Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000047 ( Pmc/Corpus ); précédent : 0000469; suivant : 0000480 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structure cristalline de type alluaudite K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
</title>
<author>
<name sortKey="Nasri, Rawia" sort="Nasri, Rawia" uniqKey="Nasri R" first="Rawia" last="Nasri">Rawia Nasri</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisie</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fakhar Bourguiba, Noura" sort="Fakhar Bourguiba, Noura" uniqKey="Fakhar Bourguiba N" first="Noura" last="Fakhar Bourguiba">Noura Fakhar Bourguiba</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisie</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zid, Mohamed Faouzi" sort="Zid, Mohamed Faouzi" uniqKey="Zid M" first="Mohamed Faouzi" last="Zid">Mohamed Faouzi Zid</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisie</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25705436</idno>
<idno type="pmc">4331865</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331865</idno>
<idno type="RBID">PMC:4331865</idno>
<idno type="doi">10.1107/S2056989014025894</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000047</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000047</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Structure cristalline de type alluaudite K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
</title>
<author>
<name sortKey="Nasri, Rawia" sort="Nasri, Rawia" uniqKey="Nasri R" first="Rawia" last="Nasri">Rawia Nasri</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisie</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fakhar Bourguiba, Noura" sort="Fakhar Bourguiba, Noura" uniqKey="Fakhar Bourguiba N" first="Noura" last="Fakhar Bourguiba">Noura Fakhar Bourguiba</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisie</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zid, Mohamed Faouzi" sort="Zid, Mohamed Faouzi" uniqKey="Zid M" first="Mohamed Faouzi" last="Zid">Mohamed Faouzi Zid</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisie</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta Crystallographica Section E: Crystallographic Communications</title>
<idno type="eISSN">2056-9890</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>A new triple molybdate K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
was synthesized using solid-state reaction at 973 K and characterized by X-ray diffraction. The structure is characterized by
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co/Na) dimers, which are linked by MoO
<sub>4</sub>
tetra­hedra, forming infinite layers. The latter are connected on one hand by insertion of Mo1O
<sub>4</sub>
tetra­hedra and secondly by sharing corners with Mo2O
<sub>4</sub>
tetra­hedra.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Acta Crystallogr E Crystallogr Commun</journal-id>
<journal-id journal-id-type="iso-abbrev">Acta Crystallogr E Crystallogr Commun</journal-id>
<journal-id journal-id-type="publisher-id">Acta Cryst. E</journal-id>
<journal-title-group>
<journal-title>Acta Crystallographica Section E: Crystallographic Communications</journal-title>
</journal-title-group>
<issn pub-type="epub">2056-9890</issn>
<publisher>
<publisher-name>International Union of Crystallography</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25705436</article-id>
<article-id pub-id-type="pmc">4331865</article-id>
<article-id pub-id-type="publisher-id">br2244</article-id>
<article-id pub-id-type="doi">10.1107/S2056989014025894</article-id>
<article-id pub-id-type="coden">ACSECI</article-id>
<article-id pub-id-type="pii">S2056989014025894</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Communications</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Structure cristalline de type alluaudite K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
</article-title>
<alt-title>
<italic>K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Nasri</surname>
<given-names>Rawia</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fakhar Bourguiba</surname>
<given-names>Noura</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
<xref ref-type="corresp" rid="cor">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zid</surname>
<given-names>Mohamed Faouzi</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<aff id="a">
<label>a</label>
Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis,
<country>Tunisie</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor">Correspondence e-mail:
<email>n.f.bourguiba@live.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<day>01</day>
<month>1</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>01</day>
<month>1</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>01</day>
<month>1</month>
<year>2015</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>71</volume>
<issue>Pt 1</issue>
<issue-id pub-id-type="publisher-id">e150100</issue-id>
<fpage>4</fpage>
<lpage>7</lpage>
<history>
<date date-type="received">
<day>24</day>
<month>11</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>26</day>
<month>11</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© Nasri et al. 2015</copyright-statement>
<copyright-year>2015</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0/uk/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.</license-p>
</license>
</permissions>
<self-uri xlink:type="simple" xlink:href="http://dx.doi.org/10.1107/S2056989014025894">A full version of this article is available from Crystallography Journals Online.</self-uri>
<abstract abstract-type="toc">
<p>A new triple molybdate K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
was synthesized using solid-state reaction at 973 K and characterized by X-ray diffraction. The structure is characterized by
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co/Na) dimers, which are linked by MoO
<sub>4</sub>
