Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure cristalline de la triple molybdate Ag0.90Al1.06Co2.94(MoO4)5

Identifieur interne : 000052 ( Pmc/Corpus ); précédent : 000051; suivant : 000053

Structure cristalline de la triple molybdate Ag0.90Al1.06Co2.94(MoO4)5

Auteurs : Rawia Nasri ; Saïda Fatma Chérif ; Mohamed Faouzi Zid

Source :

RBID : PMC:4438844

Abstract

A new triple hexa­kis­(molybdate), Ag0.90Al1.06Co2.94(MoO4)5, was synthesized using a solid-state reaction at 845 K. Dimers M2O10 (M = Co/Al) and trimers M3O14 link to the MoO4 tetra­hedra by sharing corners and form a three-dimensional framework with the inter­stitial sites occupied by Ag+ cations.


Url:
DOI: 10.1107/S2056989015005290
PubMed: 26029398
PubMed Central: 4438844

Links to Exploration step

PMC:4438844

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structure cristalline de la triple molybdate Ag
<sub>0.90</sub>
Al
<sub>1.06</sub>
Co
<sub>2.94</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
</title>
<author>
<name sortKey="Nasri, Rawia" sort="Nasri, Rawia" uniqKey="Nasri R" first="Rawia" last="Nasri">Rawia Nasri</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cherif, Saida Fatma" sort="Cherif, Saida Fatma" uniqKey="Cherif S" first="Saïda Fatma" last="Chérif">Saïda Fatma Chérif</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zid, Mohamed Faouzi" sort="Zid, Mohamed Faouzi" uniqKey="Zid M" first="Mohamed Faouzi" last="Zid">Mohamed Faouzi Zid</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26029398</idno>
<idno type="pmc">4438844</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438844</idno>
<idno type="RBID">PMC:4438844</idno>
<idno type="doi">10.1107/S2056989015005290</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000052</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000052</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Structure cristalline de la triple molybdate Ag
<sub>0.90</sub>
Al
<sub>1.06</sub>
Co
<sub>2.94</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
</title>
<author>
<name sortKey="Nasri, Rawia" sort="Nasri, Rawia" uniqKey="Nasri R" first="Rawia" last="Nasri">Rawia Nasri</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cherif, Saida Fatma" sort="Cherif, Saida Fatma" uniqKey="Cherif S" first="Saïda Fatma" last="Chérif">Saïda Fatma Chérif</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zid, Mohamed Faouzi" sort="Zid, Mohamed Faouzi" uniqKey="Zid M" first="Mohamed Faouzi" last="Zid">Mohamed Faouzi Zid</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta Crystallographica Section E: Crystallographic Communications</title>
<idno type="eISSN">2056-9890</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>A new triple hexa­kis­(molybdate), Ag
<sub>0.90</sub>
Al
<sub>1.06</sub>
Co
<sub>2.94</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
, was synthesized using a solid-state reaction at 845 K. Dimers
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co/Al) and trimers
<italic>M</italic>
<sub>3</sub>
O
<sub>14</sub>
link to the MoO
<sub>4</sub>
tetra­hedra by sharing corners and form a three-dimensional framework with the inter­stitial sites occupied by Ag
<sup>+</sup>
cations.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Acta Crystallogr E Crystallogr Commun</journal-id>
<journal-id journal-id-type="iso-abbrev">Acta Crystallogr E Crystallogr Commun</journal-id>
<journal-id journal-id-type="publisher-id">Acta Cryst. E</journal-id>
<journal-title-group>
<journal-title>Acta Crystallographica Section E: Crystallographic Communications</journal-title>
</journal-title-group>
<issn pub-type="epub">2056-9890</issn>
<publisher>
<publisher-name>International Union of Crystallography</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26029398</article-id>
<article-id pub-id-type="pmc">4438844</article-id>
<article-id pub-id-type="publisher-id">vn2089</article-id>
<article-id pub-id-type="doi">10.1107/S2056989015005290</article-id>
<article-id pub-id-type="coden">ACSECI</article-id>
<article-id pub-id-type="pii">S2056989015005290</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Communications</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Structure cristalline de la triple molybdate Ag
<sub>0.90</sub>
Al
<sub>1.06</sub>
Co
<sub>2.94</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
</article-title>
<alt-title>
<italic>Ag
<sub>0.90</sub>
Al
<sub>1.06</sub>
Co
<sub>2.94</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Nasri</surname>
<given-names>Rawia</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chérif</surname>
<given-names>Saïda Fatma</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
<xref ref-type="corresp" rid="cor">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zid</surname>
<given-names>Mohamed Faouzi</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<aff id="a">
<label>a</label>
Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisia</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor">Correspondence e-mail:
<email>c.fatouma@yahoo.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<day>01</day>
<month>4</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>21</day>
<month>3</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>21</day>
<month>3</month>
<year>2015</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>71</volume>
<issue>Pt 4</issue>
<issue-id pub-id-type="publisher-id">e150400</issue-id>
<fpage>388</fpage>
<lpage>391</lpage>
<history>
<date date-type="received">
<day>23</day>
<month>2</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>14</day>
<month>3</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© Nasri et al. 2015</copyright-statement>
<copyright-year>2015</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0/uk/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.</license-p>
</license>
</permissions>
<self-uri xlink:type="simple" xlink:href="http://dx.doi.org/10.1107/S2056989015005290">A full version of this article is available from Crystallography Journals Online.</self-uri>
<abstract abstract-type="toc">
<p>A new triple hexa­kis­(molybdate), Ag
<sub>0.90</sub>
Al
<sub>1.06</sub>
Co
<sub>2.94</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
, was synthesized using a solid-state reaction at 845 K. Dimers
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co/Al) and trimers
<italic>M</italic>
<sub>3</sub>
O
<sub>14</sub>
link to the MoO
<sub>4</sub>
tetra­hedra by sharing corners and form a three-dimensional framework with the inter­stitial sites occupied by Ag
<sup>+</sup>
cations.</p>
</abstract>
<abstract>
<p>Silver(I) aluminiun tricobalt(II) penta­kis­[tetra­oxidomolybdate(VI)], Ag
<sub>0.90</sub>
Al
<sub>1.06</sub>
Co
<sub>2.94</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
, was synthesized using a solid-state reaction at 845 K. The structure can be described as a three-dimensional framework formed from dimeric
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co/Al) and trimeric
<italic>M</italic>
<sub>3</sub>
O
<sub>14</sub>
units linked to MoO
<sub>4</sub>
tetra­hedra by sharing corners, with the cavities occupied by disordered Ag
<sup>+</sup>
cations. It is shown that the Co and Al atoms occupy common positions with different occupancies. The Ag
<sup>+</sup>
cations are located at two different sites with occupancies of 0.486 (1) and 0.408 (1). The title coumpond is isotypic with NaMg
<sub>3</sub>
Al(MoO
<sub>4</sub>
)
<sub>5</sub>
and NaFe
<sub>4</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
. Differences and similarities with other related structures are discussed.</p>
</abstract>
<kwd-group>
<kwd>triple molybdates</kwd>
<kwd>hexa­kis(molyb­date)</kwd>
<kwd>open-framework structure</kwd>
<kwd>crystal structure</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Contexte chimique   </title>
<p>Les molybdates triples des métaux de transition ont un champ prometteur pour diverses applications: catalyse (Ivanov
<italic>et al.</italic>
, 1998
<xref ref-type="bibr" rid="bb12"></xref>
), spectroscopie (Méndez-Blas
<italic>et al.</italic>
, 2004
<xref ref-type="bibr" rid="bb16"></xref>
). L’assemblage octa­èdres-tétraèdres dans ces matériaux conduit à des charpentes ouvertes présentant des propriétés physiques importantes, en particulier la conduction ionique (Judeinstein
<italic>et al.</italic>
, 1994
<xref ref-type="bibr" rid="bb13"></xref>
; Sanz
<italic>et al.</italic>
, 1999
<xref ref-type="bibr" rid="bb19"></xref>
). L’exploration du système
<italic>A</italic>
–Co–Al–Mo–O (
<italic>A</italic>
= ion monovalent) nous a permis d’élaborer un nouveau matériau de formulation Ag
<sub>0.90</sub>
Al
<sub>1.06</sub>
Co
<sub>2.94</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
. Un examen bibliographique montre que le matériau étudié est isostructural aux composés: NaMg
<sub>3</sub>
Al(MoO
<sub>4</sub>
)
<sub>5</sub>
(Hermanowicz
<italic>et al.</italic>
, 2006
<xref ref-type="bibr" rid="bb10"></xref>
) et NaFe
<sub>4</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
(Muessig
<italic>et al.</italic>
, 2003
<xref ref-type="bibr" rid="bb17"></xref>
).</p>
</sec>
<sec id="sec2">
<title>Commentaire structurelle   </title>
