Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal structure of poly[di­aqua­(μ-2-carb­oxy­acetato-κ3O,O′:O′′)(2-carb­oxy­acetato-κO)di-μ-chlorido-dicobalt(II)]

Identifieur interne : 000054 ( Pmc/Corpus ); précédent : 000053; suivant : 000055

Crystal structure of poly[di­aqua­(μ-2-carb­oxy­acetato-κ3O,O′:O′′)(2-carb­oxy­acetato-κO)di-μ-chlorido-dicobalt(II)]

Auteurs : Yasmina Bouaoud ; Zouaoui Setifi ; Andrii Buvailo ; Vadim A. Potaskalov ; Hocine Merazig ; Georges Dénés

Source :

RBID : PMC:4704765

Abstract

In the title coordination polymer, [Co(C3H3O4)Cl(H2O)]n, the sixfold coordination environment of the CoII atom consists of two O atoms from a chelating hydrogen malonate anion (HMal), one O atom originating from a μ2-bridging malonate ligand (HMal), one O atom from a water mol­ecule and two μ2-bridging Cl atoms, connecting neighbouring Co2Cl4 motifs into a two-dimensional polymer extending parallel to (001). Inter­layer O—H⋯O hydrogen bonds link the layers into a three-dimensional network.


Url:
DOI: 10.1107/S2056989015023269
PubMed: 26870577
PubMed Central: 4704765

Links to Exploration step

PMC:4704765

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structure of poly[di­aqua­(μ-2-carb­oxy­acetato-κ
<sup>3</sup>
<italic>O</italic>
,
<italic>O</italic>
′:
<italic>O</italic>
′′)(2-carb­oxy­acetato-κ
<italic>O</italic>
)di-μ-chlorido-dicobalt(II)]</title>
<author>
<name sortKey="Bouaoud, Yasmina" sort="Bouaoud, Yasmina" uniqKey="Bouaoud Y" first="Yasmina" last="Bouaoud">Yasmina Bouaoud</name>
<affiliation>
<nlm:aff id="a">Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000,
<country>Algeria</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Setifi, Zouaoui" sort="Setifi, Zouaoui" uniqKey="Setifi Z" first="Zouaoui" last="Setifi">Zouaoui Setifi</name>
<affiliation>
<nlm:aff id="a">Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000,
<country>Algeria</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="b">Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000,
<country>Algeria</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Buvailo, Andrii" sort="Buvailo, Andrii" uniqKey="Buvailo A" first="Andrii" last="Buvailo">Andrii Buvailo</name>
<affiliation>
<nlm:aff id="c">National Taras Shevchenko University of Kyiv, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev,
<country>Ukraine</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="d">SciMax LLC, 2 Marshala Yakubovskogo str. 03191, Kyiv,
<country>Ukraine</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Potaskalov, Vadim A" sort="Potaskalov, Vadim A" uniqKey="Potaskalov V" first="Vadim A." last="Potaskalov">Vadim A. Potaskalov</name>
<affiliation>
<nlm:aff id="e">Department of General and Inorganic Chemistry, National Technical University of Ukraine, ‘Kyiv Polytechnic Institute’, 37 Prospect Peremogy, 03056 Kiev,
<country>Ukraine</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Merazig, Hocine" sort="Merazig, Hocine" uniqKey="Merazig H" first="Hocine" last="Merazig">Hocine Merazig</name>
<affiliation>
<nlm:aff id="a">Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000,
<country>Algeria</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Denes, Georges" sort="Denes, Georges" uniqKey="Denes G" first="Georges" last="Dénés">Georges Dénés</name>
<affiliation>
<nlm:aff id="f">Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H3G 1M8,
<country>Canada</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26870577</idno>
<idno type="pmc">4704765</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4704765</idno>
<idno type="RBID">PMC:4704765</idno>
<idno type="doi">10.1107/S2056989015023269</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000054</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000054</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Crystal structure of poly[di­aqua­(μ-2-carb­oxy­acetato-κ
<sup>3</sup>
<italic>O</italic>
,
<italic>O</italic>
′:
<italic>O</italic>
′′)(2-carb­oxy­acetato-κ
<italic>O</italic>
)di-μ-chlorido-dicobalt(II)]</title>
<author>
<name sortKey="Bouaoud, Yasmina" sort="Bouaoud, Yasmina" uniqKey="Bouaoud Y" first="Yasmina" last="Bouaoud">Yasmina Bouaoud</name>
<affiliation>
<nlm:aff id="a">Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000,
<country>Algeria</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Setifi, Zouaoui" sort="Setifi, Zouaoui" uniqKey="Setifi Z" first="Zouaoui" last="Setifi">Zouaoui Setifi</name>
<affiliation>
<nlm:aff id="a">Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000,
<country>Algeria</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="b">Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000,
<country>Algeria</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Buvailo, Andrii" sort="Buvailo, Andrii" uniqKey="Buvailo A" first="Andrii" last="Buvailo">Andrii Buvailo</name>
<affiliation>
<nlm:aff id="c">National Taras Shevchenko University of Kyiv, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev,
<country>Ukraine</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="d">SciMax LLC, 2 Marshala Yakubovskogo str. 03191, Kyiv,
<country>Ukraine</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Potaskalov, Vadim A" sort="Potaskalov, Vadim A" uniqKey="Potaskalov V" first="Vadim A." last="Potaskalov">Vadim A. Potaskalov</name>
<affiliation>
<nlm:aff id="e">Department of General and Inorganic Chemistry, National Technical University of Ukraine, ‘Kyiv Polytechnic Institute’, 37 Prospect Peremogy, 03056 Kiev,
<country>Ukraine</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Merazig, Hocine" sort="Merazig, Hocine" uniqKey="Merazig H" first="Hocine" last="Merazig">Hocine Merazig</name>
<affiliation>
<nlm:aff id="a">Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000,
<country>Algeria</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Denes, Georges" sort="Denes, Georges" uniqKey="Denes G" first="Georges" last="Dénés">Georges Dénés</name>
<affiliation>
<nlm:aff id="f">Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H3G 1M8,
<country>Canada</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta Crystallographica Section E: Crystallographic Communications</title>
<idno type="eISSN">2056-9890</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In the title coordination polymer, [Co(C
<sub>3</sub>
H
<sub>3</sub>
O
<sub>4</sub>
)Cl(H
<sub>2</sub>
O)]
<sub>
<italic>n</italic>
</sub>
, the sixfold coordination environment of the Co
<sup>II</sup>
atom consists of two O atoms from a chelating hydrogen malonate anion (HMal
<sup></sup>
), one O atom originating from a μ
<sub>2</sub>
-bridging malonate ligand (HMal
<sup></sup>
), one O atom from a water mol­ecule and two μ
<sub>2</sub>
-bridging Cl
<sup></sup>
atoms, connecting neighbouring Co
<sub>2</sub>
Cl
<sub>4</sub>
motifs into a two-dimensional polymer extending parallel to (001). Inter­layer O—H⋯O hydrogen bonds link the layers into a three-dimensional network.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Acta Crystallogr E Crystallogr Commun</journal-id>
<journal-id journal-id-type="iso-abbrev">Acta Crystallogr E Crystallogr Commun</journal-id>
<journal-id journal-id-type="publisher-id">Acta Cryst. E</journal-id>
<journal-title-group>
<journal-title>Acta Crystallographica Section E: Crystallographic Communications</journal-title>
</journal-title-group>
<issn pub-type="epub">2056-9890</issn>
<publisher>
<publisher-name>International Union of Crystallography</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26870577</article-id>