tetra­hedra, forming infinite layers. The latter are connected on one hand by insertion of Mo1O
<sub>4</sub>
tetra­hedra and secondly by sharing corners with Mo2O
<sub>4</sub>
tetra­hedra.</p>
</abstract>
<abstract>
<p>A new triple molybdate, potassium sodium cobalt tris­(molybdate), K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
, was synthesized using solid-state reactions. The Co
<sup>2+</sup>
and one Na
<sup>+</sup>
cation are located at the same general site, each with occupancy 0.5. Another site (site symmetry 2) is occupied by Na
<sup>+</sup>
and K
<sup>+</sup>
cations, with occupancies of 0.597 (7) and 0.402 (6), respectively. The other two Na
<sup>+</sup>
cations and one of the two Mo atoms lie on special positions (site symmetries -1, 2 and 2, respectively). The structure is characterized by
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co/Na) dimers, which are linked by MoO
<sub>4</sub>
tetra­hedra, forming infinite layers. The latter are connected firstly by insertion of one type of MoO
<sub>4</sub>
tetra­hedra and secondly by sharing corners with the other type of MoO
<sub>4</sub>
tetra­hedra. This results in an open three-dimensional framework with the cavities occupied by the Na
<sup>+</sup>
and K
<sup>+</sup>
cations. The structure is isotypic with Na
<sub>3</sub>
In
<sub>2</sub>
As
<sub>3</sub>
O
<sub>12</sub>
and Na
<sub>3</sub>
In
<sub>2</sub>
P
<sub>3</sub>
O
<sub>12</sub>
. A comparison is made with structures such as K
<sub>2</sub>
Co
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
and
<italic>β</italic>
-NaFe
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
and their differences are discussed.</p>
</abstract>
<kwd-group>
<kwd>crystal structure</kwd>
<kwd>triple molybdate</kwd>
<kwd>alluaudite-type</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Contexte chimique   </title>
<p>L’assemblage octa­èdres-tétraèdres dans les matériaux inorganiques conduit à des charpentes ouvertes présentant des propriétés physiques importantes, en particulier la conduction ionique (Judeinstein
<italic>et al.</italic>
, 1994
<xref ref-type="bibr" rid="bb12"></xref>
; Sanz
<italic>et al.</italic>
, 1999
<xref ref-type="bibr" rid="bb19"></xref>
). La richesse structurale dans ces matériaux nous a encouragé de faire l’exploration des systèmes
<italic>A</italic>
–Co–Mo–O (
<italic>A</italic>
= ion monovalent). La synthèse conduit à un nouveau matériau de formulation K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
appartenant à la famille des alluaudites (Moore, 1971
<xref ref-type="bibr" rid="bb16"></xref>
; Yakubovich
<italic>et al.</italic>
, 2005
<xref ref-type="bibr" rid="bb22"></xref>
; Hatert, 2008
<xref ref-type="bibr" rid="bb11"></xref>
). Un examen bibliographique montre que le matériau étudié est isostructural aux composés: Na
<sub>3</sub>
In
<sub>2</sub>
As
<sub>3</sub>
O
<sub>12</sub>
et Na
<sub>3</sub>
In
<sub>2</sub>
P
<sub>3</sub>
O
<sub>12</sub>
(Lii & Ye, 1997
<xref ref-type="bibr" rid="bb13"></xref>
).</p>
</sec>
<sec id="sec2">
<title>Commentaire structurelle   </title>
<p>L’unité asymétrique referme un dim­ère
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co/Na) connecté par mise en commun de sommets avec deux tétraèdres et deux tétraèdres Mo2O
<sub>4</sub>
différents et par partage d’arête avec un tétraèdres Mo1O
<sub>4</sub>
. La compensation de charge dans la structure est assurée par les cations Na
<sup>+</sup>
et K
<sup>+</sup>
(Fig. 1
<xref ref-type="fig" rid="fig1"></xref>
).</p>
<p>Dans la charpente anionique deux octa­èdres juxtaposés, se lient par partage d’arête pour former des dimères
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co1/Na1). Ces derniers se connectent par ponts triples avec les tétraèdres Mo2O
<sub>4</sub>
pour donner les unités
<italic>M</italic>
<sub>2</sub>
Mo
<sub>2</sub>
O
<sub>16</sub>
. Ces dernières se connectent à six autres unités identiques par mise en commun de sommets pour conduire à des couches infinies de type
<italic>M</italic>
<sub>2</sub>
Mo
<sub>3</sub>
O
<sub>12</sub>
(
<italic>M</italic>
= Co1/Na1) (Fig. 2
<xref ref-type="fig" rid="fig2"></xref>
).</p>
<p>Deux couches adjacentes se lient, d’une part par insertion des tétraèdres Mo1O
<sub>4</sub>
entre les couches et d’autre part par partage de sommets pour conduire à une charpente tri­dimensionnelle, possédant deux types de canaux larges, à section hexa­gonale, parallèles à l’axe
<italic>c</italic>
où logent les cations Na3 et (K4/Na4) (Fig. 3
<xref ref-type="fig" rid="fig3"></xref>
).</p>
<p>Dans la charpente anionique chaque tétraèdre Mo1O
<sub>4</sub>
partage ses quatre sommets avec respectivement quatre octa­èdres formant deux dimères appartenant à deux couches adjacentes (Fig. 4
<xref ref-type="fig" rid="fig4"></xref>
<italic>a</italic>
). Par contre, dans la structure chaque tétraèdre Mo2O
<sub>4</sub>
met en commun seulement trois de ses sommets avec respectivement trois dimères différents appart­enant à la même couche, le quatrième sommet oxygène restant libre forme le groupement molybdyl [
<italic>d</italic>
(
<italic>M</italic>
=O) = 1,744 (2) Å] (Fig. 4
<xref ref-type="fig" rid="fig4"></xref>
<italic>b</italic>
). Un examen des caractéristiques géométriques relevées de l’étude structurale montre que les distances moyennes dans les tétraèdres MoO
<sub>4</sub>
et dans les octa­èdres MO
<sub>6</sub>
(
<italic>M</italic>
= Co1/Na1), sont égales respectivement à 1,761 (3) et 2,210 (3) Å. La première Mo–O, est conforme à celles rencontrées dans la bibliographie (Souilem
<italic>et al.</italic>
, 2014
<xref ref-type="bibr" rid="bb21"></xref>
; Ennajeh
<italic>et al.</italic>
, 2013
<xref ref-type="bibr" rid="bb7"></xref>
; Engel
<italic>et al.</italic>
, 2009
<xref ref-type="bibr" rid="bb6"></xref>
). La seconde
<italic>M</italic>
—O (
<italic>M</italic>
= Co1/Na1), s’avère une moyenne entre celles Co—O (Engel
<italic>et al.</italic>
, 2009