<p>L’unité structurale renferme un dimère
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co/Al), deux octa­èdres
<italic>M</italic>
O
<sub>6</sub>
et cinq tétraèdres MoO
<sub>4</sub>
reliés par mise en commun de sommets. La compensation de charges dans la structure est assurée par les cations Ag
<sup>+</sup>
(Fig. 1
<xref ref-type="fig" rid="fig1"></xref>
). La charpente anionique peut être décrite moyennant la succession de différents types de couches reliées par partage de sommets et d’arêtes. Elle peut être subdivisée en couches de type
<italic>A</italic>
,
<italic>B</italic>
,
<italic>C</italic>
et
<italic>D</italic>
. Les couches de type
<italic>A</italic>
sont formées par les dimères
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co2/Al2) reliés par mise en commun de sommets uniquement avec les tétraèdres Mo3O
<sub>4</sub>
disposés en ‘
<italic>trans’</italic>
(Fig. 2
<xref ref-type="fig" rid="fig2"></xref>
<italic>a</italic>
). Dans les couches de type
<italic>D</italic>
, les dimères
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co1/Al1, Co3/Al3), se connectent par mise en commun de sommets avec les tétraèdres Mo1O
<sub>4</sub>
et Mo4O
<sub>4</sub>
, dans lequels les sommets non engagés dans la couche sont tous orientés selon la même direction en ‘
<italic>cis’</italic>
(Fig. 2
<xref ref-type="fig" rid="fig2"></xref>
<italic>b</italic>
). Dans les couches de type
<italic>C</italic>
, les octa­èdres
<italic>M</italic>
O
<sub>6</sub>
(
<italic>M</italic>
= Co4/Al4) et les tétraèdres Mo2O
<sub>4</sub>
et Mo5O
<sub>4</sub>
se connectent par mise en commun de sommets pour former des chaînes classiques de type
<italic>M</italic>
MoO
<sub>8</sub>
(Fig. 2
<xref ref-type="fig" rid="fig2"></xref>
<italic>c</italic>
).</p>
<p>La disposition particulière, des tétraèdres MoO
<sub>4</sub>
en ‘
<italic>cis’</italic>
dans les couches de type
<italic>D</italic>
et en ‘
<italic>trans</italic>
’ dans les couches
<italic>A</italic>
, respectivement permet la jonction de ces dernières par ponts mixtes pour conduire à des doubles couches de type
<italic>B</italic>
(Fig. 2
<xref ref-type="fig" rid="fig2"></xref>
<italic>d</italic>
). La jonction des différentes couches
<italic>A</italic>
et bicouches
<italic>B</italic>
parallèlement au plan (001), selon la disposition
<italic>A</italic>
<italic>BB</italic>
<italic>A</italic>
<italic>BB</italic>
par ponts mixtes de type
<italic>M</italic>
–O–Mo conduit à une charpente tridimentionnelle possédant des canaux dans lesquels résident les cations Ag
<sup>+</sup>
, mais excentrés (Fig. 3
<xref ref-type="fig" rid="fig3"></xref>
).</p>
<p>Un examen des caractéristiques géométriques relevées de l’étude structurale montre que les distances moyennes dans les tétraèdres MoO
<sub>4</sub>
et dans les octa­èdres
<italic>M</italic>
O
<sub>6</sub>
(
<italic>M</italic>
= Co/Al), sont égales respectivement à 1.762 (4) et 2.036 (4) Å. La première Mo—O, est conforme à celles rencontrées dans la litérature (Ennajeh
<italic>et al.</italic>
, 2013
<xref ref-type="bibr" rid="bb6"></xref>
; Engel
<italic>et al.</italic>
, 2009
<xref ref-type="bibr" rid="bb5"></xref>
; Huyghe
<italic>et al.</italic>
, 1991
<xref ref-type="bibr" rid="bb11"></xref>
). La seconde
<italic>M</italic>
—O (
<italic>M</italic>
=Co/Al), s’avère une moyenne entre celles Co
<sup>II</sup>
–O (Engel
<italic>et al.</italic>
, 2009
<xref ref-type="bibr" rid="bb5"></xref>
; Sanz
<italic>et al.</italic>
, 1999
<xref ref-type="bibr" rid="bb19"></xref>
) et Al—O (Brik & Avram, 2011
<xref ref-type="bibr" rid="bb2"></xref>
; Hermanowicz
<italic>et al.</italic>
, 2006
<xref ref-type="bibr" rid="bb10"></xref>
). Dans les dimères
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
, la distance courte métal–métal égale à 3.109 (8) Å, pourrait conduire à des propriétés magnétiques (Feng
<italic>et al.</italic>
, 1997
<xref ref-type="bibr" rid="bb8"></xref>
). De plus, le calcul des charges des ions, utilisant la formule empirique de Brown & Altermatt (1985
<xref ref-type="bibr" rid="bb3"></xref>
), conduit aux valeurs des charges des ions suivants: Mo1 (6.047), Mo2 (6.012), Mo3 (5.949), Mo4 (5.965), Mo5 (5.993), (Co1/Al1) (2.140), (Co2/Al2) (2.314), (Co3/Al3) (2.312), (Co4/Al4) (2.481), Ag1 (0.965) et Ag2 (0.998). En effet, en tenant compte des taux d’occupation des sites, la charge globale calculée des cations restants [+10,1(2)] est égale en module à celle de l’ion molybdate [Mo
<sub>5</sub>
O
<sub>20</sub>
]
<sup>10−</sup>
.</p>
<p>Un examen rigoureux des travaux antérieurs montre une analogie structurale entre les connections des polyèdres dans les composés appartenant à la famille de type alluaudite Na
<sub>3</sub>
In
<sub>2</sub>
As
<sub>3</sub>
O
<sub>12</sub>
et Na
<sub>3</sub>
In
<sub>2</sub>
P
<sub>3</sub>
O
<sub>12</sub>
(Lii & Ye, 1997
<xref ref-type="bibr" rid="bb14"></xref>
), le matériau Ag
<sub>2</sub>
Co
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
(Tsyrenova
<italic>et al.</italic>
, 2004
<xref ref-type="bibr" rid="bb21"></xref>
) et les différentes variétés du composé K
<sub>2</sub>
Co
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
(Engel
<italic>et al.</italic>
, 2009
<xref ref-type="bibr" rid="bb5"></xref>
). Dans ces phases, une différence nette a été observée dans les charpentes anioniques. En effet, on remarque que dans le cas des alluaudites, les dimères adoptent une disposition perpendiculaire les uns aux autres. Contrairement à notre structure dans laquelle les dimères sont disposès d’une façon parallèle.</p>
<p>La charpente anionique dans le composé K
<sub>2</sub>
Co
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
présente contrairement à notre structure des tétramères au lieu des dimères et trimères. L’association, par partage de sommets, des tétramères avec les tétraèdres MoO
<sub>4</sub>
conduit dans la forme
<italic>β</italic>
-K
<sub>2</sub>
Co
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
à une structure en couches (two-dimensional) (Fig. 4
<xref ref-type="fig" rid="fig4"></xref>
<italic>a</italic>
). Par contre, leur jonction dans la forme
<italic>α</italic>
-K
<sub>2</sub>
Co
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
engendre une charpente tridimensionnelle possédant des canaux allongés où résident des cations potassium (Fig. 4
<xref ref-type="fig" rid="fig4"></xref>
<italic>b</italic>
).</p>
</sec>
<sec id="sec3">
<title>Synthèse et cristallisation   </title>
<p>Dans le but de préparer un composé de formulation analogue à NaMg
<sub>3</sub>
Al(MoO
<sub>4</sub>
)
<sub>5</sub>
ayant des propriétés physiques intéressantes, nous avons voulu synthétiser la phase AgAlCo
<sub>3</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
. Un mélange de réactifs: AgNO
<sub>3</sub>
(Merck, 101510), Co(NO
<sub>3</sub>
)
<sub>2</sub>
·6H
<sub>2</sub>
O (FLUKA, 60832), Al
<sub>2</sub>
O
<sub>3</sub>
(FLUKA, 60109) et (NH
<sub>4</sub>
)
<sub>2</sub>
Mo
<sub>4</sub>
O
<sub>13</sub>
(FLUKA, 69858) a été pris dans les proportions tel que les rapports sont Ag:Al:Co:Mo=1:1:3:5. Après un broyage poussé dans un mortier en agate, le mélange a été mis dans un creuset en porcelaine préchauffé à l’air à 673 K pendant 12 heures en vue d’éliminer les composés volatils. Il est ensuite porté jusqu’à une température de synthèse proche de celle de la fusion à 845 K. Le mélange est abandonné à cette température pendant deux semaines pour favoriser la germination et la croissance des cristaux. Par la suite, il a subi en premier lieu un refroidissement lent (5°/jour) jusqu’à 800 K puis rapide (50°/h) jusqu’à la température ambiante. Des cristaux de couleur rouge, de taille suffisante pour les mesures des intensités, ont été séparés du flux par l’eau chaude. Une analyse qualitative au MEB de marque FEI et de type
<italic>QUANTA</italic>
200 confirme la présence des éléments chimiques attendus: Ag, Al, Co, Mo et l’oxygène.</p>
</sec>
<sec id="sec4">
<title>Affinement   </title>
<p>Détails de donnés crystallines, collection de donnés et affinement sont résumés dans le tableau 1
<xref ref-type="table" rid="table1"></xref>
. La structure a été résolue par des méthodes directes de
<italic>SHELXS97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb20"></xref>
), et inter­pretée en partant de la formule AgAlCo
<sub>3</sub>
Mo
<sub>5</sub>
O
<sub>20</sub>
similaire au composé isotype NaAlMg
<sub>3</sub>
Mo
<sub>5</sub>
O
<sub>20</sub>
. Un examen de la carte de Fourier différence montre des résidus non négligeables autour des cations Co
<sup>2+</sup>
et Ag
<sup>+</sup>
. L’affinement, en se basant sur les grandeurs géométriques, a été mené d’une part avec des taux d’occupation variables pour les atomes de cobalt et de l’aluminium occupant statiquement les mêmes positions et ayant les mêmes ellipsoïdes utilisant les deux fonctions EXYZ et EADP autorisées par le programme
<italic>SHELXL97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb20"></xref>
), et d’autre part en considérant que l’ion Ag
<sup>+</sup>
est reparti sur deux positions proches dans la structure. En effet, l’affinement de tous les paramètres variables conduit à des ellipsoïdes bien définis. Les densités électroniques maximum et minimum restantes dans la carte de Fourier différence sont acceptables et sont situées respectivements à 0.92 Å de Mo4 et à 0.93 Å de Mo3.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data">