<article-id pub-id-type="pmc">4704765</article-id>
<article-id pub-id-type="publisher-id">wm5235</article-id>
<article-id pub-id-type="doi">10.1107/S2056989015023269</article-id>
<article-id pub-id-type="coden">ACSECI</article-id>
<article-id pub-id-type="pii">S2056989015023269</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Communications</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Crystal structure of poly[di­aqua­(μ-2-carb­oxy­acetato-κ
<sup>3</sup>
<italic>O</italic>
,
<italic>O</italic>
′:
<italic>O</italic>
′′)(2-carb­oxy­acetato-κ
<italic>O</italic>
)di-μ-chlorido-dicobalt(II)]</article-title>
<alt-title>
<italic>[Co
<sub>2</sub>
(C
<sub>3</sub>
H
<sub>3</sub>
O
<sub>4</sub>
)
<sub>2</sub>
Cl
<sub>2</sub>
(H
<sub>2</sub>
O)
<sub>2</sub>
]</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Bouaoud</surname>
<given-names>Yasmina</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Setifi</surname>
<given-names>Zouaoui</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
<xref ref-type="aff" rid="b">b</xref>
<xref ref-type="corresp" rid="cor">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Buvailo</surname>
<given-names>Andrii</given-names>
</name>
<xref ref-type="aff" rid="c">c</xref>
<xref ref-type="aff" rid="d">d</xref>
<xref ref-type="corresp" rid="cor">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Potaskalov</surname>
<given-names>Vadim A.</given-names>
</name>
<xref ref-type="aff" rid="e">e</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Merazig</surname>
<given-names>Hocine</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dénés</surname>
<given-names>Georges</given-names>
</name>
<xref ref-type="aff" rid="f">f</xref>
</contrib>
<aff id="a">
<label>a</label>
Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000,
<country>Algeria</country>
</aff>
<aff id="b">
<label>b</label>
Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000,
<country>Algeria</country>
</aff>
<aff id="c">
<label>c</label>
National Taras Shevchenko University of Kyiv, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev,
<country>Ukraine</country>
</aff>
<aff id="d">
<label>d</label>
SciMax LLC, 2 Marshala Yakubovskogo str. 03191, Kyiv,
<country>Ukraine</country>
</aff>
<aff id="e">
<label>e</label>
Department of General and Inorganic Chemistry, National Technical University of Ukraine, ‘Kyiv Polytechnic Institute’, 37 Prospect Peremogy, 03056 Kiev,
<country>Ukraine</country>
</aff>
<aff id="f">
<label>f</label>
Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H3G 1M8,
<country>Canada</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor">Correspondence e-mail:
<email>setifi_zouaoui@yahoo.fr</email>
,
<email>futureintentions@gmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<day>01</day>
<month>1</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>01</day>
<month>1</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>01</day>
<month>1</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>72</volume>
<issue>Pt 1</issue>
<issue-id pub-id-type="publisher-id">e160100</issue-id>
<fpage>21</fpage>
<lpage>24</lpage>
<history>
<date date-type="received">
<day>02</day>
<month>11</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>03</day>
<month>12</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© Bouaoud et al. 2016</copyright-statement>
<copyright-year>2016</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0/uk/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.</license-p>
</license>
</permissions>
<self-uri xlink:type="simple" xlink:href="http://dx.doi.org/10.1107/S2056989015023269">A full version of this article is available from Crystallography Journals Online.</self-uri>
<abstract abstract-type="toc">
<p>In the title coordination polymer, [Co(C
<sub>3</sub>
H
<sub>3</sub>
O
<sub>4</sub>
)Cl(H
<sub>2</sub>
O)]
<sub>
<italic>n</italic>
</sub>
, the sixfold coordination environment of the Co
<sup>II</sup>
atom consists of two O atoms from a chelating hydrogen malonate anion (HMal
<sup></sup>
), one O atom originating from a μ
<sub>2</sub>
-bridging malonate ligand (HMal
<sup></sup>
), one O atom from a water mol­ecule and two μ
<sub>2</sub>
-bridging Cl
<sup></sup>
atoms, connecting neighbouring Co
<sub>2</sub>
Cl
<sub>4</sub>
motifs into a two-dimensional polymer extending parallel to (001). Inter­layer O—H⋯O hydrogen bonds link the layers into a three-dimensional network.</p>
</abstract>
<abstract>
<p>The asymmetric unit of the title polymer, [Co
<sub>2</sub>
(C
<sub>3</sub>
H
<sub>3</sub>
O
<sub>4</sub>
)
<sub>2</sub>
Cl
<sub>2</sub>
(H
<sub>2</sub>
O)
<sub>2</sub>
]
<sub>
<italic>n</italic>
</sub>
, comprises one Co
<sup>II</sup>
atom, one water mol­ecule, one singly deprotonated malonic acid mol­ecule (HMal
<sup></sup>
; systematic name 2-carb­oxy­acetate) and one Cl
<sup></sup>
anion. The Co
<sup>II</sup>
atom is octa­hedrally coordinated by the O atom of a water mol­ecule, by one terminally bound carboxyl­ate O atom of an HMal
<sup></sup>
anion and by two O atoms of a chelating HMal
<sup></sup>
anion, as well as by two Cl
<sup></sup>
anions. The Cl
<sup></sup>
anions bridge two Co
<sup>II</sup>
atoms, forming a centrosymmetric Co
<sub>2</sub>
Cl
<sub>2</sub>
core. Each malonate ligand is involved in the formation of six-membered chelate rings involving one Co
<sup>II</sup>
atom of the dinuclear unit and at the same time is coordinating to another Co
<sup>II</sup>
atom of a neighbouring dinuclear unit in a bridging mode. The combination of chelating and bridging coordination modes leads to the formation of a two-dimensional coordination polymer extending parallel to (001). Within a layer, O—H
<sub>water</sub>
⋯Cl and O—H
<sub>water</sub>
⋯O hydrogen bonds are present. Adjacent layers are linked through O—H⋯O=C hydrogen bonds involving the carb­oxy­lic acid OH and carbonyl groups. </p>
</abstract>
<kwd-group>
<kwd>crystal structure</kwd>
<kwd>malonate</kwd>
<kwd>cobalt</kwd>
<kwd>coordination polymer</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Chemical context   </title>
<p>Complexes with paramagnetic metal ions and extended structures are inter­esting due to their potential applications in mol­ecular magnetism (Moroz
<italic>et al.</italic>
, 2012
<xref ref-type="bibr" rid="bb13"></xref>
; Pavlishchuk
<italic>et al.</italic>
, 2010
<xref ref-type="bibr" rid="bb17"></xref>
, 2011
<xref ref-type="bibr" rid="bb16"></xref>
; Yuste
<italic>et al.</italic>
, 2009
<xref ref-type="bibr" rid="bb25"></xref>
). Malonic acid exhibits both chelating and bridging modes of coordination and is an efficient ligand for achieving two- or three-dimensional polymeric structures (Delgado
<italic>et al.</italic>
, 2004
<xref ref-type="bibr" rid="bb5"></xref>
). In the present communication we report on the structure of a two-dimensional coord­ination polymer, [Co(C
<sub>3</sub>
H
<sub>3</sub>
O
<sub>4</sub>
)Cl(H
<sub>2</sub>
O)]
<sub>
<italic>n</italic>
</sub>
, containing both chelating and bridging functions of singly deprotonated malonic acid ligands.</p>
</sec>
<sec id="sec2">
<title>Structural commentary   </title>
<p>The structure of the title compound is characterized by the presence of a two-dimensional coordination polymer extending parallel to (001). The monomeric fragment can be described as being composed of a centrosymmetric binuclear Co
<sub>2</sub>
Cl
<sub>4</sub>
motif with the Co
<sup>II</sup>
atoms having an overall distorted octa­hedral environment. The two octa­hedra are fused together
<italic>via</italic>
two bridging Cl atoms with Co—Cl bond lengths of 2.4312 (12) and 2.4657 (16) Å.
