Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrical conductivity of new zinc phosphate glass/metal composites

Identifieur interne : 000252 ( PascalFrancis/Curation ); précédent : 000251; suivant : 000253

Electrical conductivity of new zinc phosphate glass/metal composites

Auteurs : A. Maaroufi [Maroc] ; O. Oabi [Maroc] ; G. Pinto [Espagne] ; M. Ouchetto [Maroc] ; R. Benavente [Espagne] ; J. M. Perena [Espagne]

Source :

RBID : Pascal:12-0416088

Descripteurs français

English descriptors

Abstract

Zinc phosphate-glass/metal composites have been successfully prepared. Glass with composition of 45 mol% ZnO-55 mol% P2O5 (ZP) has been filled with metallic powders (nickel and cobalt). The glass matrix thermal stability has been assessed by differential thermal analysis technique. The morphology has been examined by scanning electronic microscopy, showing almost homogenous composites. Comparison between the measured and calculated densities as a function of metallic content exhibits a good coherence and allows the estimation of porosity inside the composites. X-ray diffraction analysis has revealed that the ZP-matrix phase is amorphous when the temperature treatment is below the glass transition temperature Tg. However, the principal peaks observed in the case of the composites have been assigned to the metallic crystals of nickel or cobalt fillers. It has been found that the phosphate glass phase is not affected by the growing of the metallic network. The electronic conductivity measurements versus filler volume fraction have been investigated for the first time on phosphate-glass/metal composites. This study has shown the occurrence of a conducting transition at around 30% filler volume fraction. The obtained result has been interpreted on the basis of the statistical percolation theory frame.
pA  
A01 01  1    @0 0022-3093
A02 01      @0 JNCSBJ
A03   1    @0 J. non-cryst. solids
A05       @2 358
A06       @2 20
A08 01  1  ENG  @1 Electrical conductivity of new zinc phosphate glass/metal composites
A11 01  1    @1 MAAROUFI (A.)
A11 02  1    @1 OABI (O.)
A11 03  1    @1 PINTO (G.)
A11 04  1    @1 OUCHETTO (M.)
A11 05  1    @1 BENAVENTE (R.)
A11 06  1    @1 PERENA (J. M.)
A14 01      @1 University of Mohammed V Agdal, Faculty of Sciences, Department of Chemistry, Laboratory of Composite Materials, Polymers and Environment, Avenue Ibn Batouta, P.B. 1014 @2 Rabat Agdal @3 MAR @Z 1 aut. @Z 2 aut.
A14 02      @1 Universidad Polirécnica de Madrid, Departamento de Ingenieria Quimica Industrial y del Medio Ambiente, E.T.S.I. Industriales @2 28006 Madrid @3 ESP @Z 3 aut.
A14 03      @1 Université Mohammed V Agdal, Faculté des Sciences, Departement de Chimie, Laboratoire de Chimie du Solide Appliquée, LAF 501, Avenue Ibn Batouta, B.P: 1014 @2 Rabat Agdal @3 MAR @Z 4 aut.
A14 04      @1 Instituto de Ciencia y Tecnologia de Polímeros (ICTP-CSIC), Juan de la Cierva, 3 @2 28006 Madrid @3 ESP @Z 5 aut. @Z 6 aut.
A20       @1 2764-2770
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 14572 @5 354000509534630070
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 43 ref.
A47 01  1    @0 12-0416088
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of non-crystalline solids
