Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural, magnetic, and electronic properties of high moment FeCo nanoparticles

Identifieur interne : 000289 ( PascalFrancis/Curation ); précédent : 000288; suivant : 000290

Structural, magnetic, and electronic properties of high moment FeCo nanoparticles

Auteurs : K. Zehani [France] ; R. Bez [France, Tunisie] ; A. Boutahar [Maroc] ; E. K. Hlil [France] ; H. Lassri [Maroc] ; J. Moscovici [France] ; N. Mliki [Tunisie] ; L. Bessais [France]

Source :

RBID : Pascal:14-0168622

Descripteurs français

English descriptors

Abstract

Soft-magnetic Fe55Co45 alloy nanoparticles have been successfully synthesized by the polyol reduction process followed by annealing under argon. The diethylene glycol (DEG) was used as solvent and reducing agent simultaneously in this process. The synthesized samples of nanoparticles were annealed at 873 K for different times. The alloy formation processes, the evolution of the microstructure, the magnetic properties, and the DOS calculation have been investigated before and after samples annealing. The X-ray diffraction of the synthesized product before annealing shows that a cobalt ferrite is spinel structure of crystallite size of about 10 nm. X-ray diffraction analysis of the samples annealed at 873 K for different times also shows that of the FeCo alloy has been obtained by reducing the cobalt ferrite. It has been confirmed the formation of a body-centered-cubic (bcc) single phase structure where the wt.% increases with annealing times leading to a pure phase after annealing during 4 h. These results are confirmed by transmission electron microscopy study. The saturation magnetization of the Fe-Co alloys increases with annealing time, indicating an increasing homogeneity in composition and the single bcc FeCo phase formation. The highest saturation magnetization of 235 emu g-1with a low coercivity of 76 Oe was obtained for the Fe55Co45nanoparticles annealed during 4 h. The local random anisotropy constant KL has been extracted. This work presents also detailed information about total, and atom projected density of state functions, as well as the magnetic moment for different atoms in Fe55Co45 alloys and cobalt ferrite.
pA  
A01 01  1    @0 0925-8388
A03   1    @0 J. alloys compd.
A05       @2 591
A08 01  1  ENG  @1 Structural, magnetic, and electronic properties of high moment FeCo nanoparticles
A11 01  1    @1 ZEHANI (K.)
A11 02  1    @1 BEZ (R.)
A11 03  1    @1 BOUTAHAR (A.)
A11 04  1    @1 HLIL (E. K.)
A11 05  1    @1 LASSRI (H.)
A11 06  1    @1 MOSCOVICI (J.)
A11 07  1    @1 MLIKI (N.)
A11 08  1    @1 BESSAIS (L.)
A14 01      @1 CMTR, ICMPE, UMR7182, CNRS - Université Paris Est Créteil, 2-8 rue Henri Dunant @2 94320 Thiais @3 FRA @Z 1 aut. @Z 2 aut. @Z 6 aut. @Z 8 aut.
A14 02      @1 LPMMAT, Université Hassan II, Faculté des Sciences Ain Chock, B.P.5366 Maârif, Route d'El Jadida, km-8 @2 Casablanca @3 MAR @Z 3 aut. @Z 5 aut.
A14 03      @1 LMOP, Faculté des Sciences de Tunis, Université de Tunis El Manar @2 2092 Tunis @3 TUN @Z 2 aut. @Z 7 aut.
A14 04      @1 Institut Néel, CNRS et Université Joseph Fourier, BP 166 @2 38042 Grenoble @3 FRA @Z 4 aut.
A20       @1 58-64
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 1151 @5 354000505795240090
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 24 ref.
A47 01  1    @0 14-0168622