<chem-struct id="scheme1">
<graphic xlink:href="e-72-00021-scheme1.jpg" position="float"></graphic>
</chem-struct>
</p>
<p>In the octa­hedron, the Cl
<sup></sup>
atoms occupy equatorial positions, the other two equatorial positions being defined by the carboxyl­ate O atom of a bridging hydrogenmalonate anion (HMal
<sup></sup>
) and one O atom of a chelating HMal
<sup></sup>
anion, while one water O atom and the other O atom of the chelating HMal
<sup></sup>
anion are in axial positions (Fig. 1
<xref ref-type="fig" rid="fig1"></xref>
). The corresponding Co—O
<sub>malonate</sub>
bond lengths range from 2.051 (3) to 2.165 (3) Å which is similar to other structures containing this ligand in chelating and bridging modes (Delgado
<italic>et al.</italic>
, 2004
<xref ref-type="bibr" rid="bb5"></xref>
). The Co—O
<sub>water</sub>
bond has a length of 2.046 (3) Å. The C—O bond lengths in the carb­oxy­lic group differ significantly [1.225 (2) and 1.306 (4) Å] while those in the carboxyl­ate group [1.258 (4) and 1.267 (4) Å] are more or less the same, which is typical for this functional group (Wörl
<italic>et al.</italic>
, 2005
<italic>a</italic>
<xref ref-type="bibr" rid="bb23"></xref>
,
<italic>b</italic>
<xref ref-type="bibr" rid="bb22"></xref>
).</p>
</sec>
<sec id="sec3">
<title>Supra­molecular features   </title>
<p>The distribution of the dinuclear units within a coordination layer follows a chess-like pattern whereby each dinuclear coordination node is inter­connected with each other through four bridging HMal
<sup></sup>
ligands (Fig. 2
<xref ref-type="fig" rid="fig2"></xref>
). The binuclear coordin­ation nodes are additionally connected
<italic>via</italic>
intra­layer O—H
<sub>water</sub>
⋯Cl and O—H
<sub>water</sub>
⋯O hydrogen bonds (Table 1
<xref ref-type="table" rid="table1"></xref>
and Fig. 3
<xref ref-type="fig" rid="fig3"></xref>
). Adjacent layers are linked along [001]
<italic>via</italic>
inter­layer O—H⋯O=C hydrogen bonds involving two HMal
<sup></sup>
ligands (Table 1
<xref ref-type="table" rid="table1"></xref>
and Fig. 3
<xref ref-type="fig" rid="fig3"></xref>
).</p>
</sec>
<sec id="sec4">
<title>Database survey   </title>
<p>A search of the Cambridge Structural Database (Groom & Allen, 2014
<xref ref-type="bibr" rid="bb9"></xref>
) revealed a number of coordination polymeric structures containing cobalt(II) malonate moieties in different coordination modes. While the most typical coordination mode of malonate ligands in polymeric structures appears to be a μ
<sub>3</sub>
-bridging mode of the fully deprotonated acid involving all four oxygen atoms (usually two of them forming a chelating ring with one Co
<sup>II</sup>
atom) (Delgado
<italic>et al.</italic>
, 2004
<xref ref-type="bibr" rid="bb5"></xref>
; Xue
<italic>et al.</italic>
, 2003
<xref ref-type="bibr" rid="bb24"></xref>
; Lightfoot & Snedden, 1999
<xref ref-type="bibr" rid="bb11"></xref>
; Walter-Levy
<italic>et al.</italic>
, 1973
<xref ref-type="bibr" rid="bb20"></xref>
; Zheng & Xie, 2004
<xref ref-type="bibr" rid="bb26"></xref>
; Montney
<italic>et al.</italic>
, 2008
<xref ref-type="bibr" rid="bb12"></xref>
; Fu
<italic>et al.</italic>
, 2006
<xref ref-type="bibr" rid="bb7"></xref>
; Djeghri
<italic>et al.</italic>
, 2006
<xref ref-type="bibr" rid="bb6"></xref>
), there are also cases of less-common coordination modes in polymeric structures such as a μ
<sub>2</sub>
-bridging mode of the fully deprotonated ligand connecting two metal atoms (Gil de Muro
<italic>et al.</italic>
, 1999
<xref ref-type="bibr" rid="bb8"></xref>
; Pérez-Yáñez
<italic>et al.</italic>
, 2009
<xref ref-type="bibr" rid="bb18"></xref>
; Jin & Chen, 2007
<xref ref-type="bibr" rid="bb10"></xref>
). Much less common in coordination polymers is a mono-deprotonated state of malonic acid (Adarsh
<italic>et al.</italic>
, 2010
<xref ref-type="bibr" rid="bb1"></xref>
), while there are also few examples of non-polymeric coordination compounds (Walter-Levy
<italic>et al.</italic>
, 1973
<xref ref-type="bibr" rid="bb20"></xref>
; Clarkson
<italic>et al.</italic>
, 2001
<xref ref-type="bibr" rid="bb4"></xref>
; Wang
<italic>et al.</italic>
, 2005
<xref ref-type="bibr" rid="bb21"></xref>
).</p>
</sec>
<sec id="sec5">
<title>Synthesis and crystallization   </title>
<p>The title compound was synthesized by heating together 0.104 g (1 mmol) malonic acid dissolved in 15 ml of propanol and 0.238 g (1 mmol) of CoCl
<sub>2</sub>
·6H
<sub>2</sub>
O dissolved in 5 ml of water. Violet crystals suitable for X-ray analysis were isolated after two weeks by slow evaporation of the solvent from the resulting mixture. Crystals were washed with small amounts of propanol and dried in air yielding 0.071 g (36%) of the title compound.</p>
</sec>
<sec id="sec6">
<title>Refinement   </title>
<p>Crystal data, data collection and structure refinement details are summarized in Table 2
<xref ref-type="table" rid="table2"></xref>
. H atoms bound to O atoms were located from a difference-Fourier map and constrained to ride on their parent atoms, with
<italic>U</italic>
<sub>iso</sub>
(H) = 1.5
<italic>U</italic>
<sub>eq</sub>
(O). All C-bound H atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.97 Å, and
<italic>U</italic>
<sub>iso</sub>
(H) = 1.2
<italic>U</italic>
<sub>eq</sub>
(C).</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data">
<p>Crystal structure: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S2056989015023269/wm5235sup1.cif">10.1107/S2056989015023269/wm5235sup1.cif</ext-link>
</p>
<media mimetype="chemical" mime-subtype="x-cif" xlink:href="e-72-00021-sup1.cif" xlink:type="simple" id="d36e211" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Structure factors: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S2056989015023269/wm5235Isup2.hkl">10.1107/S2056989015023269/wm5235Isup2.hkl</ext-link>
</p>
<media mimetype="text" mime-subtype="plain" xlink:href="e-72-00021-Isup2.hkl" xlink:type="simple" id="d36e218" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>CCDC reference:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/cr.cgi?rm=csd&csdid=1440440">1440440</ext-link>