A66 01      @0 GBR
C01 01    ENG  @0 Zinc phosphate-glass/metal composites have been successfully prepared. Glass with composition of 45 mol% ZnO-55 mol% P2O5 (ZP) has been filled with metallic powders (nickel and cobalt). The glass matrix thermal stability has been assessed by differential thermal analysis technique. The morphology has been examined by scanning electronic microscopy, showing almost homogenous composites. Comparison between the measured and calculated densities as a function of metallic content exhibits a good coherence and allows the estimation of porosity inside the composites. X-ray diffraction analysis has revealed that the ZP-matrix phase is amorphous when the temperature treatment is below the glass transition temperature Tg. However, the principal peaks observed in the case of the composites have been assigned to the metallic crystals of nickel or cobalt fillers. It has been found that the phosphate glass phase is not affected by the growing of the metallic network. The electronic conductivity measurements versus filler volume fraction have been investigated for the first time on phosphate-glass/metal composites. This study has shown the occurrence of a conducting transition at around 30% filler volume fraction. The obtained result has been interpreted on the basis of the statistical percolation theory frame.
C02 01  3    @0 001B70B80T
C03 01  3  FRE  @0 Conductivité électrique @5 02
C03 01  3  ENG  @0 Electrical conductivity @5 02
C03 02  3  FRE  @0 Stabilité thermique @5 03
C03 02  3  ENG  @0 Thermal stability @5 03
C03 03  3  FRE  @0 Analyse thermique différentielle @5 04
C03 03  3  ENG  @0 Differential thermal analysis @5 04
C03 04  3  FRE  @0 Microstructure @5 05
C03 04  3  ENG  @0 Microstructure @5 05
C03 05  X  FRE  @0 Fraction volumique @5 06
C03 05  X  ENG  @0 Volume fraction @5 06
C03 05  X  SPA  @0 Fracción volumétrica @5 06
C03 06  3  FRE  @0 Porosité @5 07
C03 06  3  ENG  @0 Porosity @5 07
C03 07  3  FRE  @0 Diffraction RX @5 08
C03 07  3  ENG  @0 XRD @5 08
C03 08  3  FRE  @0 Transition vitreuse @5 09
C03 08  3  ENG  @0 Glass transition @5 09
C03 09  3  FRE  @0 Modèle statistique @5 10
C03 09  3  ENG  @0 Statistical models @5 10
C03 10  3  FRE  @0 Théorie percolation @5 12
C03 10  3  ENG  @0 Percolation theory @5 12
C03 11  X  FRE  @0 Matériau renforcé dispersion @5 13
C03 11  X  ENG  @0 Dispersion reinforced material @5 13
C03 11  X  SPA  @0 Material renforzado dispersión @5 13
C03 12  X  FRE  @0 Phosphate de zinc @5 15
C03 12  X  ENG  @0 Zinc phosphate @5 15
C03 12  X  SPA  @0 Zinc fosfato @5 15
C03 13  3  FRE  @0 Verre phosphate @5 16
C03 13  3  ENG  @0 Phosphate glass @5 16
C03 14  3  FRE  @0 Matériau composite @5 17
C03 14  3  ENG  @0 Composite materials @5 17
C03 15  X  FRE  @0 Oxyde de zinc @5 18
C03 15  X  ENG  @0 Zinc oxide @5 18
C03 15  X  SPA  @0 Zinc óxido @5 18
C03 16  X  FRE  @0 Poudre métallique @5 19
C03 16  X  ENG  @0 Metal powder @5 19
C03 16  X  SPA  @0 Polvo metálico @5 19
C03 17  3  FRE  @0 Nickel @2 NC @5 20
C03 17  3  ENG  @0 Nickel @2 NC @5 20
C03 18  3  FRE  @0 Cobalt @2 NC @5 21
C03 18  3  ENG  @0 Cobalt @2 NC @5 21
C03 19  3  FRE  @0 Métal transition @5 48
C03 19  3  ENG  @0 Transition elements @5 48
N21       @1 324

