedra and FeO
<sub>6</sub>
octa­hedra to form an open three-dimensional framework that delimits two types of channels parallel to [100] and [010] where the Sr
<sup>II</sup>
cations are located. Each Sr
<sup>II</sup>
cation is surrounded by eight O atoms.</p>
</abstract>
<kwd-group>
<kwd>crystal structure</kwd>
<kwd>SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
</kwd>
<kwd>transition metal phosphate</kwd>
<kwd>solid-state reaction synthesis</kwd>
<kwd>alluaudite-like structure</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Chemical context   </title>
<p>The phosphate literature includes important works on the structural study of transition metal phosphates. The basic framework is built from tetra­hedrally coordinated phospho­rus linked to transition metals
<italic>M</italic>
in various environments, such as
<italic>M</italic>
O
<sub>
<italic>n</italic>
</sub>
(
<italic>n</italic>
= 4, 5 or 6). The manner in which polyhedra are inter­connected generates important structure types with porous or lamellar set-ups that can exhibit inter­esting physical properties. Accordingly, widespread studies have been devoted to this family of compounds, stimulated by the wide range of potential and commercial applications of these materials. Examples include applications in catalysis, as ion exchangers and in the manufacture of lithium and sodium rechargeable batteries. One particular scientific area in our laboratory is focused on investigating new functional phosphates belonging to the alluaudite (Moore, 1971
<xref ref-type="bibr" rid="bb13"></xref>
) or α-CrPO
<sub>4</sub>
(Attfield
<italic>et al.</italic>
, 1988
<xref ref-type="bibr" rid="bb4"></xref>
) structure types, owing to their potential use as new cathode materials for battery devices (Trad
<italic>et al.</italic>
, 2010
<xref ref-type="bibr" rid="bb17"></xref>
; Kim
<italic>et al.</italic>
, 2014
<xref ref-type="bibr" rid="bb11"></xref>
; Huang
<italic>et al.</italic>
, 2015
<xref ref-type="bibr" rid="bb9"></xref>
).</p>
<p>Our earlier hydro­thermal investigations were undertaken with the
<italic>A</italic>
<sub>2</sub>
O–
<italic>M</italic>
O–P
<sub>2</sub>
O
<sub>5</sub>
and
<italic>M</italic>
′O–
<italic>M</italic>
O–P
<sub>2</sub>
O
<sub>5</sub>
systems (
<italic>A</italic>
= monovalent cations,
<italic>M</italic>
and
<italic>M</italic>
′ = divalent cations) with approximate molar ratios
<italic>A</italic>
:
<italic>M</italic>
:
<italic>P</italic>
= 2:3:3 and
<italic>M</italic>
′:
<italic>M</italic>
:P = 1:3:3, which characterize the alluaudite or α-CrPO
<sub>4</sub>
phases. Those studies involved the synthesis and structural characterization of new phosphates such as Na
<sub>2</sub>
Co
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
(Bouraima
<italic>et al.</italic>
, 2015
<xref ref-type="bibr" rid="bb5"></xref>
) and Na
<sub>1.67</sub>
Zn
<sub>1.67</sub>
Fe
<sub>1.33</sub>
(PO
<sub>4</sub>
)
<sub>3</sub>
(Khmiyas
<italic>et al.</italic>
, 2015
<xref ref-type="bibr" rid="bb10"></xref>
) belonging to the alluaudite-type structure group. In addition, divalent and trivalent transition-metal-based phosphates, such as SrNi
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
(Ouaatta
<italic>et al.</italic>
, 2015
<xref ref-type="bibr" rid="bb14"></xref>
) and
<italic>M</italic>
Mn
<sup>II</sup>
<sub>2</sub>
Mn
<sup>III</sup>
(PO
<sub>4</sub>
)
<sub>3</sub>
(
<italic>M</italic>
= Pb, Sr, Ba) (Alhakmi
<italic>et al.</italic>
, 2013
<italic>a</italic>
<xref ref-type="bibr" rid="bb1"></xref>
,
<italic>
<italic>b</italic>
<xref ref-type="bibr" rid="bb2"></xref>
;</italic>
Assani
<italic>et al.</italic>
, 2013
<xref ref-type="bibr" rid="bb3"></xref>
) have been shown to adopt the α-CrPO
<sub>4</sub>
structure type.</p>
<p>In search of a new promising phosphate, a solid-state chemistry investigation of
<italic>A</italic>
<sub>2</sub>
O–
<italic>M</italic>
O–
<italic>M</italic>
<sub>2</sub>
O
<sub>3</sub>
–P
<sub>2</sub>
O
<sub>5</sub>
systems was undertaken. The present work reports on synthesis and crystal structure of the new strontium cobalt iron phosphate, SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
, which has the α-CrPO
<sub>4</sub>
type structure.</p>
</sec>
<sec id="sec2">
<title>Structural commentary   </title>
<p>In the title phosphate, SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
, all atoms are on special positions, except two oxygen atoms (O3, O4) which are on general positions of the
<italic>Imma</italic>
space group. Its three-dimensional structure is constructed on the basis of PO
<sub>4</sub>
tetra­hedra, FeO
<sub>6</sub>
and CoO
<sub>6</sub>
octa­hedra, as shown in Fig. 1
<xref ref-type="fig" rid="fig1"></xref>
. The connection between these polyhedra produces two types of layers stacked normal to (100). The first layer is built from two edge-sharing CoO
<sub>6</sub>
octa­hedra, leading to the formation of Co
<sub>2</sub>
O
<sub>10</sub>
dimers, which are connected to two PO
<sub>4</sub>
tetra­hedra by a common edge and vertex, as shown in Fig. 2
<xref ref-type="fig" rid="fig2"></xref>
. The second layer is formed by alternating FeO
<sub>6</sub>
octa­hedra and PO
<sub>4</sub>