</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Additional supporting information:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsupfiles?wm5235&file=wm5235sup0.html&mime=text/html"> crystallographic information</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendcif?wm5235sup1&Qmime=cif">3D view</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?wm5235&checkcif=yes">checkCIF report</ext-link>
</p>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The authors acknowledge the Algerian MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and URCHEMS for financial support.</p>
</ack>
<app-group>
<app>
<title>supplementary crystallographic information</title>
<sec id="tablewrapcrystaldatalong">
<title>Crystal data</title>
<table-wrap position="anchor" id="d1e36">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">[Co
<sub>2</sub>
(C
<sub>3</sub>
H
<sub>3</sub>
O
<sub>4</sub>
)
<sub>2</sub>
Cl
<sub>2</sub>
(H
<sub>2</sub>
O)
<sub>2</sub>
]</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
(000) = 856</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 430.90</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
<sub>x</sub>
= 2.222 Mg m
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Orthorhombic,
<italic>P</italic>
<italic>b</italic>
<italic>c</italic>
<italic>a</italic>
</td>
<td rowspan="1" colspan="1">Mo
<italic>K</italic>
α radiation, λ = 0.71073 Å</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hall symbol: -P 2ac 2ab</td>
<td rowspan="1" colspan="1">Cell parameters from 1003 reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>a</italic>
= 7.568 (5) Å</td>
<td rowspan="1" colspan="1">θ = 3.4–27.6°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>b</italic>
= 8.879 (5) Å</td>
<td rowspan="1" colspan="1">µ = 3.04 mm
<sup></sup>
<sup>1</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>c</italic>
= 19.168 (5) Å</td>
<td rowspan="1" colspan="1">
<italic>T</italic>
= 296 K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>V</italic>
= 1288.0 (12) Å
<sup>3</sup>
</td>
<td rowspan="1" colspan="1">Block, violet</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>Z</italic>
= 4</td>
<td rowspan="1" colspan="1">0.20 × 0.14 × 0.07 mm</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapdatacollectionlong">
<title>Data collection</title>
<table-wrap position="anchor" id="d1e174">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Nonius KappaCCD diffractometer</td>
<td rowspan="1" colspan="1">1875 independent reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Radiation source: fine-focus sealed tube</td>
<td rowspan="1" colspan="1">1400 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Horizontally mounted graphite crystal monochromator</td>
<td rowspan="1" colspan="1">
<italic>R</italic>
<sub>int</sub>
= 0.055</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Detector resolution: 9 pixels mm
<sup>-1</sup>
</td>
<td rowspan="1" colspan="1">θ
<sub>max</sub>
= 30.0°, θ
<sub>min</sub>
= 3.4°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">φ scans and ω scans with κ offset</td>
<td rowspan="1" colspan="1">
<italic>h</italic>
= −10→10</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Absorption correction: multi-scan (
<italic>SADABS</italic>
; Bruker, 2004)</td>
<td rowspan="1" colspan="1">
<italic>k</italic>
= −12→12</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>T</italic>
<sub>min</sub>
= 0.632,
<italic>T</italic>
<sub>max</sub>
= 0.820</td>
<td rowspan="1" colspan="1">
<italic>l</italic>
= −24→26</td>
</tr>
<tr>
<td rowspan="1" colspan="1">6888 measured reflections</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewraprefinementdatalong">
<title>Refinement</title>
<table-wrap position="anchor" id="d1e300">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Refinement on
<italic>F</italic>
<sup>2</sup>
</td>
<td rowspan="1" colspan="1">Primary atom site location: structure-invariant direct methods</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Least-squares matrix: full</td>
<td rowspan="1" colspan="1">Secondary atom site location: difference Fourier map</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.046</td>
<td rowspan="1" colspan="1">Hydrogen site location: inferred from neighbouring sites</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.116</td>
<td rowspan="1" colspan="1">H-atom parameters constrained</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>S</italic>
= 1.05</td>
<td rowspan="1" colspan="1">
<italic>w</italic>
= 1/[σ
<sup>2</sup>
(
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
) + (0.0552
<italic>P</italic>
)
<sup>2</sup>
+ 0.9469
<italic>P</italic>
] where
<italic>P</italic>
= (
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
+ 2
<italic>F</italic>
<sub>c</sub>
<sup>2</sup>
)/3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1875 reflections</td>
<td rowspan="1" colspan="1">(Δ/σ)
<sub>max</sub>
< 0.001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">91 parameters</td>
<td rowspan="1" colspan="1">Δρ
<sub>max</sub>
= 1.05 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">0 restraints</td>
<td rowspan="1" colspan="1">Δρ
<sub>min</sub>
= −1.00 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="specialdetails">
<title>Special details</title>
<table-wrap position="anchor" id="d1e458">
<table rules="all" frame="box" style="table-layout:fixed">
<tr>
<td rowspan="1" colspan="1">Experimental. The O—H H atoms were located from the difference Fourier map but constrained to ride it's parent atom, with
<italic>U</italic>
<sub>iso</sub>
= 1.5
<italic>U</italic>
<sub>eq</sub>
(parent atom). Other H atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.97 Å, and
<italic>U</italic>
<sub>iso</sub>
= 1.2
<italic>U</italic>
<sub>eq</sub>
(parent atom).</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Refinement. Refinement of
<italic>F</italic>
<sup>2</sup>
against ALL reflections. The weighted
<italic>R</italic>
-factor
<italic>wR</italic>
and goodness of fit
<italic>S</italic>
are based on
<italic>F</italic>
<sup>2</sup>
, conventional
<italic>R</italic>
-factors
<italic>R</italic>
are based on
<italic>F</italic>
, with
<italic>F</italic>
set to zero for negative
<italic>F</italic>
<sup>2</sup>
. The threshold expression of
<italic>F</italic>
<sup>2</sup>
> σ(
<italic>F</italic>
<sup>2</sup>
) is used only for calculating
<italic>R</italic>
-factors(gt)
<italic>etc</italic>
. and is not relevant to the choice of reflections for refinement.
