Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Positive temperature coefficient and high Seebeck coefficient in ZnO-P2O5/Co composites

Identifieur interne : 000281 ( PascalFrancis/Curation ); précédent : 000280; suivant : 000282

Positive temperature coefficient and high Seebeck coefficient in ZnO-P2O5/Co composites

Auteurs : O. Oabi [Maroc] ; A. Maaroufi [Maroc] ; B. Lucas [France] ; S. Degot [France] ; A. El Amrani [Maroc]

Source :

RBID : Pascal:14-0105766

Descripteurs français

English descriptors

Abstract

This article reports a study of electrical properties of new Zinc Phosphate glass/Cobalt composites (45 mol.% ZnO-55 mol.%P2O5) (ZP/Co). The measurements of electrical conductivity at room temperature as a function of cobalt's concentration showed a non-conducting to conducting phase transition at percolation threshold of 27 vol.%. The Seebeck coefficient obtained under the same conditions, accompanies a sign, with high positive and negative values below and above the percolation threshold respectively, depicting a p- to n-type conducting phase transition, confirming the conductivity measurements. Then, the measurements of electrical conductivity and Seebeck coefficient above the percolation threshold as a function of temperature showed an original conducting to insulating phase transition, called Positive Temperature Coefficient (PTC) at T = 420 K, associated to a high negative value of S ≤ - 8000 μV/K, with the highest power factor PF = σS2≃ 8 x 10-3 W m-1 K-2. The thermal measurements of volume expansion confirm this transition, indicating matrix dilation around this temperature. However, the thermal behavior of the electrical conductivity and Seebeck coefficient data obtained below the percolation threshold showed different mechanisms i.e.; Small Polaron Hopping (SPH) mechanism at high temperatures and Mott's Variable Range Hopping (VRH) at low temperatures.
pA  
A01 01  1    @0 0022-3093
A02 01      @0 JNCSBJ
A03   1    @0 J. non-cryst. solids
A05       @2 385
A08 01  1  ENG  @1 Positive temperature coefficient and high Seebeck coefficient in ZnO-P2O5/Co composites
A11 01  1    @1 OABI (O.)
A11 02  1    @1 MAAROUFI (A.)
A11 03  1    @1 LUCAS (B.)
A11 04  1    @1 DEGOT (S.)
A11 05  1    @1 EL AMRANI (A.)
A14 01      @1 University of Mohammed V Agdal, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences P.B. 1014 @2 Rabat- Agdal @3 MAR @Z 1 aut. @Z 2 aut.
A14 02      @1 XUM UMR 7252 - Université de Limoges/CNRS 123 avenue Albert Thomas @2 87060 Limoges @3 FRA @Z 3 aut.
A14 03      @1 SPCTS, CNRS UMR 6638, European Ceramic Center, 12, rue Atlantis @2 87068 Limoges @3 FRA @Z 4 aut.
A14 04      @1 LPSMS, FST Errachidia, University Moulay Ismail Meknès. B. P. 509 @2 Boutalamine, Errachidia @3 MAR @Z 5 aut.
A20       @1 89-94
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 14572 @5 354000501693830120
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 52 ref.
A47 01  1    @0 14-0105766
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of non-crystalline solids
A66 01      @0 GBR