tetra­hedra, which share corners, building linear chains that surround a zigzag chain of Sr
<sup>II</sup>
cations (see Fig. 3
<xref ref-type="fig" rid="fig3"></xref>
). The layers are joined by the apices of PO
<sub>4</sub>
tetra­hedra and FeO
<sub>6</sub>
octa­hedra, giving rise to an open three-dimensional framework that delimits two types of channels parallel to [100] and [010] where the Sr
<sup>II</sup>
cations are located, as shown in Fig. 4
<xref ref-type="fig" rid="fig4"></xref>
and Fig. 5
<xref ref-type="fig" rid="fig5"></xref>
. This structure is characterized by a stoichiometric composition in which the Sr atom is surrounded by eight oxygen atoms with Sr—O bond lengths that vary between 2.6561 (13) and 2.6690 (9)Å. The same Sr environment is observed in the manganese homologue phosphates, namely
<italic>M</italic>
Mn
<sup>II</sup>
<sub>2</sub>
Mn
<sup>III</sup>
(PO
<sub>4</sub>
)
<sub>3</sub>
(
<italic>M</italic>
= Pb, Sr, Ba).</p>
</sec>
<sec id="sec3">
<title>Synthesis and crystallization   </title>
<p>The title phosphate, SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
, was synthesized in a solid-state reaction by mixing nitrates of strontium, cobalt and iron along with NH
<sub>4</sub>
H
<sub>2</sub>
PO
<sub>4</sub>
, taken in the molar proportions Sr:Co:Fe:P = 1:2:1:3. After a series of heat treatments up to 873 K in a platinum crucible, inter­spersed with grinding, the reaction mixture was heated to the melt (1343 K). The molten product was then cooled to room temperature at 5 K/h. The resulting solid contained brown crystals of a suitable size for X-ray diffraction.</p>
</sec>
<sec id="sec4">
<title>Refinement   </title>
<p>Crystal data, data collection and structure refinement details are summarized in Table 1
<xref ref-type="table" rid="table1"></xref>
. The highest peak and the deepest hole in the final Fourier map are at 0.63 and 0.68 Å from Sr1 and P2, respectively.</p>
<p>The distinction between cobalt and iron by X-ray diffraction is nearly impossible. Therefore we have examined several crystallographic models during the crystal structure refinements of the title compound. Based on the stoichiometric ratio of 1:2 for iron and cobalt in the starting materials, we assumed the same ratio in the crystal structures with oxidation states of +II for cobalt and and +III for iron. The best model is obtained with Fe1 and Co1 atoms in the Wyckoff positions 4
<italic>a</italic>
(2/
<italic>m</italic>
) and 8
<italic>g</italic>
(2), respectively. This cationic distribution in this model corresponds to the stoichiometry of the expected compound, in addition to the electric neutrality in the structure in reasonable agreement with the final model. </p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data">
<p>Crystal structure: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S2056989016011373/pk2584sup1.cif">10.1107/S2056989016011373/pk2584sup1.cif</ext-link>
</p>
<media mimetype="chemical" mime-subtype="x-cif" xlink:href="e-72-01143-sup1.cif" xlink:type="simple" id="d36e148" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Structure factors: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S2056989016011373/pk2584Isup2.hkl">10.1107/S2056989016011373/pk2584Isup2.hkl</ext-link>
</p>
<media mimetype="text" mime-subtype="plain" xlink:href="e-72-01143-Isup2.hkl" xlink:type="simple" id="d36e155" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>CCDC reference:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/cr.cgi?rm=csd&csdid=1492743">1492743</ext-link>
</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Additional supporting information:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsupfiles?pk2584&file=pk2584sup0.html&mime=text/html">crystallographic information</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendcif?pk2584sup1&Qmime=cif">3D view</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?pk2584&checkcif=yes">checkCIF report</ext-link>
</p>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for the financial support.</p>
</ack>
<app-group>
<app>
<title>supplementary crystallographic information</title>
<sec id="tablewrapcrystaldatalong">
<title>Crystal data</title>
<table-wrap position="anchor" id="d1e34">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
<sub>x</sub>
= 4.011 Mg m
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 546.24</td>
<td rowspan="1" colspan="1">Mo
<italic>K</italic>
α radiation, λ = 0.71073 Å</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Orthorhombic,
<italic>I</italic>
<italic>m</italic>
<italic>m</italic>
<italic>a</italic>
</td>
<td rowspan="1" colspan="1">Cell parameters from 1297 reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>a</italic>
= 10.4097 (2) Å</td>
<td rowspan="1" colspan="1">θ = 3.1–37.6°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>b</italic>
= 13.2714 (3) Å</td>
<td rowspan="1" colspan="1">µ = 11.64 mm
<sup></sup>
<sup>1</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>c</italic>
= 6.5481 (2) Å</td>
<td rowspan="1" colspan="1">
<italic>T</italic>
= 296 K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>V</italic>
= 904.63 (4) Å
<sup>3</sup>
</td>
<td rowspan="1" colspan="1">Block, brown</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>Z</italic>