<p>Crystal structure: contains datablock(s) I Crystal structure: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S2056989015005290/vn2089sup1.cif">10.1107/S2056989015005290/vn2089sup1.cif</ext-link>
</p>
<media mimetype="chemical" mime-subtype="x-cif" xlink:href="e-71-00388-sup1.cif" xlink:type="simple" id="d36e136" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Crystal structure: contains datablock(s) I Crystal structure: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S2056989015005290/vn2089sup1.cif">10.1107/S2056989015005290/vn2089sup1.cif</ext-link>
</p>
<media mimetype="chemical" mime-subtype="x-cif" xlink:href="e-71-00388-sup1.cif" xlink:type="simple" id="d36e143" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Structure factors: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S2056989015005290/vn2089Isup2.hkl">10.1107/S2056989015005290/vn2089Isup2.hkl</ext-link>
</p>
<media mimetype="text" mime-subtype="plain" xlink:href="e-71-00388-Isup2.hkl" xlink:type="simple" id="d36e150" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>CCDC reference:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/cr.cgi?rm=csd&csdid=1054352">1054352</ext-link>
</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Additional supporting information:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsupfiles?vn2089&file=vn2089sup0.html&mime=text/html"> crystallographic information</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendcif?vn2089sup1&Qmime=cif">3D view</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?vn2089&checkcif=yes">checkCIF report</ext-link>
</p>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>Les auteurs remercient le Ministére de l’Enseignement Supérieur, de la Recherche Scientifique et de la technologie de la Tunisie pour le financement du laboratoire LMC (code LR01ES11).</p>
</ack>
<app-group>
<app>
<title>supplementary crystallographic information</title>
<sec id="tablewrapcrystaldatalong">
<title>Crystal data</title>
<table-wrap position="anchor" id="d1e35">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Ag
<sub>0.90</sub>
Al
<sub>1.06</sub>
Co
<sub>2.94</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
</td>
<td rowspan="1" colspan="1">
<italic>Z</italic>
= 2</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 1098.64</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
(000) = 1010.92</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Triclinic,
<italic>P</italic>
1</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
<sub>x</sub>
= 4.448 Mg m
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hall symbol: -P 1</td>
<td rowspan="1" colspan="1">Mo
<italic>K</italic>
α radiation, λ = 0.71073 Å</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>a</italic>
= 6.8547 (8) Å</td>
<td rowspan="1" colspan="1">Cell parameters from 25 reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>b</italic>
= 6.9410 (8) Å</td>
<td rowspan="1" colspan="1">θ = 10–15°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>c</italic>
= 17.597 (2) Å</td>
<td rowspan="1" colspan="1">µ = 7.79 mm
<sup></sup>
<sup>1</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">α = 87.958 (6)°</td>
<td rowspan="1" colspan="1">
<italic>T</italic>
= 298 K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">β = 87.462 (6)°</td>
<td rowspan="1" colspan="1">Prism, red</td>
</tr>
<tr>
<td rowspan="1" colspan="1">γ = 78.818 (4)°</td>
<td rowspan="1" colspan="1">0.22 × 0.16 × 0.12 mm</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>V</italic>
= 820.20 (16) Å
<sup>3</sup>
</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapdatacollectionlong">
<title>Data collection</title>
<table-wrap position="anchor" id="d1e174">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Enraf–Nonius CAD-4 diffractometer</td>
<td rowspan="1" colspan="1">3086 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Radiation source: fine-focus sealed tube</td>
<td rowspan="1" colspan="1">
<italic>R</italic>
<sub>int</sub>
= 0.029</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Graphite monochromator</td>
<td rowspan="1" colspan="1">θ
<sub>max</sub>
= 27.0°, θ
<sub>min</sub>
= 2.3°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">ω/2θ scans</td>
<td rowspan="1" colspan="1">
<italic>h</italic>
= −8→1</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Absorption correction: ψ scan (North
<italic>et al.</italic>
, 1968)</td>
<td rowspan="1" colspan="1">
<italic>k</italic>
= −8→8</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>T</italic>
<sub>min</sub>
= 0.233,
<italic>T</italic>
<sub>max</sub>
= 0.407</td>
<td rowspan="1" colspan="1">
<italic>l</italic>
= −22→22</td>
</tr>
<tr>
<td rowspan="1" colspan="1">3912 measured reflections</td>
<td rowspan="1" colspan="1">2 standard reflections every 120 min</td>
</tr>
<tr>
<td rowspan="1" colspan="1">3527 independent reflections</td>
<td rowspan="1" colspan="1"> intensity decay: 1.2%</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewraprefinementdatalong">
<title>Refinement</title>
<table-wrap position="anchor" id="d1e299">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Refinement on
<italic>F</italic>
<sup>2</sup>
</td>
<td rowspan="1" colspan="1">Primary atom site location: structure-invariant direct methods</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Least-squares matrix: full</td>
<td rowspan="1" colspan="1">Secondary atom site location: difference Fourier map</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.027</td>
<td rowspan="1" colspan="1">
<italic>w</italic>
= 1/[σ
<sup>2</sup>
(
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
) + (0.0285
<italic>P</italic>
)
<sup>2</sup>
+ 3.7871
<italic>P</italic>
] where
<italic>P</italic>
= (
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
+ 2
<italic>F</italic>
<sub>c</sub>
<sup>2</sup>
)/3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.070</td>
<td rowspan="1" colspan="1">(Δ/σ)
<sub>max</sub>
= 0.001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>S</italic>
= 1.09</td>
<td rowspan="1" colspan="1">Δρ
<sub>max</sub>
= 1.28 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">3527 reflections</td>
<td rowspan="1" colspan="1">Δρ
<sub>min</sub>
= −0.77 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">287 parameters</td>
<td rowspan="1" colspan="1">Extinction correction:
<italic>SHELXL97</italic>
(Sheldrick, 2008), Fc
<sup>*</sup>
=kFc[1+0.001xFc
<sup>2</sup>
λ
<sup>3</sup>
/sin(2θ)]
<sup>-1/4</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">0 restraints</td>
<td rowspan="1" colspan="1">Extinction coefficient: 0.00088 (12)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="specialdetails">
<title>Special details</title>
<table-wrap position="anchor" id="d1e476">
<table rules="all" frame="box" style="table-layout:fixed">
<tr>
<td rowspan="1" colspan="1">Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Refinement. Refinement of
<italic>F</italic>
<sup>2</sup>
against ALL reflections. The weighted
<italic>R</italic>
-factor
<italic>wR</italic>
and goodness of fit
<italic>S</italic>
are based on
<italic>F</italic>
<sup>2</sup>
, conventional
<italic>R</italic>
-factors
<italic>R</italic>
are based on
<italic>F</italic>
, with
<italic>F</italic>
set to zero for negative
<italic>F</italic>
<sup>2</sup>
. The threshold expression of
<italic>F</italic>
<sup>2</sup>
> σ(
<italic>F</italic>
<sup>2</sup>
) is used only for calculating
<italic>R</italic>
-factors(gt)
<italic>etc</italic>
. and is not relevant to the choice of reflections for refinement.
<italic>R</italic>
-factors based on
<italic>F</italic>
<sup>2</sup>
are statistically about twice as large as those based on
<italic>F</italic>
, and
<italic>R</italic>
- factors based on ALL data will be even larger.</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapcoords">
<title>Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e576">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>x</italic>
</td>
<td rowspan="1" colspan="1">
<italic>y</italic>
</td>
<td rowspan="1" colspan="1">
<italic>z</italic>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sub>iso</sub>
*/
<italic>U</italic>
<sub>eq</sub>
</td>
<td rowspan="1" colspan="1">Occ. (<1)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1</td>
<td rowspan="1" colspan="1">0.22547 (6)</td>
<td rowspan="1" colspan="1">0.43949 (6)</td>
<td rowspan="1" colspan="1">0.09513 (2)</td>
<td rowspan="1" colspan="1">0.00816 (11)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2</td>
<td rowspan="1" colspan="1">0.71279 (6)</td>
<td rowspan="1" colspan="1">0.32538 (6)</td>
<td rowspan="1" colspan="1">0.28488 (2)</td>
<td rowspan="1" colspan="1">0.00936 (11)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo3</td>
<td rowspan="1" colspan="1">0.77392 (6)</td>
<td rowspan="1" colspan="1">0.80749 (6)</td>
<td rowspan="1" colspan="1">0.52742 (2)</td>
<td rowspan="1" colspan="1">0.00941 (11)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo4</td>
<td rowspan="1" colspan="1">0.74619 (6)</td>