C01 01    ENG  @0 This article reports a study of electrical properties of new Zinc Phosphate glass/Cobalt composites (45 mol.% ZnO-55 mol.%P2O5) (ZP/Co). The measurements of electrical conductivity at room temperature as a function of cobalt's concentration showed a non-conducting to conducting phase transition at percolation threshold of 27 vol.%. The Seebeck coefficient obtained under the same conditions, accompanies a sign, with high positive and negative values below and above the percolation threshold respectively, depicting a p- to n-type conducting phase transition, confirming the conductivity measurements. Then, the measurements of electrical conductivity and Seebeck coefficient above the percolation threshold as a function of temperature showed an original conducting to insulating phase transition, called Positive Temperature Coefficient (PTC) at T = 420 K, associated to a high negative value of S ≤ - 8000 μV/K, with the highest power factor PF = σS2≃ 8 x 10-3 W m-1 K-2. The thermal measurements of volume expansion confirm this transition, indicating matrix dilation around this temperature. However, the thermal behavior of the electrical conductivity and Seebeck coefficient data obtained below the percolation threshold showed different mechanisms i.e.; Small Polaron Hopping (SPH) mechanism at high temperatures and Mott's Variable Range Hopping (VRH) at low temperatures.
C02 01  3    @0 001B70A38
C02 02  3    @0 001B70B20E
C02 03  3    @0 001B80A05K
C02 04  3    @0 001B60E40D
C03 01  3  FRE  @0 Coefficient température @5 01
C03 01  3  ENG  @0 Temperature coefficient @5 01
C03 02  3  FRE  @0 Effet Seebeck @5 02
C03 02  3  ENG  @0 Seebeck effect @5 02
C03 03  3  FRE  @0 Propriété électrique @5 03
C03 03  3  ENG  @0 Electrical properties @5 03
C03 04  X  FRE  @0 Phosphate de zinc @5 04
C03 04  X  ENG  @0 Zinc phosphate @5 04
C03 04  X  SPA  @0 Zinc fosfato @5 04
C03 05  X  FRE  @0 Phosphate de cobalt @5 05
C03 05  X  ENG  @0 Cobalt phosphate @5 05
C03 05  X  SPA  @0 Cobalto fosfato @5 05
C03 06  X  FRE  @0 Mesure électrique @5 06
C03 06  X  ENG  @0 Electrical measurement @5 06
C03 06  X  SPA  @0 Medida eléctrica @5 06
C03 07  3  FRE  @0 Conductivité électrique @5 07
C03 07  3  ENG  @0 Electrical conductivity @5 07
C03 08  3  FRE  @0 Cobalt @2 NC @5 08
C03 08  3  ENG  @0 Cobalt @2 NC @5 08
C03 09  X  FRE  @0 Transition phase @5 09
C03 09  X  ENG  @0 Phase transitions @5 09
C03 09  X  SPA  @0 Transición fase @5 09
C03 10  3  FRE  @0 Percolation @5 10
C03 10  3  ENG  @0 Percolation @5 10
C03 11  X  FRE  @0 Système multiphase @5 11
C03 11  X  ENG  @0 Multiphase system @5 11
C03 11  X  SPA  @0 Sistema multifase @5 11
C03 12  3  FRE  @0 Mesure conductivité électrique @5 12
C03 12  3  ENG  @0 Electrical conductivity measurement @5 12
C03 13  3  FRE  @0 Dépendance température @5 13
C03 13  3  ENG  @0 Temperature dependence @5 13
C03 14  3  FRE  @0 Température transition @5 14
C03 14  3  ENG  @0 Transition temperature @5 14
C03 15  3  FRE  @0 Matériau composite @5 15
C03 15  3  ENG  @0 Composite materials @5 15
C03 16  3  FRE  @0 Verre @5 16
C03 16  3  ENG  @0 Glass @5 16
C03 17  X  FRE  @0 Expansion volume @5 29
C03 17  X  ENG  @0 Volume expansion @5 29
C03 17  X  SPA  @0 Expansión volumen @5 29
C03 18  3  FRE  @0 Propriété thermique @5 30
C03 18  3  ENG  @0 Thermal properties @5 30
C03 19  X  FRE  @0 Petit polaron @5 31
C03 19  X  ENG  @0 Small polaron @5 31
C03 19  X  SPA  @0 Pequeño polarón @5 31
C03 20  X  FRE  @0 Haute température @5 32
C03 20  X  ENG  @0 High temperature @5 32
C03 20  X  SPA  @0 Alta temperatura @5 32
C03 21  3  FRE  @0 Conduction saut @5 33
C03 21  3  ENG  @0 Hopping conduction @5 33
C03 22  3  FRE  @0 ZnO @4 INC @5 46
C03 23  3  FRE  @0 P2O5 @4 INC @5 47
C03 24  3  FRE  @0 8105K @4 INC @5 71
C03 25  3  FRE  @0 6540D @4 INC @5 72
C03 26  3  FRE  @0 7138 @4 INC @5 73
C03 27  3  FRE  @0 7220E @4 INC @5 74
N21       @1 146
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0105766