= 4</td>
<td rowspan="1" colspan="1">0.30 × 0.27 × 0.21 mm</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>F</italic>
(000) = 1036</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapdatacollectionlong">
<title>Data collection</title>
<table-wrap position="anchor" id="d1e154">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Bruker X8 APEX diffractometer</td>
<td rowspan="1" colspan="1">1297 independent reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Radiation source: fine-focus sealed tube</td>
<td rowspan="1" colspan="1">1243 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Graphite monochromator</td>
<td rowspan="1" colspan="1">
<italic>R</italic>
<sub>int</sub>
= 0.030</td>
</tr>
<tr>
<td rowspan="1" colspan="1">φ and ω scans</td>
<td rowspan="1" colspan="1">θ
<sub>max</sub>
= 37.6°, θ
<sub>min</sub>
= 3.1°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Absorption correction: multi-scan (SADABS; Krause
<italic>et al.</italic>
, 2015)</td>
<td rowspan="1" colspan="1">
<italic>h</italic>
= −17→17</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>T</italic>
<sub>min</sub>
= 0.595,
<italic>T</italic>
<sub>max</sub>
= 0.747</td>
<td rowspan="1" colspan="1">
<italic>k</italic>
= −22→19</td>
</tr>
<tr>
<td rowspan="1" colspan="1">10008 measured reflections</td>
<td rowspan="1" colspan="1">
<italic>l</italic>
= −11→11</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewraprefinementdatalong">
<title>Refinement</title>
<table-wrap position="anchor" id="d1e271">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Refinement on
<italic>F</italic>
<sup>2</sup>
</td>
<td rowspan="1" colspan="1">0 restraints</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Least-squares matrix: full</td>
<td rowspan="1" colspan="1">
<italic>w</italic>
= 1/[σ
<sup>2</sup>
(
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
) + (0.0245
<italic>P</italic>
)
<sup>2</sup>
+ 0.761
<italic>P</italic>
] where
<italic>P</italic>
= (
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
+ 2
<italic>F</italic>
<sub>c</sub>
<sup>2</sup>
)/3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.017</td>
<td rowspan="1" colspan="1">(Δ/σ)
<sub>max</sub>
< 0.001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.046</td>
<td rowspan="1" colspan="1">Δρ
<sub>max</sub>
= 1.00 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>S</italic>
= 1.16</td>
<td rowspan="1" colspan="1">Δρ
<sub>min</sub>
= −0.74 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1297 reflections</td>
<td rowspan="1" colspan="1">Extinction correction: SHELXL2014 (Sheldrick, 2014b), Fc
<sup>*</sup>
=kFc[1+0.001xFc
<sup>2</sup>
λ
<sup>3</sup>
/sin(2θ)]
<sup>-1/4</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">54 parameters</td>
<td rowspan="1" colspan="1">Extinction coefficient: 0.0131 (4)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="specialdetails">
<title>Special details</title>
<table-wrap position="anchor" id="d1e438">
<table rules="all" frame="box" style="table-layout:fixed">
<tr>
<td rowspan="1" colspan="1">Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapcoords">
<title>Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e459">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>x</italic>
</td>
<td rowspan="1" colspan="1">
<italic>y</italic>
</td>
<td rowspan="1" colspan="1">
<italic>z</italic>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sub>iso</sub>
*/
<italic>U</italic>
<sub>eq</sub>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1</td>
<td rowspan="1" colspan="1">1.0000</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.59715 (3)</td>
<td rowspan="1" colspan="1">0.00785 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.63284 (2)</td>
<td rowspan="1" colspan="1">0.2500</td>
<td rowspan="1" colspan="1">0.00537 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Fe1</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.00392 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">P1</td>
<td rowspan="1" colspan="1">1.0000</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.09098 (8)</td>
<td rowspan="1" colspan="1">0.00336 (9)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">P2</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.42747 (3)</td>
<td rowspan="1" colspan="1">0.2500</td>
<td rowspan="1" colspan="1">0.00388 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">1.0000</td>
<td rowspan="1" colspan="1">0.65633 (9)</td>
<td rowspan="1" colspan="1">−0.04439 (19)</td>
<td rowspan="1" colspan="1">0.00660 (18)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.88277 (11)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.23618 (18)</td>
<td rowspan="1" colspan="1">0.00607 (18)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.71075 (8)</td>
<td rowspan="1" colspan="1">0.36360 (6)</td>
<td rowspan="1" colspan="1">0.06735 (14)</td>
<td rowspan="1" colspan="1">0.00776 (14)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.63833 (7)</td>
<td rowspan="1" colspan="1">0.50376 (6)</td>
<td rowspan="1" colspan="1">0.29533 (14)</td>
<td rowspan="1" colspan="1">0.00600 (13)</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapadps">