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of alloys and compounds
A66 01      @0 GBR
C01 01    ENG  @0 Soft-magnetic Fe55Co45 alloy nanoparticles have been successfully synthesized by the polyol reduction process followed by annealing under argon. The diethylene glycol (DEG) was used as solvent and reducing agent simultaneously in this process. The synthesized samples of nanoparticles were annealed at 873 K for different times. The alloy formation processes, the evolution of the microstructure, the magnetic properties, and the DOS calculation have been investigated before and after samples annealing. The X-ray diffraction of the synthesized product before annealing shows that a cobalt ferrite is spinel structure of crystallite size of about 10 nm. X-ray diffraction analysis of the samples annealed at 873 K for different times also shows that of the FeCo alloy has been obtained by reducing the cobalt ferrite. It has been confirmed the formation of a body-centered-cubic (bcc) single phase structure where the wt.% increases with annealing times leading to a pure phase after annealing during 4 h. These results are confirmed by transmission electron microscopy study. The saturation magnetization of the Fe-Co alloys increases with annealing time, indicating an increasing homogeneity in composition and the single bcc FeCo phase formation. The highest saturation magnetization of 235 emu g-1with a low coercivity of 76 Oe was obtained for the Fe55Co45nanoparticles annealed during 4 h. The local random anisotropy constant KL has been extracted. This work presents also detailed information about total, and atom projected density of state functions, as well as the magnetic moment for different atoms in Fe55Co45 alloys and cobalt ferrite.
C02 01  3    @0 001B70C22
C02 02  3    @0 001B80A16
C02 03  3    @0 001B80A20
C03 01  3  FRE  @0 Moment magnétique @5 02
C03 01  3  ENG  @0 Magnetic moments @5 02
C03 02  3  FRE  @0 Densité état électron @5 03
C03 02  3  ENG  @0 Electronic density of states @5 03
C03 03  3  FRE  @0 Recuit @5 04
C03 03  3  ENG  @0 Annealing @5 04
C03 04  3  FRE  @0 Microstructure @5 05
C03 04  3  ENG  @0 Microstructure @5 05
C03 05  X  FRE  @0 Synthèse nanomatériau @5 06
C03 05  X  ENG  @0 Nanomaterial synthesis @5 06
C03 05  X  SPA  @0 Síntesis nanomaterial @5 06
C03 06  X  FRE  @0 Synthèse chimique @5 07
C03 06  X  ENG  @0 Chemical synthesis @5 07
C03 06  X  SPA  @0 Síntesis química @5 07
C03 07  X  FRE  @0 Aimantation saturation @5 09
C03 07  X  ENG  @0 Saturation magnetization @5 09
C03 07  X  SPA  @0 Imanación saturación @5 09
C03 08  3  FRE  @0 Force coercitive @5 10
C03 08  3  ENG  @0 Coercive force @5 10
C03 09  3  FRE  @0 Nanoparticule @5 15
C03 09  3  ENG  @0 Nanoparticles @5 15
C03 10  3  FRE  @0 Matériau magnétique doux @5 16
C03 10  3  ENG  @0 Soft magnetic materials @5 16
C03 11  3  FRE  @0 Fer alliage @5 17
C03 11  3  ENG  @0 Iron alloys @5 17
C03 12  3  FRE  @0 Cobalt alliage @5 18
C03 12  3  ENG  @0 Cobalt alloys @5 18
C03 13  3  FRE  @0 Particule magnétique @5 19
C03 13  3  ENG  @0 Magnetic particles @5 19
C03 14  X  FRE  @0 Nanomatériau magnétique @5 20
C03 14  X  ENG  @0 Magnetic nanomaterial @5 20
C03 14  X  SPA  @0 Nanomaterial magnético @5 20
C03 15  3  FRE  @0 Métal transition alliage @5 48
C03 15  3  ENG  @0 Transition element alloys @5 48
N21       @1 209