<xref ref-type="bibr" rid="bb6"></xref>
; Marzouki
<italic>et al.</italic>
, 2013
<xref ref-type="bibr" rid="bb15"></xref>
) et Na—O (Muessig
<italic>et al.</italic>
, 2003
<xref ref-type="bibr" rid="bb17"></xref>
; Baies
<italic>et al.</italic>
, 2006
<xref ref-type="bibr" rid="bb2"></xref>
). De plus, le calcul des charges des ions, utilisant la formule empirique de Brown (Brown & Altermatt, 1985
<xref ref-type="bibr" rid="bb4"></xref>
), conduit aux valeurs des charges des ions suivants: Mo1 (5,943), Mo2 (5,946), Co1/Na1 (1,822), Na2 (1,093), Na3 (0,838), K4/Na4 (0,868). La structure étudiée étant de type alluaudite, elle est similaire à celles rencontrées dans la littérature (Haj Abdallah & Haddad, 2008
<xref ref-type="bibr" rid="bb9"></xref>
; Zid
<italic>et al.</italic>
, 2005
<xref ref-type="bibr" rid="bb23"></xref>
). Elles diffèrent seulement par l’occupation des sites cation­iques. En effet, dans le composé Na
<sub>1.72</sub>
Mn
<sub>3.28</sub>
(AsO
<sub>4</sub>
)
<sub>3</sub>
(Ayed
<italic>et al.</italic>
, 2002
<xref ref-type="bibr" rid="bb1"></xref>
), le site cristallographique (1/2,
<italic>y</italic>
,3/4) du groupe d’espace
<italic>C</italic>
2/
<italic>c</italic>
, est occupé par l’atome de manganèse Mn1, contrairement à notre phase où ce site est occupé par l’alcalin Na2 (Fig. 3
<xref ref-type="fig" rid="fig3"></xref>
).</p>
</sec>
<sec id="sec3">
<title>Enquête de base de données   </title>
<p>Le composé de formulation K
<sub>2</sub>
Co
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
(Engel
<italic>et al.</italic>
, 2009
<xref ref-type="bibr" rid="bb6"></xref>
), présente trois variétés allotropiques. Elles cristallisent dans le systéme monoclinique, groupes d’espace
<italic>P</italic>
2
<sub>1</sub>
/
<italic>c</italic>
ou bien
<italic>C</italic>
2/
<italic>c</italic>
. La charpente anionique dans K
<sub>2</sub>
Co
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
présente contrairement à notre structure des tétramères (Fig. 5
<xref ref-type="fig" rid="fig5"></xref>
) au lieu des dimères. L’association, par partage de sommets, des tétramères avec tous les tétraèdres MoO
<sub>4</sub>
dans K
<sub>2</sub>
Co
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
conduit vers une structure bidimensionnelle. La comparaison de notre structure avec celle de la variété
<italic>β</italic>
-NaFe
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
(Muessig
<italic>et al.</italic>
, 2003
<xref ref-type="bibr" rid="bb17"></xref>
), montre une différence dans la disposition des dimères
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co/Fe). En effet dans la structure
<italic>β</italic>
-NaFe
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
les dimères sont orientés de la même façon. Leur association par partage de sommets avec les tétraèdres MoO
<sub>4</sub>
conduit vers une charpente ouverte possédant de larges canaux où résident les cations Na
<sup>+</sup>
(Fig. 6
<xref ref-type="fig" rid="fig6"></xref>
). Contrairement à notre matériau K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
où les dimères
<italic>M</italic>
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
= Co/Na) sont orientés perpendiculairement les uns aux autres (Fig. 3
<xref ref-type="fig" rid="fig3"></xref>
).</p>
</sec>
<sec id="sec4">
<title>Synthèse et cristallisation   </title>
<p>Les cristaux relatifs à K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
ont été obtenus par réaction à l’état solide à partir des réactifs: Na
<sub>2</sub>
CO
<sub>3</sub>
(PROLABO, 70128), Co(NO
<sub>3</sub>
)·6H
<sub>2</sub>
O (FLUKA, 60832), K
<sub>2</sub>
CO
<sub>3</sub>
(PROLABO, 60109) et (NH
<sub>4</sub>
)
<sub>2</sub>
Mo
<sub>4</sub>
O
<sub>13</sub>
(FLUKA, 69858) pris dans les proportions telque les rapports Na:K:Co:Mo = 2:1:3:3. Après un broyage poussé dans un mortier en agate, le mélange a été mis dans un creuset en porcelaine préchauffé à l’air à 673 K pendant 12 heures en vue d’éliminer les composés volatils. Il est ensuite porté jusqu’à une température de synthèse proche de celle de la fusion à 963 K. Le mélange est maintenue à cette température pendant deux semaines pour favoriser la germination et la croissance des cristaux. Par la suite, il a subi en premier lieu un refroidissement lent (5°/jour) jusqu’à 910 K puis rapide (50°/h) jusqu’à la température ambiante. Des cristaux de couleur violet, de taille suffisante pour les mesures des intensités, ont été séparés du flux par l’eau chaude. Une analyse qualitative au MET de marque FEI et de type
<italic>QUANTA</italic>
200 confirme la présence des éléments chimiques attendus: K, Na, Co, Mo et l’oxygène (Fig. 7
<xref ref-type="fig" rid="fig7"></xref>
).</p>
</sec>
<sec id="sec5">
<title>Affinement   </title>
<p>Détails de données crystallines, collection de données et affinement sont résumées dans le tableau 1
<xref ref-type="table" rid="table1"></xref>
. Des contraintes EADP et EXYZ pour les couples K4/Na4 conduit à des ellipsoïdes bien définis. Les densités d’électrons residuelles sont acceptables et sont situées respectivements à 0,80 Å de Mo2 et à 0,99 Å de Mo1.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data">
<p>Crystal structure: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S2056989014025894/br2244sup1.cif">10.1107/S2056989014025894/br2244sup1.cif</ext-link>
</p>
<media mimetype="chemical" mime-subtype="x-cif" xlink:href="e-71-00004-sup1.cif" xlink:type="simple" id="d36e130" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Structure factors: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S2056989014025894/br2244Isup2.hkl">10.1107/S2056989014025894/br2244Isup2.hkl</ext-link>
</p>
<media mimetype="text" mime-subtype="plain" xlink:href="e-71-00004-Isup2.hkl" xlink:type="simple" id="d36e137" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>CCDC reference:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/cr.cgi?rm=csd&csdid=1036131">1036131</ext-link>