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0416088

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrical conductivity of new zinc phosphate glass/metal composites</title>
<author>
<name sortKey="Maaroufi, A" sort="Maaroufi, A" uniqKey="Maaroufi A" first="A." last="Maaroufi">A. Maaroufi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Mohammed V Agdal, Faculty of Sciences, Department of Chemistry, Laboratory of Composite Materials, Polymers and Environment, Avenue Ibn Batouta, P.B. 1014</s1>
<s2>Rabat Agdal</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Oabi, O" sort="Oabi, O" uniqKey="Oabi O" first="O." last="Oabi">O. Oabi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Mohammed V Agdal, Faculty of Sciences, Department of Chemistry, Laboratory of Composite Materials, Polymers and Environment, Avenue Ibn Batouta, P.B. 1014</s1>
<s2>Rabat Agdal</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Pinto, G" sort="Pinto, G" uniqKey="Pinto G" first="G." last="Pinto">G. Pinto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Universidad Polirécnica de Madrid, Departamento de Ingenieria Quimica Industrial y del Medio Ambiente, E.T.S.I. Industriales</s1>
<s2>28006 Madrid</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
</affiliation>
</author>
<author>
<name sortKey="Ouchetto, M" sort="Ouchetto, M" uniqKey="Ouchetto M" first="M." last="Ouchetto">M. Ouchetto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Université Mohammed V Agdal, Faculté des Sciences, Departement de Chimie, Laboratoire de Chimie du Solide Appliquée, LAF 501, Avenue Ibn Batouta, B.P: 1014</s1>
<s2>Rabat Agdal</s2>
<s3>MAR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Benavente, R" sort="Benavente, R" uniqKey="Benavente R" first="R." last="Benavente">R. Benavente</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Instituto de Ciencia y Tecnologia de Polímeros (ICTP-CSIC), Juan de la Cierva, 3</s1>
<s2>28006 Madrid</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
</affiliation>
</author>
<author>
<name sortKey="Perena, J M" sort="Perena, J M" uniqKey="Perena J" first="J. M." last="Perena">J. M. Perena</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Instituto de Ciencia y Tecnologia de Polímeros (ICTP-CSIC), Juan de la Cierva, 3</s1>
<s2>28006 Madrid</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0416088</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0416088 INIST</idno>
<idno type="RBID">Pascal:12-0416088</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000043</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000252</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Electrical conductivity of new zinc phosphate glass/metal composites</title>
<author>
<name sortKey="Maaroufi, A" sort="Maaroufi, A" uniqKey="Maaroufi A" first="A." last="Maaroufi">A. Maaroufi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Mohammed V Agdal, Faculty of Sciences, Department of Chemistry, Laboratory of Composite Materials, Polymers and Environment, Avenue Ibn Batouta, P.B. 1014</s1>
<s2>Rabat Agdal</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Oabi, O" sort="Oabi, O" uniqKey="Oabi O" first="O." last="Oabi">O. Oabi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Mohammed V Agdal, Faculty of Sciences, Department of Chemistry, Laboratory of Composite Materials, Polymers and Environment, Avenue Ibn Batouta, P.B. 1014</s1>
<s2>Rabat Agdal</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Pinto, G" sort="Pinto, G" uniqKey="Pinto G" first="G." last="Pinto">G. Pinto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Universidad Polirécnica de Madrid, Departamento de Ingenieria Quimica Industrial y del Medio Ambiente, E.T.S.I. Industriales</s1>
<s2>28006 Madrid</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
</affiliation>
</author>
<author>
<name sortKey="Ouchetto, M" sort="Ouchetto, M" uniqKey="Ouchetto M" first="M." last="Ouchetto">M. Ouchetto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Université Mohammed V Agdal, Faculté des Sciences, Departement de Chimie, Laboratoire de Chimie du Solide Appliquée, LAF 501, Avenue Ibn Batouta, B.P: 1014</s1>
<s2>Rabat Agdal</s2>
<s3>MAR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
</affiliation>
</author>
<author>
<name sortKey="Benavente, R" sort="Benavente, R" uniqKey="Benavente R" first="R." last="Benavente">R. Benavente</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Instituto de Ciencia y Tecnologia de Polímeros (ICTP-CSIC), Juan de la Cierva, 3</s1>
<s2>28006 Madrid</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
</affiliation>
</author>
<author>
<name sortKey="Perena, J M" sort="Perena, J M" uniqKey="Perena J" first="J. M." last="Perena">J. M. Perena</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Instituto de Ciencia y Tecnologia de Polímeros (ICTP-CSIC), Juan de la Cierva, 3</s1>
<s2>28006 Madrid</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of non-crystalline solids</title>
<title level="j" type="abbreviated">J. non-cryst. solids</title>
<idno type="ISSN">0022-3093</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of non-crystalline solids</title>
<title level="j" type="abbreviated">J. non-cryst. solids</title>
<idno type="ISSN">0022-3093</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cobalt</term>
<term>Composite materials</term>
<term>Differential thermal analysis</term>
<term>Dispersion reinforced material</term>
<term>Electrical conductivity</term>
<term>Glass transition</term>
<term>Metal powder</term>
<term>Microstructure</term>
<term>Nickel</term>
<term>Percolation theory</term>
<term>Phosphate glass</term>
<term>Porosity</term>
<term>Statistical models</term>
<term>Thermal stability</term>
<term>Transition elements</term>
<term>Volume fraction</term>
<term>XRD</term>
<term>Zinc oxide</term>
<term>Zinc phosphate</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conductivité électrique</term>
<term>Stabilité thermique</term>
<term>Analyse thermique différentielle</term>
<term>Microstructure</term>
<term>Fraction volumique</term>
<term>Porosité</term>
<term>Diffraction RX</term>
<term>Transition vitreuse</term>
<term>Modèle statistique</term>
<term>Théorie percolation</term>
<term>Matériau renforcé dispersion</term>
<term>Phosphate de zinc</term>
<term>Verre phosphate</term>
<term>Matériau composite</term>
<term>Oxyde de zinc</term>
<term>Poudre métallique</term>
<term>Nickel</term>
<term>Cobalt</term>
<term>Métal transition</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Matériau composite</term>
<term>Nickel</term>
<term>Cobalt</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Zinc phosphate-glass/metal composites have been successfully prepared. Glass with composition of 45 mol% ZnO-55 mol% P
<sub>2</sub>
O
<sub>5</sub>