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0168622

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural, magnetic, and electronic properties of high moment FeCo nanoparticles</title>
<author>
<name sortKey="Zehani, K" sort="Zehani, K" uniqKey="Zehani K" first="K." last="Zehani">K. Zehani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CMTR, ICMPE, UMR7182, CNRS - Université Paris Est Créteil, 2-8 rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Bez, R" sort="Bez, R" uniqKey="Bez R" first="R." last="Bez">R. Bez</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CMTR, ICMPE, UMR7182, CNRS - Université Paris Est Créteil, 2-8 rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>LMOP, Faculté des Sciences de Tunis, Université de Tunis El Manar</s1>
<s2>2092 Tunis</s2>
<s3>TUN</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Boutahar, A" sort="Boutahar, A" uniqKey="Boutahar A" first="A." last="Boutahar">A. Boutahar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LPMMAT, Université Hassan II, Faculté des Sciences Ain Chock, B.P.5366 Maârif, Route d'El Jadida, km-8</s1>
<s2>Casablanca</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Hlil, E K" sort="Hlil, E K" uniqKey="Hlil E" first="E. K." last="Hlil">E. K. Hlil</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institut Néel, CNRS et Université Joseph Fourier, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Lassri, H" sort="Lassri, H" uniqKey="Lassri H" first="H." last="Lassri">H. Lassri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LPMMAT, Université Hassan II, Faculté des Sciences Ain Chock, B.P.5366 Maârif, Route d'El Jadida, km-8</s1>
<s2>Casablanca</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Moscovici, J" sort="Moscovici, J" uniqKey="Moscovici J" first="J." last="Moscovici">J. Moscovici</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CMTR, ICMPE, UMR7182, CNRS - Université Paris Est Créteil, 2-8 rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Mliki, N" sort="Mliki, N" uniqKey="Mliki N" first="N." last="Mliki">N. Mliki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>LMOP, Faculté des Sciences de Tunis, Université de Tunis El Manar</s1>
<s2>2092 Tunis</s2>
<s3>TUN</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Bessais, L" sort="Bessais, L" uniqKey="Bessais L" first="L." last="Bessais">L. Bessais</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CMTR, ICMPE, UMR7182, CNRS - Université Paris Est Créteil, 2-8 rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0168622</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0168622 INIST</idno>
<idno type="RBID">Pascal:14-0168622</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000006</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000289</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Structural, magnetic, and electronic properties of high moment FeCo nanoparticles</title>
<author>
<name sortKey="Zehani, K" sort="Zehani, K" uniqKey="Zehani K" first="K." last="Zehani">K. Zehani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CMTR, ICMPE, UMR7182, CNRS - Université Paris Est Créteil, 2-8 rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Bez, R" sort="Bez, R" uniqKey="Bez R" first="R." last="Bez">R. Bez</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CMTR, ICMPE, UMR7182, CNRS - Université Paris Est Créteil, 2-8 rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>LMOP, Faculté des Sciences de Tunis, Université de Tunis El Manar</s1>
<s2>2092 Tunis</s2>
<s3>TUN</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Boutahar, A" sort="Boutahar, A" uniqKey="Boutahar A" first="A." last="Boutahar">A. Boutahar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LPMMAT, Université Hassan II, Faculté des Sciences Ain Chock, B.P.5366 Maârif, Route d'El Jadida, km-8</s1>
<s2>Casablanca</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Hlil, E K" sort="Hlil, E K" uniqKey="Hlil E" first="E. K." last="Hlil">E. K. Hlil</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institut Néel, CNRS et Université Joseph Fourier, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Lassri, H" sort="Lassri, H" uniqKey="Lassri H" first="H." last="Lassri">H. Lassri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>LPMMAT, Université Hassan II, Faculté des Sciences Ain Chock, B.P.5366 Maârif, Route d'El Jadida, km-8</s1>
<s2>Casablanca</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Moscovici, J" sort="Moscovici, J" uniqKey="Moscovici J" first="J." last="Moscovici">J. Moscovici</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CMTR, ICMPE, UMR7182, CNRS - Université Paris Est Créteil, 2-8 rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Mliki, N" sort="Mliki, N" uniqKey="Mliki N" first="N." last="Mliki">N. Mliki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>LMOP, Faculté des Sciences de Tunis, Université de Tunis El Manar</s1>
<s2>2092 Tunis</s2>
<s3>TUN</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
</affiliation>
</author>
<author>
<name sortKey="Bessais, L" sort="Bessais, L" uniqKey="Bessais L" first="L." last="Bessais">L. Bessais</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CMTR, ICMPE, UMR7182, CNRS - Université Paris Est Créteil, 2-8 rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Chemical synthesis</term>
<term>Cobalt alloys</term>
<term>Coercive force</term>
<term>Electronic density of states</term>
<term>Iron alloys</term>
<term>Magnetic moments</term>
<term>Magnetic nanomaterial</term>
<term>Magnetic particles</term>
<term>Microstructure</term>
<term>Nanomaterial synthesis</term>
<term>Nanoparticles</term>
<term>Saturation magnetization</term>
<term>Soft magnetic materials</term>
<term>Transition element alloys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Moment magnétique</term>
<term>Densité état électron</term>
<term>Recuit</term>
<term>Microstructure</term>
<term>Synthèse nanomatériau</term>
<term>Synthèse chimique</term>
<term>Aimantation saturation</term>
<term>Force coercitive</term>
<term>Nanoparticule</term>
<term>Matériau magnétique doux</term>
<term>Fer alliage</term>
<term>Cobalt alliage</term>
<term>Particule magnétique</term>
<term>Nanomatériau magnétique</term>
<term>Métal transition alliage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soft-magnetic Fe
<sub>55</sub>
Co
<sub>45</sub>