</p>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Additional supporting information:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsupfiles?br2244&file=br2244sup0.html&mime=text/html"> crystallographic information</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendcif?br2244sup1&Qmime=cif">3D view</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?br2244&checkcif=yes">checkCIF report</ext-link>
</p>
</supplementary-material>
</sec>
</body>
<back>
<app-group>
<app>
<title>supplementary crystallographic information</title>
<sec id="tablewrapcrystaldatalong">
<title>Crystal data</title>
<table-wrap position="anchor" id="d1e35">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
(000) = 1185</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 637.15</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
<sub>x</sub>
= 3.670 Mg m
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Monoclinic,
<italic>C</italic>
2/
<italic>c</italic>
</td>
<td rowspan="1" colspan="1">Mo
<italic>K</italic>
α radiation, λ = 0.71073 Å</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hall symbol: -C 2yc</td>
<td rowspan="1" colspan="1">Cell parameters from 25 reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>a</italic>
= 12.8054 (8) Å</td>
<td rowspan="1" colspan="1">θ = 10–15°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>b</italic>
= 13.5328 (9) Å</td>
<td rowspan="1" colspan="1">µ = 4.94 mm
<sup></sup>
<sup>1</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>c</italic>
= 7.1888 (6) Å</td>
<td rowspan="1" colspan="1">
<italic>T</italic>
= 298 K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">β = 112.239 (8)°</td>
<td rowspan="1" colspan="1">Prism, purple</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>V</italic>
= 1153.10 (14) Å
<sup>3</sup>
</td>
<td rowspan="1" colspan="1">0.22 × 0.16 × 0.12 mm</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>Z</italic>
= 4</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapdatacollectionlong">
<title>Data collection</title>
<table-wrap position="anchor" id="d1e162">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Enraf–Nonius CAD-4 diffractometer</td>
<td rowspan="1" colspan="1">1092 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Radiation source: fine-focus sealed tube</td>
<td rowspan="1" colspan="1">
<italic>R</italic>
<sub>int</sub>
= 0.029</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Graphite monochromator</td>
<td rowspan="1" colspan="1">θ
<sub>max</sub>
= 27.0°, θ
<sub>min</sub>
= 2.3°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">ω/2θ scans</td>
<td rowspan="1" colspan="1">
<italic>h</italic>
= −16→13</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Absorption correction: ψ scan (North
<italic>et al.</italic>
, 1968)</td>
<td rowspan="1" colspan="1">
<italic>k</italic>
= −2→17</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>T</italic>
<sub>min</sub>
= 0.557,
<italic>T</italic>
<sub>max</sub>
= 0.607</td>
<td rowspan="1" colspan="1">
<italic>l</italic>
= −9→9</td>
</tr>
<tr>
<td rowspan="1" colspan="1">2813 measured reflections</td>
<td rowspan="1" colspan="1">2 standard reflections every 120 min</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1252 independent reflections</td>
<td rowspan="1" colspan="1"> intensity decay: 1.4%</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewraprefinementdatalong">
<title>Refinement</title>
<table-wrap position="anchor" id="d1e287">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Refinement on
<italic>F</italic>
<sup>2</sup>
</td>
<td rowspan="1" colspan="1">Primary atom site location: structure-invariant direct methods</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Least-squares matrix: full</td>
<td rowspan="1" colspan="1">Secondary atom site location: difference Fourier map</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.022</td>
<td rowspan="1" colspan="1">
<italic>w</italic>
= 1/[σ
<sup>2</sup>
(
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
) + (0.0256
<italic>P</italic>
)
<sup>2</sup>
+ 0.2937
<italic>P</italic>
] where
<italic>P</italic>
= (
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
+ 2
<italic>F</italic>
<sub>c</sub>
<sup>2</sup>
)/3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.056</td>
<td rowspan="1" colspan="1">(Δ/σ)
<sub>max</sub>
< 0.001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>S</italic>
= 1.05</td>
<td rowspan="1" colspan="1">Δρ
<sub>max</sub>
= 0.47 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1252 reflections</td>
<td rowspan="1" colspan="1">Δρ
<sub>min</sub>
= −0.43 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">99 parameters</td>
<td rowspan="1" colspan="1">Extinction correction:
<italic>SHELXL97</italic>
(Sheldrick, 2008), Fc
<sup>*</sup>
=kFc[1+0.001xFc
<sup>2</sup>
λ
<sup>3</sup>
/sin(2θ)]
<sup>-1/4</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1 restraint</td>
<td rowspan="1" colspan="1">Extinction coefficient: 0.00215 (15)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="specialdetails">
<title>Special details</title>
<table-wrap position="anchor" id="d1e464">
<table rules="all" frame="box" style="table-layout:fixed">
<tr>
<td rowspan="1" colspan="1">Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Refinement. Refinement of
<italic>F</italic>
<sup>2</sup>
against ALL reflections. The weighted
<italic>R</italic>
-factor
<italic>wR</italic>
and goodness of fit
<italic>S</italic>
are based on
<italic>F</italic>
<sup>2</sup>
, conventional
<italic>R</italic>
-factors
<italic>R</italic>
are based on
<italic>F</italic>
, with
<italic>F</italic>
set to zero for negative
<italic>F</italic>
<sup>2</sup>
. The threshold expression of
<italic>F</italic>
<sup>2</sup>
> σ(
<italic>F</italic>
<sup>2</sup>
) is used only for calculating
<italic>R</italic>
-factors(gt)
<italic>etc</italic>
. and is not relevant to the choice of reflections for refinement.