<td rowspan="1" colspan="1">0.04587 (6)</td>
<td rowspan="1" colspan="1">0.08587 (2)</td>
<td rowspan="1" colspan="1">0.01000 (11)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo5</td>
<td rowspan="1" colspan="1">0.18593 (7)</td>
<td rowspan="1" colspan="1">0.71922 (7)</td>
<td rowspan="1" colspan="1">0.30929 (3)</td>
<td rowspan="1" colspan="1">0.01203 (11)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag1</td>
<td rowspan="1" colspan="1">0.6084 (2)</td>
<td rowspan="1" colspan="1">0.8428 (4)</td>
<td rowspan="1" colspan="1">0.3355 (3)</td>
<td rowspan="1" colspan="1">0.0375 (8)</td>
<td rowspan="1" colspan="1">0.486 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag2</td>
<td rowspan="1" colspan="1">0.6351 (7)</td>
<td rowspan="1" colspan="1">0.8417 (3)</td>
<td rowspan="1" colspan="1">0.2935 (6)</td>
<td rowspan="1" colspan="1">0.056 (2)</td>
<td rowspan="1" colspan="1">0.408 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.66729 (10)</td>
<td rowspan="1" colspan="1">0.58420 (10)</td>
<td rowspan="1" colspan="1">0.11583 (4)</td>
<td rowspan="1" colspan="1">0.0087 (2)</td>
<td rowspan="1" colspan="1">0.920 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Al1</td>
<td rowspan="1" colspan="1">0.66729 (10)</td>
<td rowspan="1" colspan="1">0.58420 (10)</td>
<td rowspan="1" colspan="1">0.11583 (4)</td>
<td rowspan="1" colspan="1">0.0087 (2)</td>
<td rowspan="1" colspan="1">0.080 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2</td>
<td rowspan="1" colspan="1">0.68200 (11)</td>
<td rowspan="1" colspan="1">0.32794 (11)</td>
<td rowspan="1" colspan="1">0.49318 (4)</td>
<td rowspan="1" colspan="1">0.0083 (3)</td>
<td rowspan="1" colspan="1">0.742 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Al2</td>
<td rowspan="1" colspan="1">0.68200 (11)</td>
<td rowspan="1" colspan="1">0.32794 (11)</td>
<td rowspan="1" colspan="1">0.49318 (4)</td>
<td rowspan="1" colspan="1">0.0083 (3)</td>
<td rowspan="1" colspan="1">0.258 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co3</td>
<td rowspan="1" colspan="1">0.27664 (11)</td>
<td rowspan="1" colspan="1">0.92534 (11)</td>
<td rowspan="1" colspan="1">0.12614 (4)</td>
<td rowspan="1" colspan="1">0.0076 (3)</td>
<td rowspan="1" colspan="1">0.737 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Al3</td>
<td rowspan="1" colspan="1">0.27664 (11)</td>
<td rowspan="1" colspan="1">0.92534 (11)</td>
<td rowspan="1" colspan="1">0.12614 (4)</td>
<td rowspan="1" colspan="1">0.0076 (3)</td>
<td rowspan="1" colspan="1">0.263 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co4</td>
<td rowspan="1" colspan="1">0.24922 (13)</td>
<td rowspan="1" colspan="1">0.19504 (13)</td>
<td rowspan="1" colspan="1">0.26423 (5)</td>
<td rowspan="1" colspan="1">0.0088 (3)</td>
<td rowspan="1" colspan="1">0.542 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Al4</td>
<td rowspan="1" colspan="1">0.24922 (13)</td>
<td rowspan="1" colspan="1">0.19504 (13)</td>
<td rowspan="1" colspan="1">0.26423 (5)</td>
<td rowspan="1" colspan="1">0.0088 (3)</td>
<td rowspan="1" colspan="1">0.458 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.6232 (6)</td>
<td rowspan="1" colspan="1">0.6325 (6)</td>
<td rowspan="1" colspan="1">0.5034 (2)</td>
<td rowspan="1" colspan="1">0.0151 (8)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.2678 (6)</td>
<td rowspan="1" colspan="1">0.9019 (6)</td>
<td rowspan="1" colspan="1">0.2444 (2)</td>
<td rowspan="1" colspan="1">0.0170 (8)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.3541 (5)</td>
<td rowspan="1" colspan="1">0.6292 (6)</td>
<td rowspan="1" colspan="1">0.1188 (2)</td>
<td rowspan="1" colspan="1">0.0141 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.6898 (6)</td>
<td rowspan="1" colspan="1">0.3752 (6)</td>
<td rowspan="1" colspan="1">0.3811 (2)</td>
<td rowspan="1" colspan="1">0.0201 (8)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.6529 (6)</td>
<td rowspan="1" colspan="1">0.5519 (6)</td>
<td rowspan="1" colspan="1">0.2336 (2)</td>
<td rowspan="1" colspan="1">0.0163 (8)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.9815 (6)</td>
<td rowspan="1" colspan="1">0.9588 (6)</td>
<td rowspan="1" colspan="1">0.1222 (2)</td>
<td rowspan="1" colspan="1">0.0216 (9)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7</td>
<td rowspan="1" colspan="1">0.2186 (7)</td>
<td rowspan="1" colspan="1">0.4863 (6)</td>
<td rowspan="1" colspan="1">0.2692 (2)</td>
<td rowspan="1" colspan="1">0.0260 (9)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8</td>
<td rowspan="1" colspan="1">0.3258 (6)</td>
<td rowspan="1" colspan="1">0.7020 (6)</td>
<td rowspan="1" colspan="1">0.3915 (2)</td>
<td rowspan="1" colspan="1">0.0201 (8)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O9</td>
<td rowspan="1" colspan="1">1.0223 (6)</td>
<td rowspan="1" colspan="1">0.7103 (6)</td>
<td rowspan="1" colspan="1">0.5056 (2)</td>
<td rowspan="1" colspan="1">0.0203 (8)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O10</td>
<td rowspan="1" colspan="1">0.2933 (6)</td>
<td rowspan="1" colspan="1">0.3839 (6)</td>
<td rowspan="1" colspan="1">0.0016 (2)</td>
<td rowspan="1" colspan="1">0.0198 (8)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O11</td>
<td rowspan="1" colspan="1">0.7036 (6)</td>
<td rowspan="1" colspan="1">0.0327 (6)</td>
<td rowspan="1" colspan="1">0.4785 (2)</td>
<td rowspan="1" colspan="1">0.0188 (8)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O12</td>
<td rowspan="1" colspan="1">0.5836 (5)</td>
<td rowspan="1" colspan="1">0.8879 (5)</td>
<td rowspan="1" colspan="1">0.1247 (2)</td>
<td rowspan="1" colspan="1">0.0135 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O13</td>
<td rowspan="1" colspan="1">0.2675 (5)</td>
<td rowspan="1" colspan="1">0.2115 (5)</td>
<td rowspan="1" colspan="1">0.1509 (2)</td>
<td rowspan="1" colspan="1">0.0132 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O14</td>
<td rowspan="1" colspan="1">−0.0592 (6)</td>
<td rowspan="1" colspan="1">0.7932 (7)</td>
<td rowspan="1" colspan="1">0.3351 (3)</td>
<td rowspan="1" colspan="1">0.0304 (10)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O15</td>
<td rowspan="1" colspan="1">0.9585 (6)</td>
<td rowspan="1" colspan="1">0.2166 (6)</td>
<td rowspan="1" colspan="1">0.2630 (2)</td>
<td rowspan="1" colspan="1">0.0197 (8)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O16</td>
<td rowspan="1" colspan="1">−0.0250 (6)</td>
<td rowspan="1" colspan="1">0.5351 (6)</td>
<td rowspan="1" colspan="1">0.1053 (2)</td>
<td rowspan="1" colspan="1">0.0209 (9)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O17</td>
<td rowspan="1" colspan="1">0.7454 (6)</td>
<td rowspan="1" colspan="1">0.0344 (6)</td>
<td rowspan="1" colspan="1">−0.0127 (2)</td>
<td rowspan="1" colspan="1">0.0222 (9)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O18</td>
<td rowspan="1" colspan="1">0.7497 (7)</td>
<td rowspan="1" colspan="1">0.8501 (6)</td>
<td rowspan="1" colspan="1">0.6254 (2)</td>
<td rowspan="1" colspan="1">0.0226 (9)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O19</td>
<td rowspan="1" colspan="1">0.5474 (6)</td>
<td rowspan="1" colspan="1">0.1619 (6)</td>
<td rowspan="1" colspan="1">0.2671 (2)</td>
<td rowspan="1" colspan="1">0.0195 (8)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O20</td>
<td rowspan="1" colspan="1">0.6641 (7)</td>
<td rowspan="1" colspan="1">0.2928 (6)</td>
<td rowspan="1" colspan="1">0.1097 (2)</td>
<td rowspan="1" colspan="1">0.0236 (9)</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapadps">
<title>Atomic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e1052">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>11</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>22</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>33</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>12</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>13</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>23</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1</td>
<td rowspan="1" colspan="1">0.0090 (2)</td>
<td rowspan="1" colspan="1">0.0058 (2)</td>
<td rowspan="1" colspan="1">0.0104 (2)</td>
<td rowspan="1" colspan="1">−0.00328 (15)</td>
<td rowspan="1" colspan="1">−0.00181 (15)</td>
<td rowspan="1" colspan="1">0.00175 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2</td>
<td rowspan="1" colspan="1">0.0101 (2)</td>
<td rowspan="1" colspan="1">0.0082 (2)</td>
<td rowspan="1" colspan="1">0.0097 (2)</td>
<td rowspan="1" colspan="1">−0.00186 (16)</td>
<td rowspan="1" colspan="1">−0.00103 (15)</td>
<td rowspan="1" colspan="1">0.00114 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo3</td>
<td rowspan="1" colspan="1">0.0103 (2)</td>
<td rowspan="1" colspan="1">0.0078 (2)</td>
<td rowspan="1" colspan="1">0.0111 (2)</td>
<td rowspan="1" colspan="1">−0.00401 (16)</td>
<td rowspan="1" colspan="1">−0.00117 (15)</td>
<td rowspan="1" colspan="1">0.00059 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo4</td>
<td rowspan="1" colspan="1">0.0115 (2)</td>
<td rowspan="1" colspan="1">0.0074 (2)</td>
<td rowspan="1" colspan="1">0.0121 (2)</td>
<td rowspan="1" colspan="1">−0.00496 (16)</td>
<td rowspan="1" colspan="1">0.00168 (16)</td>