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Positive temperature coefficient and high Seebeck coefficient in ZnO-P
<sub>2</sub>
O
<sub>5/</sub>
Co composites</title>
<author>
<name sortKey="Oabi, O" sort="Oabi, O" uniqKey="Oabi O" first="O." last="Oabi">O. Oabi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Mohammed V Agdal, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences P.B. 1014</s1>
<s2>Rabat- Agdal</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Maaroufi, A" sort="Maaroufi, A" uniqKey="Maaroufi A" first="A." last="Maaroufi">A. Maaroufi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Mohammed V Agdal, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences P.B. 1014</s1>
<s2>Rabat- Agdal</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Lucas, B" sort="Lucas, B" uniqKey="Lucas B" first="B." last="Lucas">B. Lucas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>XUM UMR 7252 - Université de Limoges/CNRS 123 avenue Albert Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Degot, S" sort="Degot, S" uniqKey="Degot S" first="S." last="Degot">S. Degot</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>SPCTS, CNRS UMR 6638, European Ceramic Center, 12, rue Atlantis</s1>
<s2>87068 Limoges</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="El Amrani, A" sort="El Amrani, A" uniqKey="El Amrani A" first="A." last="El Amrani">A. El Amrani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>LPSMS, FST Errachidia, University Moulay Ismail Meknès. B. P. 509</s1>
<s2>Boutalamine, Errachidia</s2>
<s3>MAR</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0105766</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0105766 INIST</idno>
<idno type="RBID">Pascal:14-0105766</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000014</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000281</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Positive temperature coefficient and high Seebeck coefficient in ZnO-P
<sub>2</sub>
O
<sub>5/</sub>
Co composites</title>
<author>
<name sortKey="Oabi, O" sort="Oabi, O" uniqKey="Oabi O" first="O." last="Oabi">O. Oabi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Mohammed V Agdal, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences P.B. 1014</s1>
<s2>Rabat- Agdal</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Maaroufi, A" sort="Maaroufi, A" uniqKey="Maaroufi A" first="A." last="Maaroufi">A. Maaroufi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Mohammed V Agdal, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences P.B. 1014</s1>
<s2>Rabat- Agdal</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Lucas, B" sort="Lucas, B" uniqKey="Lucas B" first="B." last="Lucas">B. Lucas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>XUM UMR 7252 - Université de Limoges/CNRS 123 avenue Albert Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Degot, S" sort="Degot, S" uniqKey="Degot S" first="S." last="Degot">S. Degot</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>SPCTS, CNRS UMR 6638, European Ceramic Center, 12, rue Atlantis</s1>
<s2>87068 Limoges</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="El Amrani, A" sort="El Amrani, A" uniqKey="El Amrani A" first="A." last="El Amrani">A. El Amrani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>LPSMS, FST Errachidia, University Moulay Ismail Meknès. B. P. 509</s1>
<s2>Boutalamine, Errachidia</s2>
<s3>MAR</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of non-crystalline solids</title>
<title level="j" type="abbreviated">J. non-cryst. solids</title>
<idno type="ISSN">0022-3093</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of non-crystalline solids</title>
<title level="j" type="abbreviated">J. non-cryst. solids</title>
<idno type="ISSN">0022-3093</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cobalt</term>
<term>Cobalt phosphate</term>
<term>Composite materials</term>
<term>Electrical conductivity</term>
<term>Electrical conductivity measurement</term>
<term>Electrical measurement</term>
<term>Electrical properties</term>
<term>Glass</term>
<term>High temperature</term>
<term>Hopping conduction</term>
<term>Multiphase system</term>
<term>Percolation</term>
<term>Phase transitions</term>
<term>Seebeck effect</term>
<term>Small polaron</term>
<term>Temperature coefficient</term>
<term>Temperature dependence</term>
<term>Thermal properties</term>
<term>Transition temperature</term>
<term>Volume expansion</term>
<term>Zinc phosphate</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Coefficient température</term>
<term>Effet Seebeck</term>
<term>Propriété électrique</term>
<term>Phosphate de zinc</term>
<term>Phosphate de cobalt</term>
<term>Mesure électrique</term>
<term>Conductivité électrique</term>
<term>Cobalt</term>
<term>Transition phase</term>
<term>Percolation</term>
<term>Système multiphase</term>
<term>Mesure conductivité électrique</term>
<term>Dépendance température</term>
<term>Température transition</term>
<term>Matériau composite</term>
<term>Verre</term>
<term>Expansion volume</term>
<term>Propriété thermique</term>
<term>Petit polaron</term>
<term>Haute température</term>
<term>Conduction saut</term>
<term>ZnO</term>
<term>P2O5</term>
<term>8105K</term>
<term>6540D</term>
<term>7138</term>
<term>7220E</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Cobalt</term>
<term>Matériau composite</term>
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This article reports a study of electrical properties of new Zinc Phosphate glass/Cobalt composites (45 mol.% ZnO-55 mol.%P
<sub>2</sub>
O
<sub>5</sub>
) (ZP/Co). The measurements of electrical conductivity at room temperature as a function of cobalt's concentration showed a non-conducting to conducting phase transition at percolation threshold of 27 vol.%. The Seebeck coefficient obtained under the same conditions, accompanies a sign, with high positive and negative values below and above the percolation threshold respectively, depicting a p- to n-type conducting phase transition, confirming the conductivity measurements. Then, the measurements of electrical conductivity and Seebeck coefficient above the percolation threshold as a function of temperature showed an original conducting to insulating phase transition, called Positive Temperature Coefficient (PTC) at T = 420 K, associated to a high negative value of S ≤ - 8000 μV/K, with the highest power factor PF = σS
<sup>2</sup>
≃ 8 x 10
<sup>-</sup>
3 W m
<sup>-</sup>
1 K
<sup>-</sup>
2. The thermal measurements of volume expansion confirm this transition, indicating matrix dilation around this temperature. However, the thermal behavior of the electrical conductivity and Seebeck coefficient data obtained below the percolation threshold showed different mechanisms i.e.; Small Polaron Hopping (SPH) mechanism at high temperatures and Mott's Variable Range Hopping (VRH) at low temperatures.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3093</s0>