<italic>R</italic>
-factors based on
<italic>F</italic>
<sup>2</sup>
are statistically about twice as large as those based on
<italic>F</italic>
, and
<italic>R</italic>
- factors based on ALL data will be even larger.</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapcoords">
<title>Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e564">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>x</italic>
</td>
<td rowspan="1" colspan="1">
<italic>y</italic>
</td>
<td rowspan="1" colspan="1">
<italic>z</italic>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sub>iso</sub>
*/
<italic>U</italic>
<sub>eq</sub>
</td>
<td rowspan="1" colspan="1">Occ. (<1)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.21535 (3)</td>
<td rowspan="1" colspan="1">0.2500</td>
<td rowspan="1" colspan="1">0.02386 (14)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2</td>
<td rowspan="1" colspan="1">0.73366 (2)</td>
<td rowspan="1" colspan="1">0.60949 (2)</td>
<td rowspan="1" colspan="1">0.62347 (4)</td>
<td rowspan="1" colspan="1">0.02137 (12)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.71350 (6)</td>
<td rowspan="1" colspan="1">0.33825 (6)</td>
<td rowspan="1" colspan="1">0.62440 (10)</td>
<td rowspan="1" colspan="1">0.01883 (17)</td>
<td rowspan="1" colspan="1">0.50</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na1</td>
<td rowspan="1" colspan="1">0.71350 (6)</td>
<td rowspan="1" colspan="1">0.33825 (6)</td>
<td rowspan="1" colspan="1">0.62440 (10)</td>
<td rowspan="1" colspan="1">0.01883 (17)</td>
<td rowspan="1" colspan="1">0.50</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na2</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.23393 (16)</td>
<td rowspan="1" colspan="1">0.7500</td>
<td rowspan="1" colspan="1">0.0245 (4)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na3</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.0358 (5)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">K4</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.48817 (18)</td>
<td rowspan="1" colspan="1">0.2500</td>
<td rowspan="1" colspan="1">0.0434 (8)</td>
<td rowspan="1" colspan="1">0.402 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na4</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.48817 (18)</td>
<td rowspan="1" colspan="1">0.2500</td>
<td rowspan="1" colspan="1">0.0434 (8)</td>
<td rowspan="1" colspan="1">0.597 (18)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.6713 (2)</td>
<td rowspan="1" colspan="1">0.6703 (2)</td>
<td rowspan="1" colspan="1">0.3919 (4)</td>
<td rowspan="1" colspan="1">0.0310 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.7192 (2)</td>
<td rowspan="1" colspan="1">0.6791 (2)</td>
<td rowspan="1" colspan="1">0.8226 (4)</td>
<td rowspan="1" colspan="1">0.0367 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.5413 (2)</td>
<td rowspan="1" colspan="1">0.2891 (2)</td>
<td rowspan="1" colspan="1">0.4691 (4)</td>
<td rowspan="1" colspan="1">0.0291 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.6072 (3)</td>
<td rowspan="1" colspan="1">0.1336 (2)</td>
<td rowspan="1" colspan="1">0.2506 (5)</td>
<td rowspan="1" colspan="1">0.0461 (8)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.8768 (2)</td>
<td rowspan="1" colspan="1">0.5878 (2)</td>
<td rowspan="1" colspan="1">0.6818 (4)</td>
<td rowspan="1" colspan="1">0.0329 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.6623 (3)</td>
<td rowspan="1" colspan="1">0.4960 (2)</td>
<td rowspan="1" colspan="1">0.6026 (5)</td>
<td rowspan="1" colspan="1">0.0438 (8)</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapadps">
<title>Atomic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e774">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>11</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>22</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>33</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>12</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>13</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>23</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1</td>
<td rowspan="1" colspan="1">0.0371 (3)</td>
<td rowspan="1" colspan="1">0.0170 (2)</td>
<td rowspan="1" colspan="1">0.0127 (2)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.00406 (17)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2</td>
<td rowspan="1" colspan="1">0.02105 (18)</td>
<td rowspan="1" colspan="1">0.0256 (2)</td>
<td rowspan="1" colspan="1">0.01562 (17)</td>
<td rowspan="1" colspan="1">−0.00171 (12)</td>
<td rowspan="1" colspan="1">0.00482 (12)</td>
<td rowspan="1" colspan="1">0.00182 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.0207 (3)</td>
<td rowspan="1" colspan="1">0.0214 (4)</td>
<td rowspan="1" colspan="1">0.0145 (3)</td>
<td rowspan="1" colspan="1">0.0035 (3)</td>
<td rowspan="1" colspan="1">0.0068 (3)</td>
<td rowspan="1" colspan="1">0.0003 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na1</td>
<td rowspan="1" colspan="1">0.0207 (3)</td>
<td rowspan="1" colspan="1">0.0214 (4)</td>
<td rowspan="1" colspan="1">0.0145 (3)</td>
<td rowspan="1" colspan="1">0.0035 (3)</td>
<td rowspan="1" colspan="1">0.0068 (3)</td>
<td rowspan="1" colspan="1">0.0003 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na2</td>
<td rowspan="1" colspan="1">0.0237 (9)</td>
<td rowspan="1" colspan="1">0.0250 (11)</td>
<td rowspan="1" colspan="1">0.0276 (10)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0129 (8)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na3</td>
<td rowspan="1" colspan="1">0.0478 (14)</td>
<td rowspan="1" colspan="1">0.0220 (11)</td>
<td rowspan="1" colspan="1">0.0246 (11)</td>
<td rowspan="1" colspan="1">−0.0008 (11)</td>
<td rowspan="1" colspan="1">−0.0011 (10)</td>
<td rowspan="1" colspan="1">0.0008 (9)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">K4</td>
<td rowspan="1" colspan="1">0.0238 (10)</td>
<td rowspan="1" colspan="1">0.0710 (17)</td>
<td rowspan="1" colspan="1">0.0308 (10)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0051 (7)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na4</td>
<td rowspan="1" colspan="1">0.0238 (10)</td>
<td rowspan="1" colspan="1">0.0710 (17)</td>
<td rowspan="1" colspan="1">0.0308 (10)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0051 (7)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.0330 (14)</td>
<td rowspan="1" colspan="1">0.0347 (16)</td>
<td rowspan="1" colspan="1">0.0204 (12)</td>
<td rowspan="1" colspan="1">0.0102 (13)</td>
<td rowspan="1" colspan="1">0.0046 (11)</td>
<td rowspan="1" colspan="1">0.0015 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.0410 (16)</td>
<td rowspan="1" colspan="1">0.0462 (18)</td>
<td rowspan="1" colspan="1">0.0242 (14)</td>
<td rowspan="1" colspan="1">0.0009 (14)</td>
<td rowspan="1" colspan="1">0.0139 (12)</td>
<td rowspan="1" colspan="1">0.0005 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.0328 (13)</td>
<td rowspan="1" colspan="1">0.0357 (15)</td>
<td rowspan="1" colspan="1">0.0189 (12)</td>
<td rowspan="1" colspan="1">−0.0025 (12)</td>
<td rowspan="1" colspan="1">0.0098 (10)</td>
<td rowspan="1" colspan="1">−0.0051 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.058 (2)</td>
<td rowspan="1" colspan="1">0.0285 (16)</td>
<td rowspan="1" colspan="1">0.0375 (16)</td>
<td rowspan="1" colspan="1">0.0091 (15)</td>
<td rowspan="1" colspan="1">0.0012 (15)</td>
<td rowspan="1" colspan="1">−0.0093 (14)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.0270 (14)</td>
<td rowspan="1" colspan="1">0.0289 (15)</td>
<td rowspan="1" colspan="1">0.0400 (16)</td>
<td rowspan="1" colspan="1">0.0025 (12)</td>
<td rowspan="1" colspan="1">0.0096 (12)</td>
<td rowspan="1" colspan="1">0.0084 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.0439 (18)</td>