<td rowspan="1" colspan="1">0.00012 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo5</td>
<td rowspan="1" colspan="1">0.0115 (2)</td>
<td rowspan="1" colspan="1">0.0104 (2)</td>
<td rowspan="1" colspan="1">0.0147 (2)</td>
<td rowspan="1" colspan="1">−0.00390 (17)</td>
<td rowspan="1" colspan="1">−0.00107 (16)</td>
<td rowspan="1" colspan="1">0.00338 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag1</td>
<td rowspan="1" colspan="1">0.0138 (6)</td>
<td rowspan="1" colspan="1">0.0340 (8)</td>
<td rowspan="1" colspan="1">0.065 (2)</td>
<td rowspan="1" colspan="1">−0.0072 (5)</td>
<td rowspan="1" colspan="1">−0.0068 (7)</td>
<td rowspan="1" colspan="1">0.0149 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag2</td>
<td rowspan="1" colspan="1">0.0357 (14)</td>
<td rowspan="1" colspan="1">0.0136 (8)</td>
<td rowspan="1" colspan="1">0.120 (5)</td>
<td rowspan="1" colspan="1">0.0020 (7)</td>
<td rowspan="1" colspan="1">−0.043 (2)</td>
<td rowspan="1" colspan="1">−0.0071 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.0084 (4)</td>
<td rowspan="1" colspan="1">0.0066 (4)</td>
<td rowspan="1" colspan="1">0.0113 (4)</td>
<td rowspan="1" colspan="1">−0.0023 (3)</td>
<td rowspan="1" colspan="1">−0.0010 (3)</td>
<td rowspan="1" colspan="1">0.0013 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Al1</td>
<td rowspan="1" colspan="1">0.0084 (4)</td>
<td rowspan="1" colspan="1">0.0066 (4)</td>
<td rowspan="1" colspan="1">0.0113 (4)</td>
<td rowspan="1" colspan="1">−0.0023 (3)</td>
<td rowspan="1" colspan="1">−0.0010 (3)</td>
<td rowspan="1" colspan="1">0.0013 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2</td>
<td rowspan="1" colspan="1">0.0082 (4)</td>
<td rowspan="1" colspan="1">0.0073 (4)</td>
<td rowspan="1" colspan="1">0.0095 (4)</td>
<td rowspan="1" colspan="1">−0.0021 (3)</td>
<td rowspan="1" colspan="1">−0.0013 (3)</td>
<td rowspan="1" colspan="1">0.0007 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Al2</td>
<td rowspan="1" colspan="1">0.0082 (4)</td>
<td rowspan="1" colspan="1">0.0073 (4)</td>
<td rowspan="1" colspan="1">0.0095 (4)</td>
<td rowspan="1" colspan="1">−0.0021 (3)</td>
<td rowspan="1" colspan="1">−0.0013 (3)</td>
<td rowspan="1" colspan="1">0.0007 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co3</td>
<td rowspan="1" colspan="1">0.0083 (4)</td>
<td rowspan="1" colspan="1">0.0054 (4)</td>
<td rowspan="1" colspan="1">0.0093 (4)</td>
<td rowspan="1" colspan="1">−0.0019 (3)</td>
<td rowspan="1" colspan="1">−0.0014 (3)</td>
<td rowspan="1" colspan="1">0.0003 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Al3</td>
<td rowspan="1" colspan="1">0.0083 (4)</td>
<td rowspan="1" colspan="1">0.0054 (4)</td>
<td rowspan="1" colspan="1">0.0093 (4)</td>
<td rowspan="1" colspan="1">−0.0019 (3)</td>
<td rowspan="1" colspan="1">−0.0014 (3)</td>
<td rowspan="1" colspan="1">0.0003 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co4</td>
<td rowspan="1" colspan="1">0.0100 (5)</td>
<td rowspan="1" colspan="1">0.0079 (5)</td>
<td rowspan="1" colspan="1">0.0088 (5)</td>
<td rowspan="1" colspan="1">−0.0028 (3)</td>
<td rowspan="1" colspan="1">−0.0012 (3)</td>
<td rowspan="1" colspan="1">0.0007 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Al4</td>
<td rowspan="1" colspan="1">0.0100 (5)</td>
<td rowspan="1" colspan="1">0.0079 (5)</td>
<td rowspan="1" colspan="1">0.0088 (5)</td>
<td rowspan="1" colspan="1">−0.0028 (3)</td>
<td rowspan="1" colspan="1">−0.0012 (3)</td>
<td rowspan="1" colspan="1">0.0007 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.0148 (18)</td>
<td rowspan="1" colspan="1">0.0153 (19)</td>
<td rowspan="1" colspan="1">0.0155 (18)</td>
<td rowspan="1" colspan="1">−0.0040 (15)</td>
<td rowspan="1" colspan="1">−0.0011 (14)</td>
<td rowspan="1" colspan="1">0.0011 (14)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.0164 (19)</td>
<td rowspan="1" colspan="1">0.0146 (19)</td>
<td rowspan="1" colspan="1">0.0187 (19)</td>
<td rowspan="1" colspan="1">−0.0014 (15)</td>
<td rowspan="1" colspan="1">0.0047 (15)</td>
<td rowspan="1" colspan="1">0.0024 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.0118 (17)</td>
<td rowspan="1" colspan="1">0.0158 (19)</td>
<td rowspan="1" colspan="1">0.0168 (18)</td>
<td rowspan="1" colspan="1">−0.0074 (15)</td>
<td rowspan="1" colspan="1">−0.0017 (14)</td>
<td rowspan="1" colspan="1">−0.0006 (14)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.025 (2)</td>
<td rowspan="1" colspan="1">0.021 (2)</td>
<td rowspan="1" colspan="1">0.0146 (19)</td>
<td rowspan="1" colspan="1">−0.0043 (17)</td>
<td rowspan="1" colspan="1">−0.0020 (16)</td>
<td rowspan="1" colspan="1">0.0007 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.020 (2)</td>
<td rowspan="1" colspan="1">0.0146 (19)</td>
<td rowspan="1" colspan="1">0.0154 (18)</td>
<td rowspan="1" colspan="1">−0.0041 (16)</td>
<td rowspan="1" colspan="1">−0.0071 (15)</td>
<td rowspan="1" colspan="1">0.0034 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.0147 (19)</td>
<td rowspan="1" colspan="1">0.024 (2)</td>
<td rowspan="1" colspan="1">0.028 (2)</td>
<td rowspan="1" colspan="1">−0.0076 (17)</td>
<td rowspan="1" colspan="1">−0.0049 (16)</td>
<td rowspan="1" colspan="1">0.0013 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7</td>
<td rowspan="1" colspan="1">0.034 (2)</td>
<td rowspan="1" colspan="1">0.023 (2)</td>
<td rowspan="1" colspan="1">0.024 (2)</td>
<td rowspan="1" colspan="1">−0.0126 (19)</td>
<td rowspan="1" colspan="1">0.0037 (18)</td>
<td rowspan="1" colspan="1">−0.0011 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8</td>
<td rowspan="1" colspan="1">0.021 (2)</td>
<td rowspan="1" colspan="1">0.018 (2)</td>
<td rowspan="1" colspan="1">0.021 (2)</td>
<td rowspan="1" colspan="1">−0.0043 (17)</td>
<td rowspan="1" colspan="1">−0.0042 (16)</td>
<td rowspan="1" colspan="1">0.0013 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O9</td>
<td rowspan="1" colspan="1">0.0133 (18)</td>
<td rowspan="1" colspan="1">0.021 (2)</td>
<td rowspan="1" colspan="1">0.027 (2)</td>
<td rowspan="1" colspan="1">−0.0051 (16)</td>
<td rowspan="1" colspan="1">0.0014 (16)</td>
<td rowspan="1" colspan="1">−0.0007 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O10</td>
<td rowspan="1" colspan="1">0.028 (2)</td>
<td rowspan="1" colspan="1">0.017 (2)</td>
<td rowspan="1" colspan="1">0.0134 (18)</td>
<td rowspan="1" colspan="1">−0.0040 (17)</td>
<td rowspan="1" colspan="1">−0.0023 (16)</td>
<td rowspan="1" colspan="1">0.0000 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O11</td>
<td rowspan="1" colspan="1">0.022 (2)</td>
<td rowspan="1" colspan="1">0.0139 (19)</td>
<td rowspan="1" colspan="1">0.021 (2)</td>
<td rowspan="1" colspan="1">−0.0055 (16)</td>
<td rowspan="1" colspan="1">−0.0011 (16)</td>
<td rowspan="1" colspan="1">0.0030 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O12</td>
<td rowspan="1" colspan="1">0.0145 (18)</td>
<td rowspan="1" colspan="1">0.0065 (17)</td>
<td rowspan="1" colspan="1">0.0194 (19)</td>
<td rowspan="1" colspan="1">−0.0021 (14)</td>
<td rowspan="1" colspan="1">0.0005 (14)</td>
<td rowspan="1" colspan="1">−0.0014 (14)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O13</td>
<td rowspan="1" colspan="1">0.0117 (17)</td>
<td rowspan="1" colspan="1">0.0104 (17)</td>
<td rowspan="1" colspan="1">0.0167 (18)</td>
<td rowspan="1" colspan="1">−0.0003 (14)</td>
<td rowspan="1" colspan="1">−0.0027 (14)</td>
<td rowspan="1" colspan="1">0.0028 (14)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O14</td>
<td rowspan="1" colspan="1">0.016 (2)</td>
<td rowspan="1" colspan="1">0.036 (3)</td>
<td rowspan="1" colspan="1">0.039 (3)</td>
<td rowspan="1" colspan="1">−0.0045 (19)</td>
<td rowspan="1" colspan="1">0.0043 (18)</td>
<td rowspan="1" colspan="1">0.003 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O15</td>
<td rowspan="1" colspan="1">0.017 (2)</td>
<td rowspan="1" colspan="1">0.016 (2)</td>
<td rowspan="1" colspan="1">0.025 (2)</td>
<td rowspan="1" colspan="1">0.0008 (16)</td>
<td rowspan="1" colspan="1">0.0014 (16)</td>
<td rowspan="1" colspan="1">−0.0003 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O16</td>
<td rowspan="1" colspan="1">0.0109 (18)</td>
<td rowspan="1" colspan="1">0.018 (2)</td>
<td rowspan="1" colspan="1">0.033 (2)</td>
<td rowspan="1" colspan="1">−0.0019 (16)</td>
<td rowspan="1" colspan="1">−0.0022 (16)</td>
<td rowspan="1" colspan="1">0.0047 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O17</td>
<td rowspan="1" colspan="1">0.032 (2)</td>
<td rowspan="1" colspan="1">0.021 (2)</td>
<td rowspan="1" colspan="1">0.0155 (19)</td>
<td rowspan="1" colspan="1">−0.0117 (18)</td>
<td rowspan="1" colspan="1">0.0034 (17)</td>
<td rowspan="1" colspan="1">0.0006 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O18</td>
<td rowspan="1" colspan="1">0.036 (2)</td>
<td rowspan="1" colspan="1">0.018 (2)</td>
<td rowspan="1" colspan="1">0.0149 (19)</td>
<td rowspan="1" colspan="1">−0.0101 (18)</td>
<td rowspan="1" colspan="1">0.0015 (17)</td>
<td rowspan="1" colspan="1">−0.0017 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O19</td>
<td rowspan="1" colspan="1">0.023 (2)</td>
<td rowspan="1" colspan="1">0.016 (2)</td>
<td rowspan="1" colspan="1">0.021 (2)</td>