<italic>R</italic>
-factors based on
<italic>F</italic>
<sup>2</sup>
are statistically about twice as large as those based on
<italic>F</italic>
, and
<italic>R</italic>
- factors based on ALL data will be even larger.</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapcoords">
<title>Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e585">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>x</italic>
</td>
<td rowspan="1" colspan="1">
<italic>y</italic>
</td>
<td rowspan="1" colspan="1">
<italic>z</italic>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sub>iso</sub>
*/
<italic>U</italic>
<sub>eq</sub>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.57087 (6)</td>
<td rowspan="1" colspan="1">0.47694 (6)</td>
<td rowspan="1" colspan="1">0.58530 (2)</td>
<td rowspan="1" colspan="1">0.01449 (15)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cl1</td>
<td rowspan="1" colspan="1">0.71412 (10)</td>
<td rowspan="1" colspan="1">0.46924 (11)</td>
<td rowspan="1" colspan="1">0.47183 (5)</td>
<td rowspan="1" colspan="1">0.0223 (2)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">C1</td>
<td rowspan="1" colspan="1">0.4104 (4)</td>
<td rowspan="1" colspan="1">0.6347 (4)</td>
<td rowspan="1" colspan="1">0.70892 (19)</td>
<td rowspan="1" colspan="1">0.0177 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">C2</td>
<td rowspan="1" colspan="1">0.4303 (4)</td>
<td rowspan="1" colspan="1">0.7853 (4)</td>
<td rowspan="1" colspan="1">0.6731 (2)</td>
<td rowspan="1" colspan="1">0.0176 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">H2A</td>
<td rowspan="1" colspan="1">0.3323</td>
<td rowspan="1" colspan="1">0.7991</td>
<td rowspan="1" colspan="1">0.6411</td>
<td rowspan="1" colspan="1">0.021*</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">H2B</td>
<td rowspan="1" colspan="1">0.4237</td>
<td rowspan="1" colspan="1">0.8644</td>
<td rowspan="1" colspan="1">0.7079</td>
<td rowspan="1" colspan="1">0.021*</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">C3</td>
<td rowspan="1" colspan="1">0.6012 (4)</td>
<td rowspan="1" colspan="1">0.8016 (4)</td>
<td rowspan="1" colspan="1">0.63323 (18)</td>
<td rowspan="1" colspan="1">0.0133 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.6877 (3)</td>
<td rowspan="1" colspan="1">0.9227 (3)</td>
<td rowspan="1" colspan="1">0.64044 (14)</td>
<td rowspan="1" colspan="1">0.0179 (5)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.5004 (3)</td>
<td rowspan="1" colspan="1">0.2544 (3)</td>
<td rowspan="1" colspan="1">0.58516 (16)</td>
<td rowspan="1" colspan="1">0.0276 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">H1O2</td>
<td rowspan="1" colspan="1">0.5966</td>
<td rowspan="1" colspan="1">0.1929</td>
<td rowspan="1" colspan="1">0.5746</td>
<td rowspan="1" colspan="1">0.041*</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">H2O2</td>
<td rowspan="1" colspan="1">0.3970</td>
<td rowspan="1" colspan="1">0.2004</td>
<td rowspan="1" colspan="1">0.5857</td>
<td rowspan="1" colspan="1">0.041*</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.4575 (3)</td>
<td rowspan="1" colspan="1">0.5133 (3)</td>
<td rowspan="1" colspan="1">0.68488 (14)</td>
<td rowspan="1" colspan="1">0.0202 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.3363 (4)</td>
<td rowspan="1" colspan="1">0.6465 (3)</td>
<td rowspan="1" colspan="1">0.77023 (15)</td>
<td rowspan="1" colspan="1">0.0321 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">H1O4</td>
<td rowspan="1" colspan="1">0.3361</td>
<td rowspan="1" colspan="1">0.5574</td>
<td rowspan="1" colspan="1">0.7994</td>
<td rowspan="1" colspan="1">0.048*</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.6515 (3)</td>
<td rowspan="1" colspan="1">0.6967 (3)</td>
<td rowspan="1" colspan="1">0.59383 (13)</td>
<td rowspan="1" colspan="1">0.0175 (5)</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapadps">
<title>Atomic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e802">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>11</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>22</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>33</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>12</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>13</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>23</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.0156 (2)</td>
<td rowspan="1" colspan="1">0.0112 (2)</td>
<td rowspan="1" colspan="1">0.0167 (3)</td>
<td rowspan="1" colspan="1">−0.00042 (16)</td>
<td rowspan="1" colspan="1">−0.00079 (17)</td>
<td rowspan="1" colspan="1">−0.00210 (19)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cl1</td>
<td rowspan="1" colspan="1">0.0181 (4)</td>
<td rowspan="1" colspan="1">0.0284 (5)</td>
<td rowspan="1" colspan="1">0.0204 (4)</td>
<td rowspan="1" colspan="1">0.0089 (3)</td>
<td rowspan="1" colspan="1">0.0002 (3)</td>
<td rowspan="1" colspan="1">−0.0038 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">C1</td>
<td rowspan="1" colspan="1">0.0123 (13)</td>
<td rowspan="1" colspan="1">0.0175 (19)</td>
<td rowspan="1" colspan="1">0.0233 (19)</td>
<td rowspan="1" colspan="1">−0.0019 (12)</td>
<td rowspan="1" colspan="1">0.0039 (13)</td>
<td rowspan="1" colspan="1">0.0013 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">C2</td>
<td rowspan="1" colspan="1">0.0146 (13)</td>
<td rowspan="1" colspan="1">0.0125 (17)</td>
<td rowspan="1" colspan="1">0.0257 (19)</td>
<td rowspan="1" colspan="1">0.0004 (12)</td>
<td rowspan="1" colspan="1">0.0054 (13)</td>
<td rowspan="1" colspan="1">0.0009 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">C3</td>
<td rowspan="1" colspan="1">0.0148 (13)</td>
<td rowspan="1" colspan="1">0.0099 (16)</td>
<td rowspan="1" colspan="1">0.0152 (17)</td>
<td rowspan="1" colspan="1">0.0007 (11)</td>
<td rowspan="1" colspan="1">0.0005 (11)</td>
<td rowspan="1" colspan="1">0.0014 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.0206 (11)</td>
<td rowspan="1" colspan="1">0.0110 (12)</td>
<td rowspan="1" colspan="1">0.0220 (13)</td>
<td rowspan="1" colspan="1">−0.0028 (9)</td>
<td rowspan="1" colspan="1">0.0063 (10)</td>
<td rowspan="1" colspan="1">−0.0034 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.0171 (11)</td>
<td rowspan="1" colspan="1">0.0177 (15)</td>
<td rowspan="1" colspan="1">0.0481 (19)</td>
<td rowspan="1" colspan="1">−0.0021 (10)</td>
<td rowspan="1" colspan="1">−0.0059 (12)</td>
<td rowspan="1" colspan="1">−0.0016 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.0274 (13)</td>
<td rowspan="1" colspan="1">0.0133 (13)</td>
<td rowspan="1" colspan="1">0.0198 (14)</td>
<td rowspan="1" colspan="1">−0.0018 (10)</td>
<td rowspan="1" colspan="1">0.0038 (10)</td>
<td rowspan="1" colspan="1">−0.0005 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.0514 (17)</td>
<td rowspan="1" colspan="1">0.0192 (15)</td>
<td rowspan="1" colspan="1">0.0257 (15)</td>
<td rowspan="1" colspan="1">0.0046 (13)</td>
<td rowspan="1" colspan="1">0.0211 (14)</td>
<td rowspan="1" colspan="1">0.0029 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.0213 (11)</td>
<td rowspan="1" colspan="1">0.0116 (12)</td>
<td rowspan="1" colspan="1">0.0196 (13)</td>
<td rowspan="1" colspan="1">−0.0021 (9)</td>
<td rowspan="1" colspan="1">0.0052 (10)</td>
<td rowspan="1" colspan="1">−0.0047 (10)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapgeomlong">
<title>Geometric parameters (Å, º)</title>
<table-wrap position="anchor" id="d1e1024">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="4">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Co1—O2</td>
<td rowspan="1" colspan="1">2.046 (3)</td>
<td rowspan="1" colspan="1">C2—C3</td>
<td rowspan="1" colspan="1">1.509 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O5</td>
<td rowspan="1" colspan="1">2.051 (3)</td>
<td rowspan="1" colspan="1">C2—H2A</td>
<td rowspan="1" colspan="1">0.9700</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O3</td>
<td rowspan="1" colspan="1">2.118 (3)</td>
<td rowspan="1" colspan="1">C2—H2B</td>
<td rowspan="1" colspan="1">0.9700</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O1
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.165 (3)</td>
<td rowspan="1" colspan="1">C3—O5</td>
<td rowspan="1" colspan="1">1.258 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—Cl1</td>
<td rowspan="1" colspan="1">2.4312 (12)</td>
<td rowspan="1" colspan="1">C3—O1</td>
<td rowspan="1" colspan="1">1.267 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—Cl1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.4657 (16)</td>
<td rowspan="1" colspan="1">O1—Co1