<td rowspan="1" colspan="1">0.0396 (18)</td>
<td rowspan="1" colspan="1">0.0457 (18)</td>
<td rowspan="1" colspan="1">−0.0114 (15)</td>
<td rowspan="1" colspan="1">0.0145 (14)</td>
<td rowspan="1" colspan="1">0.0076 (15)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapgeomlong">
<title>Geometric parameters (Å, º)</title>
<table-wrap position="anchor" id="d1e1043">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="4">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Mo1—O4
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">1.762 (3)</td>
<td rowspan="1" colspan="1">Na2—O1
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">2.416 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1—O4</td>
<td rowspan="1" colspan="1">1.762 (3)</td>
<td rowspan="1" colspan="1">Na2—O5
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">2.461 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1—O3</td>
<td rowspan="1" colspan="1">1.768 (2)</td>
<td rowspan="1" colspan="1">Na2—O5
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.461 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">1.768 (2)</td>
<td rowspan="1" colspan="1">Na3—O5
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">2.530 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2—O5</td>
<td rowspan="1" colspan="1">1.744 (3)</td>
<td rowspan="1" colspan="1">Na3—O5
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.530 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2—O1</td>
<td rowspan="1" colspan="1">1.755 (3)</td>
<td rowspan="1" colspan="1">Na3—O4
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.554 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2—O6</td>
<td rowspan="1" colspan="1">1.764 (3)</td>
<td rowspan="1" colspan="1">Na3—O4
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">2.554 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mo2—O2</td>
<td rowspan="1" colspan="1">1.781 (3)</td>
<td rowspan="1" colspan="1">Na3—O5
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.677 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O4
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.159 (4)</td>
<td rowspan="1" colspan="1">Na3—O5
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">2.677 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O3</td>
<td rowspan="1" colspan="1">2.166 (3)</td>
<td rowspan="1" colspan="1">K4—O6</td>
<td rowspan="1" colspan="1">2.602 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O1
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.188 (3)</td>
<td rowspan="1" colspan="1">K4—O6
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.602 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O2
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.211 (3)</td>
<td rowspan="1" colspan="1">K4—O6
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.675 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O6</td>
<td rowspan="1" colspan="1">2.222 (3)</td>
<td rowspan="1" colspan="1">K4—O6
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">2.675 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.298 (3)</td>
<td rowspan="1" colspan="1">K4—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">3.064 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na2—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">2.392 (3)</td>
<td rowspan="1" colspan="1">K4—O3</td>
<td rowspan="1" colspan="1">3.064 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na2—O3</td>
<td rowspan="1" colspan="1">2.392 (3)</td>
<td rowspan="1" colspan="1">K4—O1</td>
<td rowspan="1" colspan="1">3.199 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na2—O1
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.416 (3)</td>
<td rowspan="1" colspan="1">K4—O1
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">3.199 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>i</sup>
—Mo1—O4</td>
<td rowspan="1" colspan="1">102.2 (2)</td>
<td rowspan="1" colspan="1">O3—Co1—O1
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">83.96 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>i</sup>
—Mo1—O3</td>
<td rowspan="1" colspan="1">109.06 (14)</td>
<td rowspan="1" colspan="1">O4
<sup>ii</sup>
—Co1—O2
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">90.15 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Mo1—O3</td>
<td rowspan="1" colspan="1">112.50 (13)</td>
<td rowspan="1" colspan="1">O3—Co1—O2
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">82.34 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>i</sup>
—Mo1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">112.50 (13)</td>
<td rowspan="1" colspan="1">O1
<sup>iii</sup>
—Co1—O2
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">165.35 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Mo1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">109.06 (14)</td>
<td rowspan="1" colspan="1">O4
<sup>ii</sup>
—Co1—O6</td>
<td rowspan="1" colspan="1">95.65 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—Mo1—O3
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">111.26 (18)</td>
<td rowspan="1" colspan="1">O3—Co1—O6</td>
<td rowspan="1" colspan="1">92.46 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Mo2—O1</td>
<td rowspan="1" colspan="1">111.51 (13)</td>
<td rowspan="1" colspan="1">O1
<sup>iii</sup>
—Co1—O6</td>
<td rowspan="1" colspan="1">87.03 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Mo2—O6</td>
<td rowspan="1" colspan="1">109.70 (15)</td>
<td rowspan="1" colspan="1">O2
<sup>iv</sup>
—Co1—O6</td>
<td rowspan="1" colspan="1">98.70 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1—Mo2—O6</td>
<td rowspan="1" colspan="1">107.00 (15)</td>
<td rowspan="1" colspan="1">O4
<sup>ii</sup>
—Co1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">79.83 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Mo2—O2</td>
<td rowspan="1" colspan="1">108.41 (14)</td>
<td rowspan="1" colspan="1">O3—Co1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">92.45 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1—Mo2—O2</td>
<td rowspan="1" colspan="1">111.48 (13)</td>
<td rowspan="1" colspan="1">O1
<sup>iii</sup>
—Co1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">90.38 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Mo2—O2</td>
<td rowspan="1" colspan="1">108.69 (15)</td>
<td rowspan="1" colspan="1">O2
<sup>iv</sup>
—Co1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">85.05 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>ii</sup>
—Co1—O3</td>
<td rowspan="1" colspan="1">169.69 (11)</td>
<td rowspan="1" colspan="1">O6—Co1—O2
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">174.18 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>ii</sup>
—Co1—O1
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">102.76 (12)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
<p>Symmetry codes: (i) −
<italic>x</italic>
+1,
<italic>y</italic>
, −
<italic>z</italic>
+1/2; (ii) −
<italic>x</italic>
+3/2, −
<italic>y</italic>
+1/2, −
<italic>z</italic>
+1; (iii)
<italic>x</italic>
, −
<italic>y</italic>
+1,
<italic>z</italic>
+1/2; (iv)
<italic>x</italic>
, −
<italic>y</italic>
+1,
<italic>z</italic>
−1/2; (v) −
<italic>x</italic>
+3/2,
<italic>y</italic>
−1/2, −
<italic>z</italic>
+3/2; (vi) −
<italic>x</italic>
+1,
<italic>y</italic>
, −
<italic>z</italic>
+3/2; (vii) −
<italic>x</italic>
+1, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (viii)
<italic>x</italic>
−1/2,
<italic>y</italic>
−1/2,
<italic>z</italic>
; (ix)
<italic>x</italic>
−1/2, −
<italic>y</italic>
+1/2,
<italic>z</italic>
−1/2; (x)
<italic>x</italic>
, −
<italic>y</italic>
,
<italic>z</italic>
+1/2.</p>
</sec>
</app>
</app-group>
<ref-list>
<title>References</title>
<ref id="bb1">
<mixed-citation publication-type="other">Ayed, B., Krifa, M. & Haddad, A. (2002).