<td rowspan="1" colspan="1">−0.0087 (17)</td>
<td rowspan="1" colspan="1">−0.0081 (16)</td>
<td rowspan="1" colspan="1">0.0035 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O20</td>
<td rowspan="1" colspan="1">0.031 (2)</td>
<td rowspan="1" colspan="1">0.0101 (19)</td>
<td rowspan="1" colspan="1">0.031 (2)</td>
<td rowspan="1" colspan="1">−0.0083 (17)</td>
<td rowspan="1" colspan="1">0.0058 (18)</td>
<td rowspan="1" colspan="1">−0.0035 (16)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapgeomlong">
<title>Geometric parameters (Å, º)</title>
<table-wrap position="anchor" id="d1e1756">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="4">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Mo1—O16</td>
<td rowspan="1" colspan="1">1.720 (4)</td>
<td rowspan="1" colspan="1">Ag2—O5</td>
<td rowspan="1" colspan="1">2.284 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1—O10</td>
<td rowspan="1" colspan="1">1.726 (4)</td>
<td rowspan="1" colspan="1">Co1—O20</td>
<td rowspan="1" colspan="1">2.033 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1—O3</td>
<td rowspan="1" colspan="1">1.791 (4)</td>
<td rowspan="1" colspan="1">Co1—O16
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.072 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1—O13</td>
<td rowspan="1" colspan="1">1.813 (4)</td>
<td rowspan="1" colspan="1">Co1—O5</td>
<td rowspan="1" colspan="1">2.076 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2—O4</td>
<td rowspan="1" colspan="1">1.735 (4)</td>
<td rowspan="1" colspan="1">Co1—O10
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.082 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2—O15</td>
<td rowspan="1" colspan="1">1.740 (4)</td>
<td rowspan="1" colspan="1">Co1—O12</td>
<td rowspan="1" colspan="1">2.084 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2—O5</td>
<td rowspan="1" colspan="1">1.771 (4)</td>
<td rowspan="1" colspan="1">Co1—O3</td>
<td rowspan="1" colspan="1">2.107 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2—O19</td>
<td rowspan="1" colspan="1">1.796 (4)</td>
<td rowspan="1" colspan="1">Co2—O4</td>
<td rowspan="1" colspan="1">1.987 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo3—O9</td>
<td rowspan="1" colspan="1">1.736 (4)</td>
<td rowspan="1" colspan="1">Co2—O9
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">1.994 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo3—O11
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">1.751 (4)</td>
<td rowspan="1" colspan="1">Co2—O8
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">2.033 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo3—O18</td>
<td rowspan="1" colspan="1">1.754 (4)</td>
<td rowspan="1" colspan="1">Co2—O11</td>
<td rowspan="1" colspan="1">2.050 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo3—O1</td>
<td rowspan="1" colspan="1">1.812 (4)</td>
<td rowspan="1" colspan="1">Co2—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">2.055 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo4—O17</td>
<td rowspan="1" colspan="1">1.739 (4)</td>
<td rowspan="1" colspan="1">Co2—O1</td>
<td rowspan="1" colspan="1">2.087 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo4—O6
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">1.750 (4)</td>
<td rowspan="1" colspan="1">Co3—O6
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">1.995 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo4—O20</td>
<td rowspan="1" colspan="1">1.757 (4)</td>
<td rowspan="1" colspan="1">Co3—O17
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.014 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo4—O12
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">1.807 (4)</td>
<td rowspan="1" colspan="1">Co3—O3</td>
<td rowspan="1" colspan="1">2.028 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo5—O14</td>
<td rowspan="1" colspan="1">1.705 (4)</td>
<td rowspan="1" colspan="1">Co3—O13
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.037 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo5—O7</td>
<td rowspan="1" colspan="1">1.757 (4)</td>
<td rowspan="1" colspan="1">Co3—O12</td>
<td rowspan="1" colspan="1">2.068 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo5—O8</td>
<td rowspan="1" colspan="1">1.758 (4)</td>
<td rowspan="1" colspan="1">Co3—O2</td>
<td rowspan="1" colspan="1">2.080 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo5—O2</td>
<td rowspan="1" colspan="1">1.828 (4)</td>
<td rowspan="1" colspan="1">Co4—O18
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">1.957 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag1—O14
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.237 (5)</td>
<td rowspan="1" colspan="1">Co4—O15
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">1.970 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag1—O19
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.455 (4)</td>
<td rowspan="1" colspan="1">Co4—O13</td>
<td rowspan="1" colspan="1">1.994 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag1—O8</td>
<td rowspan="1" colspan="1">2.484 (4)</td>
<td rowspan="1" colspan="1">Co4—O7</td>
<td rowspan="1" colspan="1">1.996 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag2—O14
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.210 (5)</td>
<td rowspan="1" colspan="1">Co4—O19</td>
<td rowspan="1" colspan="1">2.015 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ag2—O19
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.225 (5)</td>
<td rowspan="1" colspan="1">Co4—O2
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.056 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O16—Mo1—O10</td>
<td rowspan="1" colspan="1">111.2 (2)</td>
<td rowspan="1" colspan="1">O5—Co1—O3</td>
<td rowspan="1" colspan="1">87.85 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O16—Mo1—O3</td>
<td rowspan="1" colspan="1">106.92 (18)</td>
<td rowspan="1" colspan="1">O10
<sup>iv</sup>
—Co1—O3</td>
<td rowspan="1" colspan="1">96.81 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O10—Mo1—O3</td>
<td rowspan="1" colspan="1">106.34 (18)</td>
<td rowspan="1" colspan="1">O12—Co1—O3</td>
<td rowspan="1" colspan="1">77.15 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O16—Mo1—O13</td>
<td rowspan="1" colspan="1">106.10 (18)</td>
<td rowspan="1" colspan="1">O4—Co2—O9
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">90.75 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O10—Mo1—O13</td>
<td rowspan="1" colspan="1">107.77 (18)</td>
<td rowspan="1" colspan="1">O4—Co2—O8
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">176.36 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—Mo1—O13</td>
<td rowspan="1" colspan="1">118.55 (17)</td>
<td rowspan="1" colspan="1">O9
<sup>v</sup>
—Co2—O8
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">88.98 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Mo2—O15</td>
<td rowspan="1" colspan="1">108.65 (19)</td>
<td rowspan="1" colspan="1">O4—Co2—O11</td>
<td rowspan="1" colspan="1">90.57 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Mo2—O5</td>
<td rowspan="1" colspan="1">107.77 (18)</td>
<td rowspan="1" colspan="1">O9
<sup>v</sup>
—Co2—O11</td>
<td rowspan="1" colspan="1">89.95 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O15—Mo2—O5</td>
<td rowspan="1" colspan="1">109.23 (18)</td>
<td rowspan="1" colspan="1">O8
<sup>vi</sup>
—Co2—O11</td>
<td rowspan="1" colspan="1">93.06 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Mo2—O19</td>
<td rowspan="1" colspan="1">107.54 (19)</td>
<td rowspan="1" colspan="1">O4—Co2—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">91.49 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O15—Mo2—O19</td>
<td rowspan="1" colspan="1">110.94 (19)</td>
<td rowspan="1" colspan="1">O9
<sup>v</sup>
—Co2—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">177.73 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Mo2—O19</td>
<td rowspan="1" colspan="1">112.58 (18)</td>
<td rowspan="1" colspan="1">O8
<sup>vi</sup>
—Co2—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">88.76 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O9—Mo3—O11
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">109.69 (19)</td>
<td rowspan="1" colspan="1">O11—Co2—O1
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">90.41 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O9—Mo3—O18</td>
<td rowspan="1" colspan="1">107.9 (2)</td>
<td rowspan="1" colspan="1">O4—Co2—O1</td>
<td rowspan="1" colspan="1">87.19 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O11
<sup>i</sup>
—Mo3—O18</td>
<td rowspan="1" colspan="1">108.25 (19)</td>
<td rowspan="1" colspan="1">O9
<sup>v</sup>
—Co2—O1</td>
<td rowspan="1" colspan="1">97.01 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O9—Mo3—O1</td>
<td rowspan="1" colspan="1">109.13 (18)</td>
<td rowspan="1" colspan="1">O8
<sup>vi</sup>
—Co2—O1</td>
<td rowspan="1" colspan="1">89.24 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O11
<sup>i</sup>
—Mo3—O1</td>
<td rowspan="1" colspan="1">111.73 (18)</td>
<td rowspan="1" colspan="1">O11—Co2—O1</td>
<td rowspan="1" colspan="1">172.71 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O18—Mo3—O1</td>