</fA01>
<fA02 i1="01">
<s0>JNCSBJ</s0>
</fA02>
<fA03 i2="1">
<s0>J. non-cryst. solids</s0>
</fA03>
<fA05>
<s2>385</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Positive temperature coefficient and high Seebeck coefficient in ZnO-P
<sub>2</sub>
O
<sub>5/</sub>
Co composites</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OABI (O.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MAAROUFI (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LUCAS (B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DEGOT (S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>EL AMRANI (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Mohammed V Agdal, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences P.B. 1014</s1>
<s2>Rabat- Agdal</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>XUM UMR 7252 - Université de Limoges/CNRS 123 avenue Albert Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>SPCTS, CNRS UMR 6638, European Ceramic Center, 12, rue Atlantis</s1>
<s2>87068 Limoges</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>LPSMS, FST Errachidia, University Moulay Ismail Meknès. B. P. 509</s1>
<s2>Boutalamine, Errachidia</s2>
<s3>MAR</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>89-94</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14572</s2>
<s5>354000501693830120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>52 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0105766</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of non-crystalline solids</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This article reports a study of electrical properties of new Zinc Phosphate glass/Cobalt composites (45 mol.% ZnO-55 mol.%P
<sub>2</sub>
O
<sub>5</sub>
) (ZP/Co). The measurements of electrical conductivity at room temperature as a function of cobalt's concentration showed a non-conducting to conducting phase transition at percolation threshold of 27 vol.%. The Seebeck coefficient obtained under the same conditions, accompanies a sign, with high positive and negative values below and above the percolation threshold respectively, depicting a p- to n-type conducting phase transition, confirming the conductivity measurements. Then, the measurements of electrical conductivity and Seebeck coefficient above the percolation threshold as a function of temperature showed an original conducting to insulating phase transition, called Positive Temperature Coefficient (PTC) at T = 420 K, associated to a high negative value of S ≤ - 8000 μV/K, with the highest power factor PF = σS
<sup>2</sup>
≃ 8 x 10
<sup>-</sup>
3 W m
<sup>-</sup>
1 K
<sup>-</sup>
2. The thermal measurements of volume expansion confirm this transition, indicating matrix dilation around this temperature. However, the thermal behavior of the electrical conductivity and Seebeck coefficient data obtained below the percolation threshold showed different mechanisms i.e.; Small Polaron Hopping (SPH) mechanism at high temperatures and Mott's Variable Range Hopping (VRH) at low temperatures.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A38</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70B20E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A05K</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60E40D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Coefficient température</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Temperature coefficient</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Effet Seebeck</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Seebeck effect</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Phosphate de zinc</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Zinc phosphate</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Zinc fosfato</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Phosphate de cobalt</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Cobalt phosphate</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Cobalto fosfato</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Mesure électrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Electrical measurement</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Medida eléctrica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Transition phase</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Phase transitions</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Transición fase</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Percolation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Percolation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Système multiphase</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Multiphase system</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Sistema multifase</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Mesure conductivité électrique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Electrical conductivity measurement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Température transition</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Transition temperature</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Matériau composite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Composite materials</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Verre</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Glass</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Expansion volume</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Volume expansion</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Expansión volumen</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Propriété thermique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Thermal properties</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Petit polaron</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Small polaron</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Pequeño polarón</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Conduction saut</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Hopping conduction</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>P2O5</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8105K</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>6540D</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>7138</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>7220E</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>146</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000281 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000281 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:14-0105766
   |texte=   Positive temperature coefficient and high Seebeck coefficient in ZnO-P2O5/Co composites
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024