<italic>Acta Cryst.</italic>
C
<bold>58</bold>
, i98–i100.</mixed-citation>
</ref>
<ref id="bb2">
<mixed-citation publication-type="other">Baies, R., Pérez, O., Caignaert, V., Pralong, V. & Raveau, B. (2006).
<italic>J. Mater. Chem.</italic>
<bold>16</bold>
, 2434–2438.</mixed-citation>
</ref>
<ref id="bb3">
<mixed-citation publication-type="other">Brandenburg, K. & Putz, H. (1999).
<italic>DIAMOND</italic>
. Crystal Impact GbR, Bonn, Allemagne.</mixed-citation>
</ref>
<ref id="bb4">
<mixed-citation publication-type="other">Brown, I. D. & Altermatt, D. (1985).
<italic>Acta Cryst.</italic>
B
<bold>41</bold>
, 244–247.</mixed-citation>
</ref>
<ref id="bb5">
<mixed-citation publication-type="other">Duisenberg, A. J. M. (1992).
<italic>J. Appl. Cryst.</italic>
<bold>25</bold>
, 92–96.</mixed-citation>
</ref>
<ref id="bb6">
<mixed-citation publication-type="other">Engel, J. M., Ahsbahs, H., Fuess, H. & Ehrenberg, H. (2009).
<italic>Acta Cryst.</italic>
B
<bold>65</bold>
, 29–35.</mixed-citation>
</ref>
<ref id="bb7">
<mixed-citation publication-type="other">Ennajeh, I., Zid, M. F. & Driss, A. (2013).
<italic>Acta Cryst.</italic>
E
<bold>69</bold>
, i54–i55.</mixed-citation>
</ref>
<ref id="bb8">
<mixed-citation publication-type="other">Farrugia, L. J. (2012).
<italic>J. Appl. Cryst.</italic>
<bold>45</bold>
, 849–854.</mixed-citation>
</ref>
<ref id="bb9">
<mixed-citation publication-type="other">Haj Abdallah, A. & Haddad, A. (2008).
<italic>Acta Cryst.</italic>
E
<bold>64</bold>
, i36.</mixed-citation>
</ref>
<ref id="bb10">
<mixed-citation publication-type="other">Harms, K. & Wocadlo, S. (1995).
<italic>XCAD4</italic>
. University of Marburg, Allemagne.</mixed-citation>
</ref>
<ref id="bb11">
<mixed-citation publication-type="other">Hatert, F. (2008).
<italic>J. Solid State Chem.</italic>
<bold>181</bold>
, 1258–1272.</mixed-citation>
</ref>
<ref id="bb12">
<mixed-citation publication-type="other">Judeinstein, P., Titman, J., Stamm, M. & Schmidt, H. (1994).
<italic>Chem. Mater.</italic>
<bold>6</bold>
, 127–134.</mixed-citation>
</ref>
<ref id="bb13">
<mixed-citation publication-type="other">Lii, K.-H. & Ye, J. (1997).
<italic>J. Solid State Chem.</italic>
<bold>131</bold>
, 131–137.</mixed-citation>
</ref>
<ref id="bb14">
<mixed-citation publication-type="other">Macíček, J. & Yordanov, A. (1992).
<italic>J. Appl. Cryst.</italic>
<bold>25</bold>
, 73–80.</mixed-citation>
</ref>
<ref id="bb15">
<mixed-citation publication-type="other">Marzouki, R., Frigui, W., Guesmi, A., Zid, M. F. & Driss, A. (2013).
<italic>Acta Cryst.</italic>
E
<bold>69</bold>
, i65–i66.</mixed-citation>
</ref>
<ref id="bb16">
<mixed-citation publication-type="other">Moore, P. B. (1971).
<italic>Am. Mineral.</italic>
<bold>56</bold>
, 1955–1975.</mixed-citation>
</ref>
<ref id="bb17">
<mixed-citation publication-type="other">Muessig, E., Bramnik, K. G. & Ehrenberg, H. (2003).
<italic>Acta Cryst.</italic>
B
<bold>59</bold>
, 611–616.</mixed-citation>
</ref>
<ref id="bb18">
<mixed-citation publication-type="other">North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).
<italic>Acta Cryst.</italic>
A
<bold>24</bold>
, 351–359.</mixed-citation>
</ref>
<ref id="bb19">
<mixed-citation publication-type="other">Sanz, F., Parada, C., Rojo, J. M., Ruiz-Valero, C. & Saez-Puche, R. (1999).
<italic>J. Solid State Chem.</italic>
<bold>145</bold>
, 604–611.</mixed-citation>
</ref>
<ref id="bb20">
<mixed-citation publication-type="other">Sheldrick, G. M. (2008).
<italic>Acta Cryst.</italic>
A
<bold>64</bold>
, 112–122.</mixed-citation>
</ref>
<ref id="bb21">
<mixed-citation publication-type="other">Souilem, A., Zid, M. F. & Driss, A. (2014).
<italic>Acta Cryst.</italic>
E
<bold>70</bold>
, i9–i10.</mixed-citation>
</ref>
<ref id="bb22">
<mixed-citation publication-type="other">Yakubovich, O. V., Massa, W., Gavrilenko, P. G. & Dimitrova, O. V. (2005).
<italic>Eur. J. Mineral.</italic>
<bold>17</bold>
, 741–748.</mixed-citation>
</ref>
<ref id="bb23">
<mixed-citation publication-type="other">Zid, M. F., Driss, A. & Jouini, T. (2005).