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.165 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cl1—Co1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.4657 (16)</td>
<td rowspan="1" colspan="1">O2—H1O2</td>
<td rowspan="1" colspan="1">0.9325</td>
</tr>
<tr>
<td rowspan="1" colspan="1">C1—O3</td>
<td rowspan="1" colspan="1">1.225 (5)</td>
<td rowspan="1" colspan="1">O2—H2O2</td>
<td rowspan="1" colspan="1">0.9180</td>
</tr>
<tr>
<td rowspan="1" colspan="1">C1—O4</td>
<td rowspan="1" colspan="1">1.306 (4)</td>
<td rowspan="1" colspan="1">O4—H1O4</td>
<td rowspan="1" colspan="1">0.9698</td>
</tr>
<tr>
<td rowspan="1" colspan="1">C1—C2</td>
<td rowspan="1" colspan="1">1.511 (5)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co1—O5</td>
<td rowspan="1" colspan="1">174.98 (11)</td>
<td rowspan="1" colspan="1">O4—C1—C2</td>
<td rowspan="1" colspan="1">112.4 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co1—O3</td>
<td rowspan="1" colspan="1">92.46 (11)</td>
<td rowspan="1" colspan="1">C3—C2—C1</td>
<td rowspan="1" colspan="1">113.6 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Co1—O3</td>
<td rowspan="1" colspan="1">84.46 (10)</td>
<td rowspan="1" colspan="1">C3—C2—H2A</td>
<td rowspan="1" colspan="1">108.8</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co1—O1
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">90.35 (10)</td>
<td rowspan="1" colspan="1">C1—C2—H2A</td>
<td rowspan="1" colspan="1">108.8</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Co1—O1
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">85.50 (10)</td>
<td rowspan="1" colspan="1">C3—C2—H2B</td>
<td rowspan="1" colspan="1">108.8</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—Co1—O1
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">86.33 (10)</td>
<td rowspan="1" colspan="1">C1—C2—H2B</td>
<td rowspan="1" colspan="1">108.8</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co1—Cl1</td>
<td rowspan="1" colspan="1">95.04 (9)</td>
<td rowspan="1" colspan="1">H2A—C2—H2B</td>
<td rowspan="1" colspan="1">107.7</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Co1—Cl1</td>
<td rowspan="1" colspan="1">88.02 (7)</td>
<td rowspan="1" colspan="1">O5—C3—O1</td>
<td rowspan="1" colspan="1">122.5 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—Co1—Cl1</td>
<td rowspan="1" colspan="1">172.49 (8)</td>
<td rowspan="1" colspan="1">O5—C3—C2</td>
<td rowspan="1" colspan="1">119.5 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Co1—Cl1</td>
<td rowspan="1" colspan="1">93.10 (8)</td>
<td rowspan="1" colspan="1">O1—C3—C2</td>
<td rowspan="1" colspan="1">118.0 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co1—Cl1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">87.62 (8)</td>
<td rowspan="1" colspan="1">C3—O1—Co1
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">124.9 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Co1—Cl1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">96.38 (8)</td>
<td rowspan="1" colspan="1">Co1—O2—H1O2</td>
<td rowspan="1" colspan="1">111.3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—Co1—Cl1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">90.93 (8)</td>
<td rowspan="1" colspan="1">Co1—O2—H2O2</td>
<td rowspan="1" colspan="1">136.6</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Co1—Cl1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">176.52 (8)</td>
<td rowspan="1" colspan="1">H1O2—O2—H2O2</td>
<td rowspan="1" colspan="1">111.2</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cl1—Co1—Cl1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">89.89 (4)</td>
<td rowspan="1" colspan="1">C1—O3—Co1</td>
<td rowspan="1" colspan="1">126.2 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—Cl1—Co1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">90.11 (4)</td>
<td rowspan="1" colspan="1">C1—O4—H1O4</td>
<td rowspan="1" colspan="1">117.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—C1—O4</td>
<td rowspan="1" colspan="1">122.3 (4)</td>
<td rowspan="1" colspan="1">C3—O5—Co1</td>
<td rowspan="1" colspan="1">131.5 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—C1—C2</td>
<td rowspan="1" colspan="1">125.3 (3)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co1—Cl1—Co1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">87.60 (8)</td>
<td rowspan="1" colspan="1">C2—C1—O3—Co1</td>
<td rowspan="1" colspan="1">−2.5 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Co1—Cl1—Co1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">−96.39 (8)</td>
<td rowspan="1" colspan="1">O2—Co1—O3—C1</td>
<td rowspan="1" colspan="1">−158.3 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Co1—Cl1—Co1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">178.22 (8)</td>
<td rowspan="1" colspan="1">O5—Co1—O3—C1</td>
<td rowspan="1" colspan="1">25.7 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cl1
<sup>ii</sup>
—Co1—Cl1—Co1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">0.0</td>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Co1—O3—C1</td>
<td rowspan="1" colspan="1">111.5 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—C1—C2—C3</td>
<td rowspan="1" colspan="1">−38.3 (5)</td>
<td rowspan="1" colspan="1">Cl1
<sup>ii</sup>
—Co1—O3—C1</td>
<td rowspan="1" colspan="1">−70.6 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—C1—C2—C3</td>
<td rowspan="1" colspan="1">141.5 (3)</td>
<td rowspan="1" colspan="1">O1—C3—O5—Co1</td>
<td rowspan="1" colspan="1">166.5 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">C1—C2—C3—O5</td>
<td rowspan="1" colspan="1">46.5 (5)</td>
<td rowspan="1" colspan="1">C2—C3—O5—Co1</td>
<td rowspan="1" colspan="1">−14.4 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">C1—C2—C3—O1</td>
<td rowspan="1" colspan="1">−134.3 (4)</td>
<td rowspan="1" colspan="1">O3—Co1—O5—C3</td>
<td rowspan="1" colspan="1">−17.1 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—C3—O1—Co1
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.2 (5)</td>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Co1—O5—C3</td>
<td rowspan="1" colspan="1">−103.9 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">C2—C3—O1—Co1
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">−176.9 (2)</td>
<td rowspan="1" colspan="1">Cl1—Co1—O5—C3</td>
<td rowspan="1" colspan="1">162.9 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—C1—O3—Co1</td>
<td rowspan="1" colspan="1">177.8 (2)</td>
<td rowspan="1" colspan="1">Cl1
<sup>ii</sup>
—Co1—O5—C3</td>
<td rowspan="1" colspan="1">73.2 (3)</td>
</tr>
</table>
</table-wrap>
<p>Symmetry codes: (i) −
<italic>x</italic>
+3/2,
<italic>y</italic>
−1/2,
<italic>z</italic>
; (ii) −
<italic>x</italic>
+1, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (iii) −
<italic>x</italic>
+3/2,
<italic>y</italic>
+1/2,
<italic>z</italic>
.</p>
</sec>
<sec id="tablewraphbondslong">
<title>Hydrogen-bond geometry (Å, º)</title>
<table-wrap position="anchor" id="d1e1529">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="5">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">
<italic>D</italic>
—H···
<italic>A</italic>
</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
—H</td>
<td rowspan="1" colspan="1">H···
<italic>A</italic>
</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
···
<italic>A</italic>
</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
—H···
<italic>A</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—H1
<italic>O</italic>
2···O5
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">0.93</td>
<td rowspan="1" colspan="1">1.94</td>
<td rowspan="1" colspan="1">2.689 (4)</td>
<td rowspan="1" colspan="1">136</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—H2
<italic>O</italic>
2···Cl1
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">0.92</td>
<td rowspan="1" colspan="1">2.32</td>
<td rowspan="1" colspan="1">3.135 (3)</td>
<td rowspan="1" colspan="1">147</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—H1
<italic>O</italic>
4···O1
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">0.97</td>
<td rowspan="1" colspan="1">1.67</td>
<td rowspan="1" colspan="1">2.629 (4)</td>
<td rowspan="1" colspan="1">169</td>
</tr>
</table>
</table-wrap>
<p>Symmetry codes: (i) −
<italic>x</italic>
+3/2,
<italic>y</italic>
−1/2,
<italic>z</italic>
; (iv)
<italic>x</italic>
−1/2, −
<italic>y</italic>
+1/2, −
<italic>z</italic>
+1; (v) −
<italic>x</italic>
+1,
<italic>y</italic>
−1/2, −
<italic>z</italic>
+3/2.</p>
</sec>
</app>
</app-group>
<ref-list>
<title>References</title>
<ref id="bb1">
<mixed-citation publication-type="other">Adarsh, N. N., Sahoo, P. & Dastidar, P. (2010).