<title>Atomic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e605">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>11</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>22</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>33</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>12</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>13</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>23</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1</td>
<td rowspan="1" colspan="1">0.00819 (9)</td>
<td rowspan="1" colspan="1">0.01003 (10)</td>
<td rowspan="1" colspan="1">0.00534 (9)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.00533 (9)</td>
<td rowspan="1" colspan="1">0.00376 (10)</td>
<td rowspan="1" colspan="1">0.00704 (10)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.00073 (6)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Fe1</td>
<td rowspan="1" colspan="1">0.00292 (11)</td>
<td rowspan="1" colspan="1">0.00439 (13)</td>
<td rowspan="1" colspan="1">0.00443 (12)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.00015 (9)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">P1</td>
<td rowspan="1" colspan="1">0.00344 (18)</td>
<td rowspan="1" colspan="1">0.0029 (2)</td>
<td rowspan="1" colspan="1">0.0038 (2)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">P2</td>
<td rowspan="1" colspan="1">0.00410 (14)</td>
<td rowspan="1" colspan="1">0.00365 (17)</td>
<td rowspan="1" colspan="1">0.00388 (14)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.00051 (10)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.0081 (4)</td>
<td rowspan="1" colspan="1">0.0045 (5)</td>
<td rowspan="1" colspan="1">0.0073 (4)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">−0.0017 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.0046 (4)</td>
<td rowspan="1" colspan="1">0.0073 (5)</td>
<td rowspan="1" colspan="1">0.0063 (4)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0020 (3)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.0094 (3)</td>
<td rowspan="1" colspan="1">0.0075 (3)</td>
<td rowspan="1" colspan="1">0.0064 (3)</td>
<td rowspan="1" colspan="1">−0.0017 (3)</td>
<td rowspan="1" colspan="1">0.0003 (3)</td>
<td rowspan="1" colspan="1">−0.0023 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.0050 (3)</td>
<td rowspan="1" colspan="1">0.0057 (3)</td>
<td rowspan="1" colspan="1">0.0074 (3)</td>
<td rowspan="1" colspan="1">0.0013 (2)</td>
<td rowspan="1" colspan="1">0.0021 (2)</td>
<td rowspan="1" colspan="1">0.0006 (2)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapgeomlong">
<title>Geometric parameters (Å, º)</title>
<table-wrap position="anchor" id="d1e790">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="4">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Sr1—O1
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.6561 (13)</td>
<td rowspan="1" colspan="1">Fe1—O4</td>
<td rowspan="1" colspan="1">1.9678 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.6561 (13)</td>
<td rowspan="1" colspan="1">Fe1—O4
<sup>xi</sup>
</td>
<td rowspan="1" colspan="1">1.9678 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O2
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.6600 (12)</td>
<td rowspan="1" colspan="1">Fe1—O4
<sup>xii</sup>
</td>
<td rowspan="1" colspan="1">1.9678 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O2</td>
<td rowspan="1" colspan="1">2.6600 (12)</td>
<td rowspan="1" colspan="1">Fe1—O4
<sup>xiii</sup>
</td>
<td rowspan="1" colspan="1">1.9678 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O3
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.6690 (9)</td>
<td rowspan="1" colspan="1">Fe1—O1
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.0950 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.6690 (9)</td>
<td rowspan="1" colspan="1">Fe1—O1
<sup>xiv</sup>
</td>
<td rowspan="1" colspan="1">2.0950 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">2.6690 (9)</td>
<td rowspan="1" colspan="1">P1—O1
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">1.5268 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sr1—O3
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">2.6690 (9)</td>
<td rowspan="1" colspan="1">P1—O1</td>
<td rowspan="1" colspan="1">1.5268 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O2</td>
<td rowspan="1" colspan="1">2.0824 (8)</td>
<td rowspan="1" colspan="1">P1—O2
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">1.5470 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">2.0824 (8)</td>
<td rowspan="1" colspan="1">P1—O2</td>
<td rowspan="1" colspan="1">1.5470 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O4
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">2.0913 (8)</td>
<td rowspan="1" colspan="1">P2—O3</td>
<td rowspan="1" colspan="1">1.5219 (9)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O4</td>
<td rowspan="1" colspan="1">2.0914 (8)</td>
<td rowspan="1" colspan="1">P2—O3
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">1.5219 (9)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O3
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">2.1183 (9)</td>
<td rowspan="1" colspan="1">P2—O4</td>