<italic>Acta Cryst.</italic>
E
<bold>61</bold>
, i46–i48.</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>Unité asymétrique dans K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
. Les éllipsoïdes ont été définis avec 50% de probabilité. [Code de symétrie: (i) −
<italic>x</italic>
 + 1,
<italic>y</italic>
, −
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-71-00004-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (ii)
<italic>x</italic>
, −
<italic>y</italic>
 + 1,
<italic>z</italic>
 − 
<inline-formula>
<inline-graphic xlink:href="e-71-00004-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (iii) −
<italic>x</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-71-00004-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
,
<italic>y</italic>
 − 
<inline-formula>
<inline-graphic xlink:href="e-71-00004-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-71-00004-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (iv) −
<italic>x</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-71-00004-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>y</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-71-00004-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
, −
<italic>z</italic>
 + 1; (v)
<italic>x</italic>
, −
<italic>y</italic>
 + 1,
<italic>z</italic>
 + 
<inline-formula>
<inline-graphic xlink:href="e-71-00004-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
.</p>
</caption>
<graphic xlink:href="e-71-00004-fig1"></graphic>
</fig>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>Projection d’une couche disposée parallèlement au plan (100).</p>
</caption>
<graphic xlink:href="e-71-00004-fig2"></graphic>
</fig>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>Projection de la structure de K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
selon
<italic>c</italic>
.</p>
</caption>
<graphic xlink:href="e-71-00004-fig3"></graphic>
</fig>
<fig id="fig4" position="float">
<label>Figure 4</label>
<caption>
<p>Représentation des environnements des tétraèdres: (
<italic>a</italic>
) Mo1O
<sub>4</sub>
, (
<italic>b</italic>
) Mo2O
<sub>4</sub>
.</p>
</caption>
<graphic xlink:href="e-71-00004-fig4"></graphic>
</fig>
<fig id="fig5" position="float">
<label>Figure 5</label>
<caption>
<p>Projection de la structure de K
<sub>2</sub>
Co
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
, selon
<italic>c</italic>
.</p>
</caption>
<graphic xlink:href="e-71-00004-fig5"></graphic>
</fig>
<fig id="fig6" position="float">
<label>Figure 6</label>
<caption>
<p>Projection de la structure de la variété
<italic>β</italic>
-NaFe
<sub>2</sub>
(MoO
<sub>4</sub>
)
<sub>3</sub>
, selon
<italic>b</italic>
.</p>
</caption>
<graphic xlink:href="e-71-00004-fig6"></graphic>
</fig>
<fig id="fig7" position="float">
<label>Figure 7</label>
<caption>
<p>Analyse MET d’un cristal choisi de K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
.</p>
</caption>
<graphic xlink:href="e-71-00004-fig7"></graphic>
</fig>
<table-wrap id="table1" position="float">
<label>Table 1</label>
<caption>
<title>Dtails exprimentaux</title>
</caption>
<table frame="hsides" rules="groups">
<tbody valign="top">
<tr>
<td style="" rowspan="1" colspan="2" align="left" valign="top">Donnes crystallines</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Formule chimique</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">K
<sub>0.4</sub>
Na
<sub>3.6</sub>
Co(MoO
<sub>4</sub>
)
<sub>3</sub>
</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">
<italic>M</italic>
<sub>r</sub>
</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">637,15</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Systme cristallin, groupe d’espace</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Monoclinique,
<italic>C</italic>
2/
<italic>c</italic>
</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Temprature (K)</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">298</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">
<italic>a</italic>
,
<italic>b</italic>
,
<italic>c</italic>
()</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">12,8054(8), 13,5328(9), 7,1888(6)</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top"> ()</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">112,239(8)</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">
<italic>V</italic>
(
<sup>3</sup>
)</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">1153,10(14)</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">
<italic>Z</italic>
</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">4</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Type de rayonnement</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Mo
<italic>K</italic>
</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top"> (mm
<sup>1</sup>
)</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">4.94</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Taille des cristaux (mm)</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">0,22 0,16 0,12</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="2" align="left" valign="top"> </td>
</tr>
<tr>
<td style="" rowspan="1" colspan="2" align="left" valign="top">Collection de donnes</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Diffractomtre</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">EnrafNonius CAD-4</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Correction d’absorption</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top"> scan (North
<italic>et al.</italic>
, 1968
<xref ref-type="bibr" rid="bb18"></xref>
)</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">
<italic>T</italic>
<sub>min</sub>
,
<italic>T</italic>
<sub>max</sub>
</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">0,557, 0,607</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Nombre de rflexions mesures, indpendantes et observes [
<italic>I</italic>
> 2(
<italic>I</italic>
)]</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">2813, 1252, 1092</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">
<italic>R</italic>
<sub>int</sub>
</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">0,029</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">(sin /)
<sub>max</sub>
(
<sup>1</sup>
)</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">0,638</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="2" align="left" valign="top"> </td>
</tr>
<tr>
<td style="" rowspan="1" colspan="2" align="left" valign="top">Affinement</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2(
<italic>F</italic>
<sup>2</sup>
)],
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
),
<italic>S</italic>
</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">0,022, 0,056, 1,05</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Nombre de rflexions</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">1252</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Nombre de paramtres</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">99</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">Nombre de restraints</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">1</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">
<sub>max</sub>
,
<sub>min</sub>
(e
<sup>3</sup>
)</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">0,47, 0,43</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Programmes informatiques:
<italic>CAD-4 EXPRESS</italic>
(Duisenberg, 1992
<xref ref-type="bibr" rid="bb5"></xref>
; Macek Yordanov, 1992
<xref ref-type="bibr" rid="bb14"></xref>
),
<italic>XCAD4</italic>
(Harms Wocadlo, 1995
<xref ref-type="bibr" rid="bb10"></xref>
),
<italic>SHELXS97</italic>
et
<italic>SHELXL97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb20"></xref>
),
<italic>DIAMOND</italic>
(Brandenburg Putz, 1999
<xref ref-type="bibr" rid="bb3"></xref>
) et
<italic>WinGX</italic>
(Farrugia, 2012
<xref ref-type="bibr" rid="bb8"></xref>
).</p>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000047  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000047  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024