(ZP) has been filled with metallic powders (nickel and cobalt). The glass matrix thermal stability has been assessed by differential thermal analysis technique. The morphology has been examined by scanning electronic microscopy, showing almost homogenous composites. Comparison between the measured and calculated densities as a function of metallic content exhibits a good coherence and allows the estimation of porosity inside the composites. X-ray diffraction analysis has revealed that the ZP-matrix phase is amorphous when the temperature treatment is below the glass transition temperature T
<sub>g</sub>
. However, the principal peaks observed in the case of the composites have been assigned to the metallic crystals of nickel or cobalt fillers. It has been found that the phosphate glass phase is not affected by the growing of the metallic network. The electronic conductivity measurements versus filler volume fraction have been investigated for the first time on phosphate-glass/metal composites. This study has shown the occurrence of a conducting transition at around 30% filler volume fraction. The obtained result has been interpreted on the basis of the statistical percolation theory frame.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3093</s0>
</fA01>
<fA02 i1="01">
<s0>JNCSBJ</s0>
</fA02>
<fA03 i2="1">
<s0>J. non-cryst. solids</s0>
</fA03>
<fA05>
<s2>358</s2>
</fA05>
<fA06>
<s2>20</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrical conductivity of new zinc phosphate glass/metal composites</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MAAROUFI (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>OABI (O.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PINTO (G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>OUCHETTO (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BENAVENTE (R.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PERENA (J. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Mohammed V Agdal, Faculty of Sciences, Department of Chemistry, Laboratory of Composite Materials, Polymers and Environment, Avenue Ibn Batouta, P.B. 1014</s1>
<s2>Rabat Agdal</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Universidad Polirécnica de Madrid, Departamento de Ingenieria Quimica Industrial y del Medio Ambiente, E.T.S.I. Industriales</s1>
<s2>28006 Madrid</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Université Mohammed V Agdal, Faculté des Sciences, Departement de Chimie, Laboratoire de Chimie du Solide Appliquée, LAF 501, Avenue Ibn Batouta, B.P: 1014</s1>
<s2>Rabat Agdal</s2>
<s3>MAR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Instituto de Ciencia y Tecnologia de Polímeros (ICTP-CSIC), Juan de la Cierva, 3</s1>
<s2>28006 Madrid</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>2764-2770</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14572</s2>
<s5>354000509534630070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>43 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0416088</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of non-crystalline solids</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Zinc phosphate-glass/metal composites have been successfully prepared. Glass with composition of 45 mol% ZnO-55 mol% P
<sub>2</sub>
O
<sub>5</sub>
(ZP) has been filled with metallic powders (nickel and cobalt). The glass matrix thermal stability has been assessed by differential thermal analysis technique. The morphology has been examined by scanning electronic microscopy, showing almost homogenous composites. Comparison between the measured and calculated densities as a function of metallic content exhibits a good coherence and allows the estimation of porosity inside the composites. X-ray diffraction analysis has revealed that the ZP-matrix phase is amorphous when the temperature treatment is below the glass transition temperature T
<sub>g</sub>
. However, the principal peaks observed in the case of the composites have been assigned to the metallic crystals of nickel or cobalt fillers. It has been found that the phosphate glass phase is not affected by the growing of the metallic network. The electronic conductivity measurements versus filler volume fraction have been investigated for the first time on phosphate-glass/metal composites. This study has shown the occurrence of a conducting transition at around 30% filler volume fraction. The obtained result has been interpreted on the basis of the statistical percolation theory frame.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70B80T</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Stabilité thermique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Thermal stability</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Analyse thermique différentielle</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Differential thermal analysis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Fraction volumique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Volume fraction</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Fracción volumétrica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Porosité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Porosity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>XRD</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Transition vitreuse</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Glass transition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Modèle statistique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Statistical models</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Théorie percolation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Percolation theory</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Matériau renforcé dispersion</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Dispersion reinforced material</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Material renforzado dispersión</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Phosphate de zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Zinc phosphate</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Zinc fosfato</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Verre phosphate</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Phosphate glass</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Matériau composite</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Composite materials</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Poudre métallique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Metal powder</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Polvo metálico</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Nickel</s0>
<s2>NC</s2>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Nickel</s0>
<s2>NC</s2>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>21</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Métal transition</s0>
<s5>48</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Transition elements</s0>
<s5>48</s5>
</fC03>
<fN21>
<s1>324</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000252 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000252 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0416088
   |texte=   Electrical conductivity of new zinc phosphate glass/metal composites
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024