<td rowspan="1" colspan="1">1.5698 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O3
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.1183 (9)</td>
<td rowspan="1" colspan="1">P2—O4
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">1.5698 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Sr1—O1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">55.81 (5)</td>
<td rowspan="1" colspan="1">O2
<sup>viii</sup>
—Co1—O3
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">84.14 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Sr1—O2
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">141.74 (2)</td>
<td rowspan="1" colspan="1">O4
<sup>ix</sup>
—Co1—O3
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">89.21 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Sr1—O2
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">141.74 (2)</td>
<td rowspan="1" colspan="1">O4—Co1—O3
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">92.88 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Sr1—O2</td>
<td rowspan="1" colspan="1">141.74 (2)</td>
<td rowspan="1" colspan="1">O2—Co1—O3
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">84.14 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Sr1—O2</td>
<td rowspan="1" colspan="1">141.74 (2)</td>
<td rowspan="1" colspan="1">O2
<sup>viii</sup>
—Co1—O3
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">93.94 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2
<sup>iii</sup>
—Sr1—O2</td>
<td rowspan="1" colspan="1">54.61 (5)</td>
<td rowspan="1" colspan="1">O4
<sup>ix</sup>
—Co1—O3
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">92.89 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Sr1—O3
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">109.21 (2)</td>
<td rowspan="1" colspan="1">O4—Co1—O3
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">89.21 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Sr1—O3
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">78.48 (2)</td>
<td rowspan="1" colspan="1">O3
<sup>x</sup>
—Co1—O3
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">177.44 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2
<sup>iii</sup>
—Sr1—O3
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">108.19 (3)</td>
<td rowspan="1" colspan="1">O4—Fe1—O4
<sup>xi</sup>
</td>
<td rowspan="1" colspan="1">94.07 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Sr1—O3
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">63.77 (3)</td>
<td rowspan="1" colspan="1">O4—Fe1—O4
<sup>xii</sup>
</td>
<td rowspan="1" colspan="1">85.93 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Sr1—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">78.48 (2)</td>
<td rowspan="1" colspan="1">O4
<sup>xi</sup>
—Fe1—O4
<sup>xii</sup>
</td>
<td rowspan="1" colspan="1">180.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Sr1—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">109.21 (2)</td>
<td rowspan="1" colspan="1">O4—Fe1—O4
<sup>xiii</sup>
</td>
<td rowspan="1" colspan="1">180.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2
<sup>iii</sup>
—Sr1—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">63.77 (3)</td>
<td rowspan="1" colspan="1">O4
<sup>xi</sup>
—Fe1—O4
<sup>xiii</sup>
</td>
<td rowspan="1" colspan="1">85.93 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Sr1—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">108.19 (3)</td>
<td rowspan="1" colspan="1">O4
<sup>xii</sup>
—Fe1—O4
<sup>xiii</sup>
</td>
<td rowspan="1" colspan="1">94.07 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>iv</sup>
—Sr1—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">171.61 (4)</td>
<td rowspan="1" colspan="1">O4—Fe1—O1
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">86.02 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Sr1—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">78.48 (2)</td>
<td rowspan="1" colspan="1">O4
<sup>xi</sup>
—Fe1—O1
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">86.02 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Sr1—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">109.21 (2)</td>
<td rowspan="1" colspan="1">O4
<sup>xii</sup>
—Fe1—O1
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">93.98 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2
<sup>iii</sup>
—Sr1—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">108.19 (3)</td>
<td rowspan="1" colspan="1">O4
<sup>xiii</sup>
—Fe1—O1
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">93.98 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Sr1—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">63.77 (3)</td>
<td rowspan="1" colspan="1">O4—Fe1—O1
<sup>xiv</sup>
</td>
<td rowspan="1" colspan="1">93.98 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>iv</sup>
—Sr1—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">68.78 (4)</td>
<td rowspan="1" colspan="1">O4
<sup>xi</sup>
—Fe1—O1
<sup>xiv</sup>
</td>
<td rowspan="1" colspan="1">93.98 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>v</sup>
—Sr1—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">110.56 (4)</td>
<td rowspan="1" colspan="1">O4
<sup>xii</sup>
—Fe1—O1
<sup>xiv</sup>
</td>