<italic>Cryst. Growth Des.</italic>
<bold>10</bold>
, 4976–4986.</mixed-citation>
</ref>
<ref id="bb2">
<mixed-citation publication-type="other">Brandenburg, K. (2010).
<italic>DIAMOND</italic>
. Crystal Impact GbR, Bonn, Germany.</mixed-citation>
</ref>
<ref id="bb3">
<mixed-citation publication-type="other">Bruker (2004).
<italic>SADABS</italic>
. Bruker AXS Inc., Madison, Wisconsin, USA.</mixed-citation>
</ref>
<ref id="bb4">
<mixed-citation publication-type="other">Clarkson, A. J., Blackman, A. G. & Clark, C. R. (2001).
<italic>J. Chem. Soc. Dalton Trans.</italic>
pp. 758–765.</mixed-citation>
</ref>
<ref id="bb5">
<mixed-citation publication-type="other">Delgado, F. S., Hernandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., Rodriguez-Martin, Y., Lopez, T., Lloret, F. & Julve, M. (2004).
<italic>CrystEngComm</italic>
,
<bold>6</bold>
, 106–111.</mixed-citation>
</ref>
<ref id="bb6">
<mixed-citation publication-type="other">Djeghri, A., Balegroune, F., Guehria Laidoudi, A. & Toupet, L. (2006).
<italic>Acta Cryst.</italic>
C
<bold>62</bold>
, m126–m128.</mixed-citation>
</ref>
<ref id="bb7">
<mixed-citation publication-type="other">Fu, X.-C., Nie, L., Zhang, Q., Li, M.-T. & Wang, X.-Y. (2006).
<italic>Chin</italic>
<italic>J. Struct. Chem. (Jiegou Huaxue)</italic>
,
<bold>25</bold>
, 1449–1452.</mixed-citation>
</ref>
<ref id="bb8">
<mixed-citation publication-type="other">Gil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999).
<italic>Eur. J. Inorg. Chem.</italic>
pp. 935–943.</mixed-citation>
</ref>
<ref id="bb9">
<mixed-citation publication-type="other">Groom, C. R. & Allen, F. H. (2014).
<italic>Angew. Chem. Int. Ed.</italic>
<bold>53</bold>
, 662–671.</mixed-citation>
</ref>
<ref id="bb10">
<mixed-citation publication-type="other">Jin, S.-W. & Chen, W.-Z. (2007).
<italic>Polyhedron</italic>
,
<bold>26</bold>
, 3074–3084.</mixed-citation>
</ref>
<ref id="bb11">
<mixed-citation publication-type="other">Lightfoot, P. & Snedden, A. (1999).
<italic>J. Chem. Soc. Dalton Trans.</italic>
pp. 3549–3551.</mixed-citation>
</ref>
<ref id="bb12">
<mixed-citation publication-type="other">Montney, M. R., Supkowski, R. M. & LaDuca, R. L. (2008).
<italic>Polyhedron</italic>
,
<bold>27</bold>
, 2997–3003.</mixed-citation>
</ref>
<ref id="bb13">
<mixed-citation publication-type="other">Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012).
<italic>Inorg. Chem.</italic>
<bold>51</bold>
, 7445–7447.</mixed-citation>
</ref>
<ref id="bb14">
<mixed-citation publication-type="other">Nonius (2000).
<italic>COLLECT</italic>
. Nonius BV, Delft, The Netherlands.</mixed-citation>
</ref>
<ref id="bb15">
<mixed-citation publication-type="other">Otwinowski, Z. & Minor, W. (1997).
<italic>Methods in Enzymology</italic>
, Vol. 276,
<italic>Macromolecular Crystallography</italic>
, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.</mixed-citation>
</ref>
<ref id="bb16">
<mixed-citation publication-type="other">Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011).
<italic>Eur. J. Inorg. Chem.</italic>
pp. 4826–4836.</mixed-citation>
</ref>
<ref id="bb17">
<mixed-citation publication-type="other">Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010).
<italic>Eur. J. Inorg. Chem.</italic>
pp. 4851–4858.</mixed-citation>
</ref>
<ref id="bb18">
<mixed-citation publication-type="other">Pérez-Yáñez, S., Castillo, O., Cepeda, J., García-Terán, J. P., Luque, A. & Román, P. (2009).
<italic>Eur. J. Inorg. Chem.</italic>
pp. 3889–3899.</mixed-citation>
</ref>
<ref id="bb19">
<mixed-citation publication-type="other">Sheldrick, G. M. (2008).
<italic>Acta Cryst.</italic>
A
<bold>64</bold>
, 112–122.</mixed-citation>
</ref>
<ref id="bb20">
<mixed-citation publication-type="other">Walter-Levy, L., Perrotey, J. & Visser, J. W. (1973).
<italic>C. R. Acad. Sci. Ser. C</italic>
,
<bold>277</bold>
, 1351–1354.</mixed-citation>
</ref>
<ref id="bb21">
<mixed-citation publication-type="other">Wang, Z.-L., Wei, L.-H. & Niu, J.-Y. (2005).
<italic>Acta Cryst.</italic>
E
<bold>61</bold>
, m1907–m1908.</mixed-citation>
</ref>
<ref id="bb22">
<mixed-citation publication-type="other">Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005
<italic>b</italic>
).
<italic>Eur. J. Inorg. Chem.</italic>
pp. 759–765.</mixed-citation>
</ref>
<ref id="bb23">
<mixed-citation publication-type="other">Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005
<italic>a</italic>
).
<italic>Dalton Trans.</italic>
pp. 27–29.</mixed-citation>
</ref>
<ref id="bb24">
<mixed-citation publication-type="other">Xue, Y.-H., Lin, D.-D. & Xu, D.-J. (2003).
<italic>Acta Cryst.</italic>
E
<bold>59</bold>
, m750–m752.</mixed-citation>
</ref>
<ref id="bb25">
<mixed-citation publication-type="other">Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009).
<italic>Polyhedron</italic>
,
<bold>28</bold>
, 1287–1294.</mixed-citation>
</ref>
<ref id="bb26">
<mixed-citation publication-type="other">Zheng, Y.-Q. & Xie, H.-Z. (2004).