<td rowspan="1" colspan="1">110.08 (18)</td>
<td rowspan="1" colspan="1">O1
<sup>vi</sup>
—Co2—O1</td>
<td rowspan="1" colspan="1">82.72 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O17—Mo4—O6
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">112.9 (2)</td>
<td rowspan="1" colspan="1">O6
<sup>vii</sup>
—Co3—O17
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">82.08 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O17—Mo4—O20</td>
<td rowspan="1" colspan="1">107.5 (2)</td>
<td rowspan="1" colspan="1">O6
<sup>vii</sup>
—Co3—O3</td>
<td rowspan="1" colspan="1">99.95 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>ii</sup>
—Mo4—O20</td>
<td rowspan="1" colspan="1">109.6 (2)</td>
<td rowspan="1" colspan="1">O17
<sup>iv</sup>
—Co3—O3</td>
<td rowspan="1" colspan="1">92.94 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O17—Mo4—O12
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">107.04 (18)</td>
<td rowspan="1" colspan="1">O6
<sup>vii</sup>
—Co3—O13
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">93.72 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>ii</sup>
—Mo4—O12
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">107.18 (18)</td>
<td rowspan="1" colspan="1">O17
<sup>iv</sup>
—Co3—O13
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">97.00 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O20—Mo4—O12
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">112.78 (18)</td>
<td rowspan="1" colspan="1">O3—Co3—O13
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">164.09 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O14—Mo5—O7</td>
<td rowspan="1" colspan="1">108.7 (2)</td>
<td rowspan="1" colspan="1">O6
<sup>vii</sup>
—Co3—O12</td>
<td rowspan="1" colspan="1">177.23 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O14—Mo5—O8</td>
<td rowspan="1" colspan="1">108.4 (2)</td>
<td rowspan="1" colspan="1">O17
<sup>iv</sup>
—Co3—O12</td>
<td rowspan="1" colspan="1">95.29 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7—Mo5—O8</td>
<td rowspan="1" colspan="1">109.1 (2)</td>
<td rowspan="1" colspan="1">O3—Co3—O12</td>
<td rowspan="1" colspan="1">79.28 (14)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O14—Mo5—O2</td>
<td rowspan="1" colspan="1">110.1 (2)</td>
<td rowspan="1" colspan="1">O13
<sup>i</sup>
—Co3—O12</td>
<td rowspan="1" colspan="1">87.43 (14)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7—Mo5—O2</td>
<td rowspan="1" colspan="1">112.59 (18)</td>
<td rowspan="1" colspan="1">O6
<sup>vii</sup>
—Co3—O2</td>
<td rowspan="1" colspan="1">92.31 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8—Mo5—O2</td>
<td rowspan="1" colspan="1">107.84 (18)</td>
<td rowspan="1" colspan="1">O17
<sup>iv</sup>
—Co3—O2</td>
<td rowspan="1" colspan="1">173.71 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O14
<sup>iii</sup>
—Ag1—O19
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">98.42 (17)</td>
<td rowspan="1" colspan="1">O3—Co3—O2</td>
<td rowspan="1" colspan="1">90.81 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O14
<sup>iii</sup>
—Ag1—O8</td>
<td rowspan="1" colspan="1">140.69 (19)</td>
<td rowspan="1" colspan="1">O13
<sup>i</sup>
—Co3—O2</td>
<td rowspan="1" colspan="1">80.47 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O19
<sup>i</sup>
—Ag1—O8</td>
<td rowspan="1" colspan="1">120.42 (15)</td>
<td rowspan="1" colspan="1">O12—Co3—O2</td>
<td rowspan="1" colspan="1">90.37 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O14
<sup>iii</sup>
—Ag2—O19
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">106.6 (2)</td>
<td rowspan="1" colspan="1">O18
<sup>vi</sup>
—Co4—O15
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">92.13 (18)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O14
<sup>iii</sup>
—Ag2—O5</td>
<td rowspan="1" colspan="1">99.1 (2)</td>
<td rowspan="1" colspan="1">O18
<sup>vi</sup>
—Co4—O13</td>
<td rowspan="1" colspan="1">173.62 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O19
<sup>i</sup>
—Ag2—O5</td>
<td rowspan="1" colspan="1">138.3 (5)</td>
<td rowspan="1" colspan="1">O15
<sup>vii</sup>
—Co4—O13</td>
<td rowspan="1" colspan="1">90.93 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O20—Co1—O16
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">92.15 (17)</td>
<td rowspan="1" colspan="1">O18
<sup>vi</sup>
—Co4—O7</td>
<td rowspan="1" colspan="1">94.80 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O20—Co1—O5</td>
<td rowspan="1" colspan="1">88.35 (16)</td>
<td rowspan="1" colspan="1">O15
<sup>vii</sup>
—Co4—O7</td>
<td rowspan="1" colspan="1">91.14 (18)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O16
<sup>iii</sup>
—Co1—O5</td>
<td rowspan="1" colspan="1">95.76 (16)</td>
<td rowspan="1" colspan="1">O13—Co4—O7</td>
<td rowspan="1" colspan="1">90.73 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O20—Co1—O10
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">92.55 (16)</td>
<td rowspan="1" colspan="1">O18
<sup>vi</sup>
—Co4—O19</td>
<td rowspan="1" colspan="1">86.79 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O16
<sup>iii</sup>
—Co1—O10
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">79.59 (16)</td>
<td rowspan="1" colspan="1">O15
<sup>vii</sup>
—Co4—O19</td>
<td rowspan="1" colspan="1">177.71 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Co1—O10
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">175.29 (16)</td>
<td rowspan="1" colspan="1">O13—Co4—O19</td>
<td rowspan="1" colspan="1">89.94 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O20—Co1—O12</td>
<td rowspan="1" colspan="1">163.71 (16)</td>
<td rowspan="1" colspan="1">O7—Co4—O19</td>
<td rowspan="1" colspan="1">90.96 (18)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O16
<sup>iii</sup>
—Co1—O12</td>
<td rowspan="1" colspan="1">104.13 (16)</td>
<td rowspan="1" colspan="1">O18
<sup>vi</sup>
—Co4—O2
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">92.52 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Co1—O12</td>
<td rowspan="1" colspan="1">90.12 (15)</td>
<td rowspan="1" colspan="1">O15
<sup>vii</sup>
—Co4—O2
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">86.18 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O10
<sup>iv</sup>
—Co1—O12</td>
<td rowspan="1" colspan="1">90.31 (15)</td>
<td rowspan="1" colspan="1">O13—Co4—O2
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">82.09 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O20—Co1—O3</td>
<td rowspan="1" colspan="1">86.59 (16)</td>
<td rowspan="1" colspan="1">O7—Co4—O2
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">172.29 (17)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O16
<sup>iii</sup>
—Co1—O3</td>
<td rowspan="1" colspan="1">176.14 (16)</td>
<td rowspan="1" colspan="1">O19—Co4—O2
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">91.85 (16)</td>
</tr>
</table>
</table-wrap>
<p>Symmetry codes: (i)
<italic>x</italic>
,
<italic>y</italic>
+1,
<italic>z</italic>
; (ii)
<italic>x</italic>
,
<italic>y</italic>
−1,
<italic>z</italic>
; (iii)
<italic>x</italic>
+1,
<italic>y</italic>
,
<italic>z</italic>
; (iv) −
<italic>x</italic>
+1, −
<italic>y</italic>
+1, −
<italic>z</italic>
; (v) −
<italic>x</italic>
+2, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (vi) −
<italic>x</italic>
+1, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (vii)
<italic>x</italic>
−1,
<italic>y</italic>
,
<italic>z</italic>
.</p>
</sec>
</app>
</app-group>
<ref-list>
<title>References</title>
<ref id="bb1">
<mixed-citation publication-type="other">Brandenburg, K. & Putz, H. (2001).
<italic>DIAMOND</italic>
. Crystal Impact GbR, Bonn, Allemagne.</mixed-citation>
</ref>
<ref id="bb2">
<mixed-citation publication-type="other">Brik, M. G. & Avram, C. N. (2011).
<italic>J. Lumin.</italic>
<bold>131</bold>
, 2642–2645.</mixed-citation>
</ref>
<ref id="bb3">
<mixed-citation publication-type="other">Brown, I. D. & Altermatt, D. (1985).
<italic>Acta Cryst.</italic>
B
<bold>41</bold>
, 244–247.</mixed-citation>
</ref>
<ref id="bb4">
<mixed-citation publication-type="other">Duisenberg, A. J. M. (1992).
<italic>J. Appl. Cryst.</italic>
<bold>25</bold>
, 92–96.</mixed-citation>
</ref>
<ref id="bb5">
<mixed-citation publication-type="other">Engel, J. M., Ahsbahs, H., Fuess, H. & Ehrenberg, H. (2009).
<italic>Acta Cryst.</italic>
B
<bold>65</bold>
, 29–35.</mixed-citation>
</ref>
<ref id="bb6">
<mixed-citation publication-type="other">Ennajeh, I., Zid, M. F. & Driss, A. (2013).
<italic>Acta Cryst.</italic>
E
<bold>69</bold>
, i54–i55.</mixed-citation>
</ref>
<ref id="bb7">
<mixed-citation publication-type="other">Farrugia, L. J. (2012).
<italic>J. Appl. Cryst.</italic>
<bold>45</bold>
, 849–854.</mixed-citation>
</ref>
<ref id="bb8">
<mixed-citation publication-type="other">Feng, P., Bu, X. & Stucky, G. D. (1997).
<italic>J. Solid State Chem.</italic>
<bold>129</bold>
, 328–333.</mixed-citation>
</ref>
<ref id="bb9">
<mixed-citation publication-type="other">Harms, K. & Wocadlo, S. (1995).
<italic>XCAD4</italic>
. Université de Marburg, Allemagne.</mixed-citation>
</ref>
<ref id="bb10">
<mixed-citation publication-type="other">Hermanowicz, K., Mączka, M., Wołcyrz, M., Tomaszewski, P. E., Paściak, M. & Hanuza, J. (2006).