<td rowspan="1" colspan="1">86.02 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Sr1—O3
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">109.21 (2)</td>
<td rowspan="1" colspan="1">O4
<sup>xiii</sup>
—Fe1—O1
<sup>xiv</sup>
</td>
<td rowspan="1" colspan="1">86.02 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>ii</sup>
—Sr1—O3
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">78.48 (2)</td>
<td rowspan="1" colspan="1">O1
<sup>iv</sup>
—Fe1—O1
<sup>xiv</sup>
</td>
<td rowspan="1" colspan="1">180.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2
<sup>iii</sup>
—Sr1—O3
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">63.77 (3)</td>
<td rowspan="1" colspan="1">O1
<sup>iii</sup>
—P1—O1</td>
<td rowspan="1" colspan="1">109.01 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Sr1—O3
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">108.19 (3)</td>
<td rowspan="1" colspan="1">O1
<sup>iii</sup>
—P1—O2
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">110.91 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>iv</sup>
—Sr1—O3
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">110.56 (4)</td>
<td rowspan="1" colspan="1">O1—P1—O2
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">110.91 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>v</sup>
—Sr1—O3
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">68.78 (4)</td>
<td rowspan="1" colspan="1">O1
<sup>iii</sup>
—P1—O2</td>
<td rowspan="1" colspan="1">110.91 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>vi</sup>
—Sr1—O3
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">171.61 (4)</td>
<td rowspan="1" colspan="1">O1—P1—O2</td>
<td rowspan="1" colspan="1">110.91 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co1—O2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">83.39 (5)</td>
<td rowspan="1" colspan="1">O2
<sup>iii</sup>
—P1—O2</td>
<td rowspan="1" colspan="1">104.15 (9)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co1—O4
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">103.68 (3)</td>
<td rowspan="1" colspan="1">O3—P2—O3
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">112.30 (7)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2
<sup>viii</sup>
—Co1—O4
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">170.65 (4)</td>
<td rowspan="1" colspan="1">O3—P2—O4</td>
<td rowspan="1" colspan="1">108.00 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co1—O4</td>
<td rowspan="1" colspan="1">170.65 (4)</td>
<td rowspan="1" colspan="1">O3
<sup>ix</sup>
—P2—O4</td>
<td rowspan="1" colspan="1">114.17 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2
<sup>viii</sup>
—Co1—O4</td>
<td rowspan="1" colspan="1">103.68 (3)</td>
<td rowspan="1" colspan="1">O3—P2—O4
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">114.17 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>ix</sup>
—Co1—O4</td>
<td rowspan="1" colspan="1">70.01 (4)</td>
<td rowspan="1" colspan="1">O3
<sup>ix</sup>
—P2—O4
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">108.00 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co1—O3
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">93.94 (4)</td>
<td rowspan="1" colspan="1">O4—P2—O4
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">99.68 (6)</td>
</tr>
</table>
</table-wrap>
<p>Symmetry codes: (i) −
<italic>x</italic>
+2, −
<italic>y</italic>
+3/2,
<italic>z</italic>
+1; (ii)
<italic>x</italic>
,
<italic>y</italic>
,
<italic>z</italic>
+1; (iii) −
<italic>x</italic>
+2, −
<italic>y</italic>
+3/2,
<italic>z</italic>
; (iv) −
<italic>x</italic>
+3/2, −
<italic>y</italic>
+1,
<italic>z</italic>
+1/2; (v)
<italic>x</italic>
+1/2,
<italic>y</italic>
+1/2,
<italic>z</italic>
+1/2; (vi) −
<italic>x</italic>
+3/2,
<italic>y</italic>
+1/2,
<italic>z</italic>
+1/2; (vii)
<italic>x</italic>
+1/2, −
<italic>y</italic>
+1,
<italic>z</italic>
+1/2; (viii) −
<italic>x</italic>
+3/2, −
<italic>y</italic>
+3/2, −
<italic>z</italic>
+1/2; (ix) −
<italic>x</italic>
+3/2,
<italic>y</italic>
, −
<italic>z</italic>
+1/2; (x)
<italic>x</italic>
, −
<italic>y</italic>
+1, −
<italic>z</italic>
; (xi) −
<italic>x</italic>
+1,
<italic>y</italic>
,
<italic>z</italic>
; (xii)
<italic>x</italic>
, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (xiii) −
<italic>x</italic>
+1, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (xiv)
<italic>x</italic>
−1/2,
<italic>y</italic>
, −
<italic>z</italic>
+1/2.</p>
</sec>
</app>
</app-group>
<ref-list>
<title>References</title>
<ref id="bb1">
<mixed-citation publication-type="other">Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013
<italic>a</italic>
).
<italic>Acta Cryst.</italic>
E
<bold>69</bold>
, i40.</mixed-citation>
</ref>
<ref id="bb2">
<mixed-citation publication-type="other">Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013
<italic>b</italic>
).
<italic>Acta Cryst.</italic>
E
<bold>69</bold>
, i56.</mixed-citation>
</ref>
<ref id="bb3">
<mixed-citation publication-type="other">Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013).
<italic>Acta Cryst.</italic>
E
<bold>69</bold>
, i60.</mixed-citation>
</ref>
<ref id="bb4">
<mixed-citation publication-type="other">Attfield, J. P., Cheetham, A. K., Cox, D. E. & Sleight, A. W. (1988).