<italic>J. Coord. Chem.</italic>
<bold>57</bold>
, 1537–</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>A fragment of the title coordination polymer, showing the atom labelling. All H atoms, except those of hy­droxy groups, have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. The intra­layer O—H⋯Cl hydrogen bonds are shown as dashed lines. [Symmetry codes: (a)
<inline-formula>
<inline-graphic xlink:href="e-72-00021-efi4.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
 + 
<italic>x</italic>
,
<inline-formula>
<inline-graphic xlink:href="e-72-00021-efi5.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
 − 
<italic>y</italic>
, 1 − 
<italic>z</italic>
; (b) 1 − 
<italic>x</italic>
, 1 − 
<italic>y</italic>
, 1 − 
<italic>z</italic>
; (c)
<inline-formula>
<inline-graphic xlink:href="e-72-00021-efi5.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
 − 
<italic>x</italic>
, −
<inline-formula>
<inline-graphic xlink:href="e-72-00021-efi4.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
 + 
<italic>y</italic>
,
<italic>z</italic>
; (d)
<inline-formula>
<inline-graphic xlink:href="e-72-00021-efi5.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
 − 
<italic>x</italic>
,
<inline-formula>
<inline-graphic xlink:href="e-72-00021-efi4.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
 + 
<italic>y</italic>
,
<italic>z</italic>
.]</p>
</caption>
<graphic xlink:href="e-72-00021-fig1"></graphic>
</fig>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>A view of the polymeric coordination layer in the crystal of the title compound, extending parallel to (001).</p>
</caption>
<graphic xlink:href="e-72-00021-fig2"></graphic>
</fig>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>A view along [010] of the crystal packing of the title compound showing the inter- and intra­layer hydrogen-bonding system (dashed lines).</p>
</caption>
<graphic xlink:href="e-72-00021-fig3"></graphic>
</fig>
<table-wrap id="table1" position="float">
<label>Table 1</label>
<caption>
<title>Hydrogen-bond geometry (Å, °)</title>
</caption>
<table frame="hsides" rules="groups">
<thead valign="bottom">
<tr>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">
<italic>D</italic>
—H⋯
<italic>A</italic>
</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">
<italic>D</italic>
—H</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">H⋯
<italic>A</italic>
</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">
<italic>D</italic>
<italic>A</italic>
</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">
<italic>D</italic>
—H⋯
<italic>A</italic>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">O2—H1
<italic>O</italic>
2⋯O5
<sup>i</sup>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.93</td>
<td rowspan="1" colspan="1" align="left" valign="top">1.94</td>
<td rowspan="1" colspan="1" align="left" valign="top">2.689 (4)</td>
<td rowspan="1" colspan="1" align="left" valign="top">136</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">O2—H2
<italic>O</italic>
2⋯Cl1
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.92</td>
<td rowspan="1" colspan="1" align="left" valign="top">2.32</td>
<td rowspan="1" colspan="1" align="left" valign="top">3.135 (3)</td>
<td rowspan="1" colspan="1" align="left" valign="top">147</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">O4—H1
<italic>O</italic>
4⋯O1
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.97</td>
<td rowspan="1" colspan="1" align="left" valign="top">1.67</td>
<td rowspan="1" colspan="1" align="left" valign="top">2.629 (4)</td>
<td rowspan="1" colspan="1" align="left" valign="top">169</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Symmetry codes: (i)
<inline-formula>
<inline-graphic xlink:href="e-72-00021-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (ii)
<inline-formula>
<inline-graphic xlink:href="e-72-00021-efi2.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (iii)
<inline-formula>
<inline-graphic xlink:href="e-72-00021-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
.</p>
</table-wrap-foot>
</table-wrap>
<table-wrap id="table2" position="float">
<label>Table 2</label>
<caption>
<title>Experimental details</title>
</caption>
<table frame="hsides" rules="groups">
<tbody valign="top">
<tr>
<td rowspan="1" colspan="2" align="left" valign="top">Crystal data</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Chemical formula</td>
<td rowspan="1" colspan="1" align="left" valign="top">[Co
<sub>2</sub>
(C
<sub>3</sub>
H
<sub>3</sub>
O
<sub>4</sub>
)
<sub>2</sub>
Cl
<sub>2</sub>
(H
<sub>2</sub>
O)
<sub>2</sub>
]</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>M</italic>
<sub>r</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">430.90</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Crystal system, space group</td>
<td rowspan="1" colspan="1" align="left" valign="top">Orthorhombic,
<italic>P</italic>
<italic>b</italic>
<italic>c</italic>
<italic>a</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Temperature (K)</td>
<td rowspan="1" colspan="1" align="left" valign="top">296</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>a</italic>
,
<italic>b</italic>
,
<italic>c</italic>
(Å)</td>
<td rowspan="1" colspan="1" align="left" valign="top">7.568 (5), 8.879 (5), 19.168 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>V</italic>
<sup>3</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">1288.0 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>Z</italic>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">4</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Radiation type</td>
<td rowspan="1" colspan="1" align="left" valign="top">Mo
<italic>K</italic>
α</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">μ (mm
<sup>−1</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">3.04</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Crystal size (mm)</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.20 × 0.14 × 0.07</td>
</tr>
<tr>
<td rowspan="1" colspan="2" align="left" valign="top"> </td>
</tr>
<tr>
<td rowspan="1" colspan="2" align="left" valign="top">Data collection</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Diffractometer</td>
<td rowspan="1" colspan="1" align="left" valign="top">Nonius KappaCCD</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Absorption correction</td>
<td rowspan="1" colspan="1" align="left" valign="top">Multi-scan (
<italic>SADABS</italic>
; Bruker, 2004
<xref ref-type="bibr" rid="bb3"></xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>T</italic>
<sub>min</sub>
,
<italic>T</italic>
<sub>max</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.632, 0.820</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">No. of measured, independent and observed [
<italic>I</italic>
> 2σ(
<italic>I</italic>
)] reflections</td>
<td rowspan="1" colspan="1" align="left" valign="top">6888, 1875, 1400</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>R</italic>
<sub>int</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.055</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">(sin θ/λ)
<sub>max</sub>
<sup>−1</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.704</td>
</tr>
<tr>
<td rowspan="1" colspan="2" align="left" valign="top"> </td>
</tr>
<tr>
<td rowspan="1" colspan="2" align="left" valign="top">Refinement</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)],
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
),
<italic>S</italic>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0.046, 0.116, 1.05</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">No. of reflections</td>
<td rowspan="1" colspan="1" align="left" valign="top">1875</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">No. of parameters</td>
<td rowspan="1" colspan="1" align="left" valign="top">91</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">H-atom treatment</td>
<td rowspan="1" colspan="1" align="left" valign="top">H-atom parameters constrained</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Δρ
<sub>max</sub>
, Δρ
<sub>min</sub>
(e Å
<sup>−3</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">1.05, −1.00</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Computer programs:
<italic>COLLECT</italic>
(Nonius, 2000
<xref ref-type="bibr" rid="bb14"></xref>
),
<italic>DENZO</italic>
/
<italic>SCALEPACK</italic>
(Otwinowski & Minor, 1997
<xref ref-type="bibr" rid="bb15"></xref>
),
<italic>SHELXS97</italic>
and
<italic>SHELXL97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb19"></xref>
) and
<italic>DIAMOND</italic>
(Brandenburg, 2010
<xref ref-type="bibr" rid="bb2"></xref>
).</p>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000054 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000054 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4704765
   |texte=   Crystal structure of poly[di­aqua­(μ-2-carb­oxy­acetato-κ3O,O′:O′′)(2-carb­oxy­acetato-κO)di-μ-chlorido-dicobalt(II)]
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26870577" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024