<italic>J. Solid State Chem.</italic>
<bold>179</bold>
, 685–695.</mixed-citation>
</ref>
<ref id="bb11">
<mixed-citation publication-type="other">Huyghe, M., Lee, M.-R., Quarton, M. & Robert, F. (1991).
<italic>Acta Cryst.</italic>
C
<bold>47</bold>
, 244–246.</mixed-citation>
</ref>
<ref id="bb12">
<mixed-citation publication-type="other">Ivanov, K., Krustev, S. & Litcheva, P. (1998).
<italic>J. Alloys Compd</italic>
,
<bold>279</bold>
, 132–135.</mixed-citation>
</ref>
<ref id="bb13">
<mixed-citation publication-type="other">Judeinstein, P., Titman, J., Stamm, M. & Schmidt, H. (1994).
<italic>Chem. Mater.</italic>
<bold>6</bold>
, 127–134.</mixed-citation>
</ref>
<ref id="bb14">
<mixed-citation publication-type="other">Lii, K.-H. & Ye, J. (1997).
<italic>J. Solid State Chem.</italic>
<bold>131</bold>
, 131–137.</mixed-citation>
</ref>
<ref id="bb15">
<mixed-citation publication-type="other">Macíček, J. & Yordanov, A. (1992).
<italic>J. Appl. Cryst.</italic>
<bold>25</bold>
, 73–80.</mixed-citation>
</ref>
<ref id="bb16">
<mixed-citation publication-type="other">Méndez-Blas, A., Rico, M., Volkov, V., Cascales, C., Zaldo, C., Coya, C., Kling, A. & Alves, L. C. (2004).
<italic>J. Phys. Condens. Matter</italic>
,
<bold>16</bold>
, 2139–2160.</mixed-citation>
</ref>
<ref id="bb17">
<mixed-citation publication-type="other">Muessig, E., Bramnik, K. G. & Ehrenberg, H. (2003).
<italic>Acta Cryst.</italic>
B
<bold>59</bold>
, 611–616.</mixed-citation>
</ref>
<ref id="bb18">
<mixed-citation publication-type="other">North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).
<italic>Acta Cryst.</italic>
A
<bold>24</bold>
, 351–359.</mixed-citation>
</ref>
<ref id="bb19">
<mixed-citation publication-type="other">Sanz, F., Parada, C., Rojo, J. M., Ruiz-Valero, C. & Saez-Puche, R. (1999).
<italic>J. Solid State Chem.</italic>
<bold>145</bold>
, 604–611.</mixed-citation>
</ref>
<ref id="bb20">
<mixed-citation publication-type="other">Sheldrick, G. M. (2008).
<italic>Acta Cryst.</italic>
A
<bold>64</bold>
, 112–122.</mixed-citation>
</ref>
<ref id="bb21">
<mixed-citation publication-type="other">Tsyrenova, G. D., Solodovnikov, S. F., Khaikina, E. G., Khobrakova, E. T., Bazarova, Zh. G. & Solodovnikova, Z. A. (2004).
<italic>J. Solid State Chem.</italic>
<bold>177</bold>
, 2158–2167.</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>Représentation des polyèdres de coordination de l’unité structurale dans Ag
<sub>0.90</sub>
Al
<sub>1.06</sub>
Co
<sub>2.94</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
. Les éllipsoïdes ont été définis avec 50% de probabilité. [Code de symétrie: (i)
<italic>x</italic>
,
<italic>y</italic>
 + 1,
<italic>z</italic>
; (ii)
<italic>x</italic>
,
<italic>y</italic>
 − 1,
<italic>z</italic>
; (iii)
<italic>x</italic>
 + 1,
<italic>y</italic>
,
<italic>z</italic>
; (iv) −
<italic>x</italic>
 + 1, −
<italic>y</italic>
 + 1, −
<italic>z</italic>
; (v) −
<italic>x</italic>
 + 2, −
<italic>y</italic>
 + 1, −
<italic>z</italic>
 + 1; (vi) −
<italic>x</italic>
 + 1, −
<italic>y</italic>
 + 1, −
<italic>z</italic>
 + 1; (vii)
<italic>x</italic>
 − 1,
<italic>y</italic>
,
<italic>z;</italic>
M = Co/Al.]</p>
</caption>
<graphic xlink:href="e-71-00388-fig1"></graphic>
</fig>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>Projection: (
<italic>a</italic>
) d’une couche de type
<italic>A</italic>
disposée parallèlement au plan (001), (
<italic>b</italic>
) d’une couche de type
<italic>D</italic>
dans le plan (001), (
<italic>c</italic>
) d’une couche de type
<italic>C</italic>
dans le plan (001), (
<italic>d</italic>
) d’une bicouche dans le plan (001).</p>
</caption>
<graphic xlink:href="e-71-00388-fig2"></graphic>
</fig>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>Projection de la structure de Ag
<sub>0.90</sub>
Al
<sub>1.06</sub>
Co
<sub>2.94</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
, selon
<italic>a</italic>
.</p>
</caption>
<graphic xlink:href="e-71-00388-fig3"></graphic>
</fig>
<fig id="fig4" position="float">
<label>Figure 4</label>
<caption>
<p>Projection de la structure de: (
<italic>a</italic>
)
<italic>β</italic>
-K
<sub>2</sub>
Co
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
, selon
<italic>b</italic>
, (
<italic>b</italic>
)
<italic>α</italic>
-K
<sub>2</sub>
Co
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
, selon
<italic>a</italic>
.</p>
</caption>
<graphic xlink:href="e-71-00388-fig4"></graphic>
</fig>
<table-wrap id="table1" position="float">
<label>Table 1</label>
<caption>
<title>Dtails exprimentaux</title>
</caption>
<table frame="hsides" rules="groups">
<tbody valign="top">
<tr>
<td rowspan="1" colspan="2" align="left" valign="top">Donnes crystallines</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Formule chimique</td>
<td rowspan="1" colspan="1" align="left" valign="top">Ag
<sub>0,90</sub>
Al
<sub>1,06</sub>
Co
<sub>2,94</sub>
(MoO
<sub>4</sub>
)
<sub>5</sub>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>M</italic>
<sub>r</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">1098,64</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Systme cristallin, groupe d’espace</td>
<td rowspan="1" colspan="1" align="left" valign="top">Triclinique,
<italic>P</italic>
<inline-formula>
<inline-graphic xlink:href="e-71-00388-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Temprature (K)</td>
<td rowspan="1" colspan="1" align="left" valign="top">298</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>a</italic>
,
<italic>b</italic>
,
<italic>c</italic>
()</td>
<td rowspan="1" colspan="1" align="left" valign="top">6,8547(8), 6,9410(8), 17,597(2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">, , ()</td>
<td rowspan="1" colspan="1" align="left" valign="top">87,958(6), 87,462(6), 78,818(4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>V</italic>
(
<sup>3</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">820,20(16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>Z</italic>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">2</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Type de rayonnement</td>
<td rowspan="1" colspan="1" align="left" valign="top">Mo
<italic>K</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top"> (mm
<sup>1</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">7,79</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Taille des cristaux (mm)</td>
<td rowspan="1" colspan="1" align="left" valign="top">0,22 0,16 0,12</td>
</tr>
<tr>
<td rowspan="1" colspan="2" align="left" valign="top"> </td>
</tr>
<tr>
<td rowspan="1" colspan="2" align="left" valign="top">Collection de donnes</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Diffractomtre</td>
<td rowspan="1" colspan="1" align="left" valign="top">EnrafNonius CAD-4</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Correction d’absorption</td>
<td rowspan="1" colspan="1" align="left" valign="top"> scan (North
<italic>et al.</italic>
, 1968
<xref ref-type="bibr" rid="bb18"></xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>T</italic>
<sub>min</sub>
,
<italic>T</italic>
<sub>max</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0,233, 0,407</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Nombre de rflexions mesures, indpendantes et observes [
<italic>I</italic>
> 2(
<italic>I</italic>
)]</td>
<td rowspan="1" colspan="1" align="left" valign="top">3912, 3527, 3086</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>R</italic>
<sub>int</sub>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0,029</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">(sin /)
<sub>max</sub>
(
<sup>1</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">0,638</td>
</tr>
<tr>
<td rowspan="1" colspan="2" align="left" valign="top"> </td>
</tr>
<tr>
<td rowspan="1" colspan="2" align="left" valign="top">Affinement</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2(
<italic>F</italic>
<sup>2</sup>
)],
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
),
<italic>S</italic>
</td>
<td rowspan="1" colspan="1" align="left" valign="top">0,027, 0,070, 1,09</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Nombre de rflexions</td>
<td rowspan="1" colspan="1" align="left" valign="top">3527</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">Nombre de paramtres</td>
<td rowspan="1" colspan="1" align="left" valign="top">287</td>
</tr>
<tr>
<td rowspan="1" colspan="1" align="left" valign="top">
<sub>max</sub>
,
<sub>min</sub>
(e
<sup>3</sup>
)</td>
<td rowspan="1" colspan="1" align="left" valign="top">1,28, 0,77</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Programmes informatiques:
<italic>CAD-4 EXPRESS</italic>
(Duisenberg, 1992
<xref ref-type="bibr" rid="bb4"></xref>
; Macek Yordanov, 1992
<xref ref-type="bibr" rid="bb15"></xref>
),
<italic>XCAD4</italic>
(Harms Wocadlo, 1995
<xref ref-type="bibr" rid="bb9"></xref>
),
<italic>SHELXS97</italic>
et
<italic>SHELXL97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb20"></xref>
),
<italic>DIAMOND</italic>
(Brandenburg Putz, 2001
<xref ref-type="bibr" rid="bb1"></xref>
) et
<italic>WinGX</italic>
(Farrugia, 2012
<xref ref-type="bibr" rid="bb7"></xref>
).</p>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000052 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000052 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4438844
   |texte=   Structure cristalline de la triple molybdate Ag0.90Al1.06Co2.94(MoO4)5
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26029398" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024