<italic>J. Appl. Cryst.</italic>
<bold>21</bold>
, 452–457.</mixed-citation>
</ref>
<ref id="bb5">
<mixed-citation publication-type="other">Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015).
<italic>Acta Cryst.</italic>
E
<bold>71</bold>
, 558–560.</mixed-citation>
</ref>
<ref id="bb6">
<mixed-citation publication-type="other">Brandenburg, K. (2006).
<italic>DIAMOND</italic>
. Crystal Impact GbR, Bonn, Germany.</mixed-citation>
</ref>
<ref id="bb7">
<mixed-citation publication-type="other">Bruker (2009).
<italic>APEX2</italic>
and
<italic>SAINT</italic>
. Bruker AXS Inc., Madison, Wisconsin, USA.</mixed-citation>
</ref>
<ref id="bb8">
<mixed-citation publication-type="other">Farrugia, L. J. (2012).
<italic>J. Appl. Cryst.</italic>
<bold>45</bold>
, 849–854.</mixed-citation>
</ref>
<ref id="bb9">
<mixed-citation publication-type="other">Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015).
<italic>Chem. Eur. J.</italic>
<bold>21</bold>
, 851–860.</mixed-citation>
</ref>
<ref id="bb10">
<mixed-citation publication-type="other">Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015).
<italic>Acta Cryst.</italic>
E
<bold>71</bold>
, 690–692.</mixed-citation>
</ref>
<ref id="bb11">
<mixed-citation publication-type="other">Kim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo, H.-I. & Kang, K. (2014).
<italic>J. Mater. Chem. A</italic>
,
<bold>2</bold>
, 8632–8636.</mixed-citation>
</ref>
<ref id="bb12">
<mixed-citation publication-type="other">Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015).
<italic>J. Appl. Cryst.</italic>
<bold>48</bold>
, 3–10.</mixed-citation>
</ref>
<ref id="bb13">
<mixed-citation publication-type="other">Moore, P. B. (1971).
<italic>Am. Mineral.</italic>
<bold>56</bold>
, 1955–1975.</mixed-citation>
</ref>
<ref id="bb14">
<mixed-citation publication-type="other">Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015).
<italic>Acta Cryst.</italic>
E
<bold>71</bold>
, 1255–1258.</mixed-citation>
</ref>
<ref id="bb15">
<mixed-citation publication-type="other">Sheldrick, G. M. (2015
<italic>a</italic>
).
<italic>Acta Cryst.</italic>
A
<bold>71</bold>
, 3–8.</mixed-citation>
</ref>
<ref id="bb16">
<mixed-citation publication-type="other">Sheldrick, G. M. (2015
<italic>b</italic>
).
<italic>Acta Cryst.</italic>
C
<bold>71</bold>
, 3–8.</mixed-citation>
</ref>
<ref id="bb17">
<mixed-citation publication-type="other">Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010).
<italic>Chem. Mater.</italic>
<bold>22</bold>
, 5554–5562.</mixed-citation>
</ref>
<ref id="bb18">
<mixed-citation publication-type="other">Westrip, S. P. (2010).
<italic>J. Appl. Cryst.</italic>
<bold>43</bold>
, 920–925.</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −
<italic>x</italic>
 + 2, −
<italic>y</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,
<italic>z</italic>
 + 1; (ii)
<italic>x</italic>
,
<italic>y</italic>
,
<italic>z</italic>
 + 1; (iii) −
<italic>x</italic>
 + 2, −
<italic>y</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,
<italic>z</italic>
; (iv) −
<italic>x</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>y</italic>
 + 1,
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi4.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (v)
<italic>x</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi4.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,
<italic>y</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi4.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi4.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (vi) −
<italic>x</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,
<italic>y</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi4.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi4.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (ix) −
<italic>x</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,
<italic>y</italic>
, −
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi4.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (
<italic>x</italic>
)
<italic>x</italic>
, −
<italic>y</italic>
 + 1, −
<italic>z</italic>
; (xi) −
<italic>x</italic>
 + 1,
<italic>y</italic>
,
<italic>z</italic>
; (xii)
<italic>x</italic>
, −
<italic>y</italic>
 + 1, −
<italic>z</italic>
 + 1; (xiii) −
<italic>x</italic>
 + 1, −
<italic>y</italic>
 + 1, −
<italic>z</italic>
 + 1;(xiv)
<italic>x</italic>
 − 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi4.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,
<italic>y</italic>
, −
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-72-01143-efi4.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
.]</p>
</caption>
<graphic xlink:href="e-72-01143-fig1"></graphic>
</fig>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>Edge-sharing [CoO
<sub>6</sub>
] octa­hedra forming a layer parallel to (100).</p>
</caption>
<graphic xlink:href="e-72-01143-fig2"></graphic>
</fig>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>A view along the
<italic>a</italic>
axis, showing a layer resulting from chains connected
<italic>via</italic>
vertices of PO
<sub>4</sub>
tetra­hedra and FeO
<sub>6</sub>
octa­hedra, alternating with a zigzag chain of Sr atoms.</p>
</caption>
<graphic xlink:href="e-72-01143-fig3"></graphic>
</fig>
<fig id="fig4" position="float">
<label>Figure 4</label>
<caption>