alloy nanoparticles have been successfully synthesized by the polyol reduction process followed by annealing under argon. The diethylene glycol (DEG) was used as solvent and reducing agent simultaneously in this process. The synthesized samples of nanoparticles were annealed at 873 K for different times. The alloy formation processes, the evolution of the microstructure, the magnetic properties, and the DOS calculation have been investigated before and after samples annealing. The X-ray diffraction of the synthesized product before annealing shows that a cobalt ferrite is spinel structure of crystallite size of about 10 nm. X-ray diffraction analysis of the samples annealed at 873 K for different times also shows that of the FeCo alloy has been obtained by reducing the cobalt ferrite. It has been confirmed the formation of a body-centered-cubic (bcc) single phase structure where the wt.% increases with annealing times leading to a pure phase after annealing during 4 h. These results are confirmed by transmission electron microscopy study. The saturation magnetization of the Fe-Co alloys increases with annealing time, indicating an increasing homogeneity in composition and the single bcc FeCo phase formation. The highest saturation magnetization of 235 emu g
<sup>-1</sup>
with a low coercivity of 76 Oe was obtained for the Fe
<sub>55</sub>
Co
<sub>45</sub>
nanoparticles annealed during 4 h. The local random anisotropy constant K
<sub>L</sub>
has been extracted. This work presents also detailed information about total, and atom projected density of state functions, as well as the magnetic moment for different atoms in Fe
<sub>55</sub>
Co
<sub>45</sub>
alloys and cobalt ferrite.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>591</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural, magnetic, and electronic properties of high moment FeCo nanoparticles</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZEHANI (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BEZ (R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BOUTAHAR (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HLIL (E. K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LASSRI (H.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MOSCOVICI (J.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MLIKI (N.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BESSAIS (L.)</s1>
</fA11>
<fA14 i1="01">
<s1>CMTR, ICMPE, UMR7182, CNRS - Université Paris Est Créteil, 2-8 rue Henri Dunant</s1>
<s2>94320 Thiais</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LPMMAT, Université Hassan II, Faculté des Sciences Ain Chock, B.P.5366 Maârif, Route d'El Jadida, km-8</s1>
<s2>Casablanca</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>LMOP, Faculté des Sciences de Tunis, Université de Tunis El Manar</s1>
<s2>2092 Tunis</s2>
<s3>TUN</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institut Néel, CNRS et Université Joseph Fourier, BP 166</s1>
<s2>38042 Grenoble</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>58-64</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000505795240090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0168622</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Soft-magnetic Fe
<sub>55</sub>
Co
<sub>45</sub>
alloy nanoparticles have been successfully synthesized by the polyol reduction process followed by annealing under argon. The diethylene glycol (DEG) was used as solvent and reducing agent simultaneously in this process. The synthesized samples of nanoparticles were annealed at 873 K for different times. The alloy formation processes, the evolution of the microstructure, the magnetic properties, and the DOS calculation have been investigated before and after samples annealing. The X-ray diffraction of the synthesized product before annealing shows that a cobalt ferrite is spinel structure of crystallite size of about 10 nm. X-ray diffraction analysis of the samples annealed at 873 K for different times also shows that of the FeCo alloy has been obtained by reducing the cobalt ferrite. It has been confirmed the formation of a body-centered-cubic (bcc) single phase structure where the wt.% increases with annealing times leading to a pure phase after annealing during 4 h. These results are confirmed by transmission electron microscopy study. The saturation magnetization of the Fe-Co alloys increases with annealing time, indicating an increasing homogeneity in composition and the single bcc FeCo phase formation. The highest saturation magnetization of 235 emu g
<sup>-1</sup>
with a low coercivity of 76 Oe was obtained for the Fe
<sub>55</sub>
Co
<sub>45</sub>
nanoparticles annealed during 4 h. The local random anisotropy constant K
<sub>L</sub>
has been extracted. This work presents also detailed information about total, and atom projected density of state functions, as well as the magnetic moment for different atoms in Fe
<sub>55</sub>
Co
<sub>45</sub>
alloys and cobalt ferrite.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C22</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A20</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Moment magnétique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Magnetic moments</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Densité état électron</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Electronic density of states</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Synthèse chimique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Chemical synthesis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Síntesis química</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Aimantation saturation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Saturation magnetization</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Imanación saturación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Force coercitive</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Coercive force</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Matériau magnétique doux</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Soft magnetic materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Fer alliage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Iron alloys</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Cobalt alliage</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Cobalt alloys</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Particule magnétique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Magnetic particles</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Nanomatériau magnétique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Magnetic nanomaterial</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Nanomaterial magnético</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Métal transition alliage</s0>
<s5>48</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Transition element alloys</s0>
<s5>48</s5>
</fC03>
<fN21>
<s1>209</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000289 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000289 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:14-0168622
   |texte=   Structural, magnetic, and electronic properties of high moment FeCo nanoparticles
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024