<p>Polyhedral representation of SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
, showing channels running along [100].</p>
</caption>
<graphic xlink:href="e-72-01143-fig4"></graphic>
</fig>
<fig id="fig5" position="float">
<label>Figure 5</label>
<caption>
<p>Polyhedral representation of SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
, showing channels running along [010].</p>
</caption>
<graphic xlink:href="e-72-01143-fig5"></graphic>
</fig>
<table-wrap id="table1" position="float">
<label>Table 1</label>
<caption>
<title>Experimental details</title>
</caption>
<table frame="hsides" rules="groups">
<tbody valign="top">
<tr>
<td rowspan="1" colspan="2" align="left" valign="top">Crystal data</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Chemical formula</td>
<td rowspan="1" colspan="1" align="left" valign="top">SrCo
<sub>2</sub>
Fe(PO
<sub>4</sub>
)
<sub>3</sub>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>M</italic>
<sub>r</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">546.24</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Crystal system, space group</td>
<td rowspan="1" colspan="1" align="left" valign="top">Orthorhombic,
<italic>I</italic>
<italic>m</italic>
<italic>m</italic>
<italic>a</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Temperature (K)</td>
<td rowspan="1" colspan="1" align="left" valign="top">296</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>a</italic>
,
<italic>b</italic>
,
<italic>c</italic>
(Å)</td>
<td rowspan="1" colspan="1" align="left" valign="top">10.4097 (2), 13.2714 (3), 6.5481 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>V</italic>
<sup>3</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">904.63 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>Z</italic>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">4</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Radiation type</td>
<td rowspan="1" colspan="1" align="left" valign="top">Mo
<italic>K</italic>
α</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">μ (mm
<sup>−1</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">11.64</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Crystal size (mm)</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.30 × 0.27 × 0.21</td>
</tr>
<tr>
<td rowspan="1" colspan="2" align="left" valign="top"> </td>
</tr>
<tr>
<td rowspan="1" colspan="2" align="left" valign="top">Data collection</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Diffractometer</td>
<td rowspan="1" colspan="1" align="left" valign="top">Bruker X8 APEX</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Absorption correction</td>
<td rowspan="1" colspan="1" align="left" valign="top">Multi-scan (
<italic>SADABS</italic>
; Krause
<italic>et al.</italic>
, 2015
<xref ref-type="bibr" rid="bb12"></xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>T</italic>
<sub>min</sub>
,
<italic>T</italic>
<sub>max</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.595, 0.747</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">No. of measured, independent and observed [
<italic>I</italic>
> 2σ(
<italic>I</italic>
)] reflections</td>
<td rowspan="1" colspan="1" align="left" valign="top">10008, 1297, 1243</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>R</italic>
<sub>int</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.030</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">(sin θ/λ)
<sub>max</sub>
<sup>−1</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.858</td>
</tr>
<tr>
<td rowspan="1" colspan="2" align="left" valign="top"> </td>
</tr>
<tr>
<td rowspan="1" colspan="2" align="left" valign="top">Refinement</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)],
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
),
<italic>S</italic>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.017, 0.046, 1.16</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">No. of reflections</td>
<td rowspan="1" colspan="1" align="left" valign="top">1297</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">No. of parameters</td>
<td rowspan="1" colspan="1" align="left" valign="top">54</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Δρ
<sub>max</sub>
, Δρ
<sub>min</sub>
(e Å
<sup>−3</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">1.00, −0.74</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Computer programs:
<italic>APEX2</italic>
and
<italic>SAINT</italic>
(Bruker, 2009
<xref ref-type="bibr" rid="bb7"></xref>
),
<italic>SHELXT2014</italic>
(Sheldrick, 2015
<italic>a</italic>
<xref ref-type="bibr" rid="bb15"></xref>
),
<italic>SHELXL2014</italic>
(Sheldrick, 2015
<italic>b</italic>
<xref ref-type="bibr" rid="bb16"></xref>
),
<italic>ORTEP-3 for Windows</italic>
(Farrugia, 2012
<xref ref-type="bibr" rid="bb8"></xref>
),
<italic>DIAMOND</italic>
(Brandenburg, 2006
<xref ref-type="bibr" rid="bb6"></xref>
) and
<italic>publCIF</italic>
(Westrip, 2010
<xref ref-type="bibr" rid="bb18"></xref>
).</p>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000057 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000057 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4971858
   |texte=   Crystal structure of strontium dicobalt iron(III) tris­(orthophosphate): SrCo2Fe(PO4)3
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27536399" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024